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Maximum Likelihood learning of 
Gaussians for Data Mining

• Why we should care
• Learning Univariate Gaussians
• Learning Multivariate Gaussians
• What’s a biased estimator?
• Bayesian Learning of Gaussians
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Why we should care
• Maximum Likelihood Estimation is a very 

very very very fundamental part of data 
analysis. 

• “MLE for Gaussians” is training wheels for 
our future techniques

• Learning Gaussians is more useful than you 
might guess…
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Learning Gaussians from Data
• Suppose you have x1, x2, … xR ~ (i.i.d) N(µ,σ2)
• But you don’t know µ

(you do know σ2)

MLE: For which µ is x1, x2, … xR most likely?

MAP: Which µ maximizes p(µ|x1, x2, … xR , σ2)?
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Learning Gaussians from Data
• Suppose you have x1, x2, … xR ~(i.i.d) N(µ,σ2)
• But you don’t know µ

(you do know σ2)

MLE: For which µ is x1, x2, … xR most likely?

MAP: Which µ maximizes p(µ|x1, x2, … xR , σ2)?

Sneer
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Learning Gaussians from Data
• Suppose you have x1, x2, … xR ~(i.i.d) N(µ,σ2)
• But you don’t know µ

(you do know σ2)

MLE: For which µ is x1, x2, … xR most likely?

MAP: Which µ maximizes p(µ|x1, x2, … xR , σ2)?

Sneer

Despite this, we’ll spend 95% of our time on MLE. Why? Wait and see…
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MLE for univariate Gaussian
• Suppose you have x1, x2, … xR ~(i.i.d) N(µ,σ2)
• But you don’t know µ (you do know σ2)
• MLE: For which µ is x1, x2, … xR most likely?

),|,...,(maxarg 2
21 σµµ

µ
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mle xxxp=
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Algebra Euphoria
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simplification)

=

(plug in formula 
for Gaussian)
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log)
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Intermission: A General Scalar 
MLE strategy

Task: Find MLE θ assuming known form for p(Data| θ,stuff)
1. Write LL = log P(Data| θ,stuff)
2. Work out ∂LL/∂θ using high-school calculus
3. Set ∂LL/∂θ=0 for a maximum, creating an equation in 

terms of θ
4. Solve it*
5. Check that you’ve found a maximum rather than a 

minimum or saddle-point, and be careful if θ is 
constrained

*This is a perfect example of something that works perfectly in 
all textbook examples and usually involves surprising pain if 

you need it for something new.
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The MLE µ
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Lawks-a-lawdy!

∑
=

=
R

i
i

mle x
R 1

1
 µ

• The best estimate of the mean of a 
distribution is the mean of the sample!

At first sight:
This kind of pedantic, algebra-filled and 
ultimately unsurprising fact is exactly the 

reason people throw down their 
“Statistics” book and pick up their “Agent 

Based Evolutionary Data Mining Using 
The Neuro-Fuzz Transform” book.
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A General MLE strategy
Suppose θ = (θ1, θ2, …, θn)T is a vector of parameters.
Task: Find MLE θ assuming known form for p(Data| θ,stuff)
1. Write LL = log P(Data| θ,stuff)
2. Work out ∂LL/∂θ using high-school calculus
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A General MLE strategy
Suppose θ = (θ1, θ2, …, θn)T is a vector of parameters.
Task: Find MLE θ assuming known form for p(Data| θ,stuff)
1. Write LL = log P(Data| θ,stuff)
2. Work out ∂LL/∂θ using high-school calculus
3. Solve the set of simultaneous equations
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A General MLE strategy
Suppose θ = (θ1, θ2, …, θn)T is a vector of parameters.
Task: Find MLE θ assuming known form for p(Data| θ,stuff)
1. Write LL = log P(Data| θ,stuff)
2. Work out ∂LL/∂θ using high-school calculus
3. Solve the set of simultaneous equations
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A General MLE strategy
Suppose θ = (θ1, θ2, …, θn)T is a vector of parameters.
Task: Find MLE θ assuming known form for p(Data| θ,stuff)
1. Write LL = log P(Data| θ,stuff)
2. Work out ∂LL/∂θ using high-school calculus
3. Solve the set of simultaneous equations
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4. Check that you’re at 
a maximum

If you can’t solve them, 
what should you do?
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MLE for univariate Gaussian
• Suppose you have x1, x2, … xR ~(i.i.d) N(µ,σ2)
• But you don’t know µ or σ2

• MLE: For which θ =(µ,σ2) is x1, x2,…xR most likely?
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MLE for univariate Gaussian
• Suppose you have x1, x2, … xR ~(i.i.d) N(µ,σ2)
• But you don’t know µ or σ2

• MLE: For which θ =(µ,σ2) is x1, x2,…xR most likely?
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MLE for univariate Gaussian
• Suppose you have x1, x2, … xR ~(i.i.d) N(µ,σ2)
• But you don’t know µ or σ2

• MLE: For which θ =(µ,σ2) is x1, x2,…xR most likely?
2

1
2

22
21 )(

2
1)log

2
1(log),|,...,( log µ

σ
σπσµ ∑

=

−−+−=
R

i
iR xRxxxp

∑∑
==

=⇒−=
R

i
i

R

i
i x

R
x

11
2

1)(10 µµ
σ

what?)(
2

1
2

0 2

1
42 ⇒−+−= ∑

=

µ
σσ

R

i
ixR



10

Copyright © 2001, Andrew W. Moore Maximum Likelihood: Slide 19

MLE for univariate Gaussian
• Suppose you have x1, x2, … xR ~(i.i.d) N(µ,σ2)
• But you don’t know µ or σ2

• MLE: For which θ =(µ,σ2) is x1, x2,…xR most likely?
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Unbiased Estimators
• An estimator of a parameter is unbiased if the 

expected value of the estimate is the same as the 
true value of the parameters. 

• If x1, x2, … xR ~(i.i.d) N(µ,σ2) then

µµ =
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Biased Estimators
• An estimator of a parameter is biased if the 

expected value of the estimate is different from
the true value of the parameters. 

• If x1, x2, … xR ~(i.i.d) N(µ,σ2) then
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MLE Variance Bias
• If x1, x2, … xR ~(i.i.d) N(µ,σ2) then
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Intuition check: consider the case of R=1

Why should our guts expect that σ2
mle would be an 

underestimate of true σ2?

How could you prove that?
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Unbiased estimate of Variance
• If x1, x2, … xR ~(i.i.d) N(µ,σ2) then
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Unbiased estimate of Variance
• If x1, x2, … xR ~(i.i.d) N(µ,σ2) then
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Unbiaseditude discussion
• Which is best?
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Answer:

•It depends on the task

•And doesn’t make much difference once R--> large
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Don’t get too excited about being 
unbiased

• Assume x1, x2, … xR ~(i.i.d) N(µ,σ2)
• Suppose we had these estimators for the mean

∑
=+

=
R

i
i

suboptimal x
RR 17

1µ

1xcrap =µ
Are either of these unbiased?

Will either of them asymptote to the 
correct value as R gets large?

Which is more useful?
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MLE for m-dimensional Gaussian
• Suppose you have x1, x2, … xR ~(i.i.d) N(µ,Σ)
• But you don’t know µ or Σ
• MLE: For which θ =(µ,Σ) is x1, x2, … xR most likely?
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MLE for m-dimensional Gaussian
• Suppose you have x1, x2, … xR ~(i.i.d) N(µ,Σ)
• But you don’t know µ or Σ
• MLE: For which θ =(µ,Σ) is x1, x2, … xR most likely?
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And xki is value of the 
ith component of xk
(the ith attribute of 
the kth record)

And µi
mle is the ith

component of µmle
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MLE for m-dimensional Gaussian
• Suppose you have x1, x2, … xR ~(i.i.d) N(µ,Σ)
• But you don’t know µ or Σ
• MLE: For which θ =(µ,Σ) is x1, x2, … xR most likely?
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Where 1 ≤ i ≤ m, 1 ≤ j ≤ m

And xki is value of the ith
component of xk (the ith
attribute of the kth record)

And σij
mle is the (i,j)th

component of Σmle
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MLE for m-dimensional Gaussian
• Suppose you have x1, x2, … xR ~(i.i.d) N(µ,Σ)
• But you don’t know µ or Σ
• MLE: For which θ =(µ,Σ) is x1, x2, … xR most likely?
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Q: How would you prove this?

A: Just plug through the MLE 
recipe.

Note how Σmle is forced to be 
symmetric non-negative definite

Note the unbiased case

How many datapoints would you 
need before the Gaussian has a 
chance of being non-degenerate? 
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Confidence intervals

We need to talk

We need to discuss how accurate we expect µmle and Σmle to be as 
a function of R

And we need to consider how to estimate these accuracies from 
data…

•Analytically *

•Non-parametrically (using randomization and bootstrapping) *

But we won’t. Not yet.

*Will be discussed in future Andrew lectures…just before 
we need this technology.
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Structural error

Actually, we need to talk about something else too..

What if we do all this analysis when the true distribution is in fact 
not Gaussian?

How can we tell? *

How can we survive? *

*Will be discussed in future Andrew lectures…just before 
we need this technology.



17

Copyright © 2001, Andrew W. Moore Maximum Likelihood: Slide 33

Gaussian MLE in action 
Using R=392 cars from the 
“MPG” UCI dataset supplied 
by Ross Quinlan
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Data-starved Gaussian MLE
Using three subsets of MPG.

Each subset has 6 
randomly-chosen cars.
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Multivariate MLE

Covariance matrices are not exciting to look at
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Being Bayesian: MAP estimates for Gaussians
• Suppose you have x1, x2, … xR ~(i.i.d) N(µ,Σ)
• But you don’t know µ or Σ
• MAP: Which (µ,Σ) maximizes p(µ,Σ |x1, x2, … xR)?

Step 1: Put a prior on (µ,Σ)
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Being Bayesian: MAP estimates for Gaussians
• Suppose you have x1, x2, … xR ~(i.i.d) N(µ,Σ)
• But you don’t know µ or Σ
• MAP: Which (µ,Σ) maximizes p(µ,Σ |x1, x2, … xR)?

Step 1: Put a prior on (µ,Σ)

Step 1a: Put a prior on Σ

(ν0-m-1) Σ ~ IW(ν0, (ν0-m-1) Σ 0 )

This thing is called the Inverse-Wishart 
distribution.

A PDF over SPD matrices!
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Being Bayesian: MAP estimates for Gaussians
• Suppose you have x1, x2, … xR ~(i.i.d) N(µ,Σ)
• But you don’t know µ or Σ
• MAP: Which (µ,Σ) maximizes p(µ,Σ |x1, x2, … xR)?

Step 1: Put a prior on (µ,Σ)

Step 1a: Put a prior on Σ

(ν0-m-1) Σ ~ IW(ν0, (ν0-m-1) Σ 0 )

This thing is called the Inverse-Wishart 
distribution.

A PDF over SPD matrices!

ν0 small: “I am not sure 
about my guess of Σ 0 “

ν0 large: “I’m pretty sure 
about my guess of Σ 0 “

Σ 0 : (Roughly) my best 
guess of Σ

Ε[Σ ] = Σ 0
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Being Bayesian: MAP estimates for Gaussians
• Suppose you have x1, x2, … xR ~(i.i.d) N(µ,Σ)
• But you don’t know µ or Σ
• MAP: Which (µ,Σ) maximizes p(µ,Σ |x1, x2, … xR)?

Together, “Σ” and 
“µ | Σ” define a 
joint distribution 
on (µ,Σ)

Step 1: Put a prior on (µ,Σ)

Step 1a: Put a prior on Σ

(ν0-m-1)Σ ~ IW(ν0, (ν0-m-1)Σ 0 )

Step 1b: Put a prior on µ | Σ

µ | Σ ~ N(µ0 , Σ / κ0)
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Step 1: Put a prior on (µ,Σ)

Step 1a: Put a prior on Σ

(ν0-m-1)Σ ~ IW(ν0, (ν0-m-1)Σ 0 )

Step 1b: Put a prior on µ | Σ

µ | Σ ~ N(µ0 , Σ / κ0)

Being Bayesian: MAP estimates for Gaussians
• Suppose you have x1, x2, … xR ~(i.i.d) N(µ,Σ)
• But you don’t know µ or Σ
• MAP: Which (µ,Σ) maximizes p(µ,Σ |x1, x2, … xR)?

µ 0 : My best guess of µ
E[µ ] = µ 0

Together, “Σ” and 
“µ | Σ” define a 
joint distribution 
on (µ,Σ)

κ0 small: “I am not sure 
about my guess of µ 0 “

κ0 large: “I’m pretty sure 
about my guess of µ 0 “

Notice how we are forced to express our 
ignorance of µ proportionally to Σ
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Being Bayesian: MAP estimates for Gaussians
• Suppose you have x1, x2, … xR ~(i.i.d) N(µ,Σ)
• But you don’t know µ or Σ
• MAP: Which (µ,Σ) maximizes p(µ,Σ |x1, x2, … xR)?

Why do we use this form 
of prior?

Step 1: Put a prior on (µ,Σ)

Step 1a: Put a prior on Σ

(ν0-m-1)Σ ~ IW(ν0, (ν0-m-1)Σ 0 )

Step 1b: Put a prior on µ | Σ

µ | Σ ~ N(µ0 , Σ / κ0)
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Being Bayesian: MAP estimates for Gaussians
• Suppose you have x1, x2, … xR ~(i.i.d) N(µ,Σ)
• But you don’t know µ or Σ
• MAP: Which (µ,Σ) maximizes p(µ,Σ |x1, x2, … xR)?

Step 1: Put a prior on (µ,Σ)

Step 1a: Put a prior on Σ

(ν0-m-1)Σ ~ IW(ν0, (ν0-m-1)Σ 0 )

Step 1b: Put a prior on µ | Σ

µ | Σ ~ N(µ0 , Σ / κ0)

Why do we use this form of
prior?

Actually, we don’t have to

But it is computationally and 
algebraically convenient…

…it’s a conjugate prior.
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Being Bayesian: MAP estimates for Gaussians
• Suppose you have x1, x2, … xR ~(i.i.d) N(µ,Σ)
• MAP: Which (µ,Σ) maximizes p(µ,Σ |x1, x2, … xR)?
Step 1: Prior: (ν0-m-1) Σ ~ IW(ν0, (ν0-m-1) Σ 0 ),  µ | Σ ~ N(µ0 , Σ / κ0)

Step 2:
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R
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+
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00

κ
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RR += 0κκ

RR += 0νν
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T
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1
00 +

−−
+−−+−+=−+ ∑

= κ
νν

µxµx
xxxxSS

Step 3: Posterior: (νR+m-1)Σ ~ IW(νR, (νR+m-1) Σ R ), 

µ | Σ ~ N(µR , Σ / κR)

Result: µmap = µR, E[Σ |x1, x2, … xR ]= ΣR
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Being Bayesian: MAP estimates for Gaussians
• Suppose you have x1, x2, … xR ~(i.i.d) N(µ,Σ)
• MAP: Which (µ,Σ) maximizes p(µ,Σ |x1, x2, … xR)?
Step 1: Prior: (ν0-m-1) Σ ~ IW(ν0, (ν0-m-1) Σ 0 ),  µ | Σ ~ N(µ0 , Σ / κ0)

Step 2:

∑
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+
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Step 3: Posterior: (νR+m-1)Σ ~ IW(νR, (νR+m-1) Σ R ), 

µ | Σ ~ N(µR , Σ / κR)

Result: µmap = µR, E[Σ |x1, x2, … xR ]= ΣR

•Look carefully at what these formulae are 
doing. It’s all very sensible.
•Conjugate priors mean prior form and posterior 
form are same and characterized by “sufficient 
statistics” of the data.
•The marginal distribution on µ is a student-t
•One point of view: it’s pretty academic if R > 30
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Where we’re at

In
pu

ts

Classifier
Predict

category

In
pu

ts Density
Estimator

Prob-
ability

In
pu

ts

Regressor
Predict
real no.

Categorical 
inputs only

Mixed Real / 
Cat okay

Real-valued 
inputs only

Dec Tree
Joint BC

Naïve BC

Joint DE

Naïve DE

Gauss DE



24

Copyright © 2001, Andrew W. Moore Maximum Likelihood: Slide 47

What you should know
• The Recipe for MLE
• What do we sometimes prefer MLE to MAP?
• Understand MLE estimation of Gaussian 

parameters
• Understand “biased estimator” versus 

“unbiased estimator”
• Appreciate the outline behind Bayesian 

estimation of Gaussian parameters

Copyright © 2001, Andrew W. Moore Maximum Likelihood: Slide 48

Useful exercise
• We’d already done some MLE in this class 

without even telling you!
• Suppose categorical arity-n inputs x1, x2, … 

xR~(i.i.d.) from a multinomial 
M(p1, p2, … pn) 

where 

P(xk=j|p)=pj

• What is the MLE p=(p1, p2, … pn)?


