Learning with
Maximum Likelihood

Note to other teachers and users of An d reW W . M OO re
these slides. Andrew would be delighted

if you found this source material useful in -

giving your own lectures. Feel free to use ASSOC I ate P rOfeSSO I'

these slides verbatim, or to modify them
to fit your own needs. PowerPoint H

originals are available. If you make use SChOO I Of Co m p Ute r SCI e n Ce
of a significant portion of these slides in

your own lecture, please include this Carn eg ie M el IO n U n ive I’S i ty

message, or the following link to the

it f Andrew'’s tutorials:
source repository of An rfws utorials ‘ WWW.Cs.cmu.edu/~awm
Comments and corrections gratefully
received. awm@cs.cmu.edu

412-268-7599

Copyright © 2001, Andrew W. Moore Sep 6th, 2001

Maximum Likelihood learning of
Gaussians for Data Mining

e Why we should care

e Learning Univariate Gaussians
e Learning Multivariate Gaussians
e What's a biased estimator?

e Bayesian Learning of Gaussians
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Why we should care

e Maximum Likelihood Estimation is a very
very very very fundamental part of data
analysis.

e “MLE for Gaussians” is training wheels for
our future techniques

e Learning Gaussians is more useful than you
might guess...
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Learning Gaussians from Data

e Suppose you have Xy, X,, ... Xg ~ (i.i.d) N(ms?)
e But you don’t know m
(you do know s?)

MLE: For which mis Xy, X,, ... X3 most likely?

MAP: Which mmaximizes p(nix,, X,, ... X3 , S2)?
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Learning Gaussians from Data

= Suppose you have Xq, X,, ... Xg ~(i.i.d) N(ms?)
e But you don't know m

(you do know s?)
e

MLE: For which mis Xy, X,, ... Xz most likely?

MAP: Which mmaximizes p(nx,, X,, ... Xg , $2)?
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Learning Gaussians from Data

= Suppose you have Xq, X,, ... Xg ~(i.i.d) N(ms?)
e But you don’t know m

g&;@ (you do know s?)

MLE: For which mis Xy, X,, ... X3 most likely?

O
MAP: Which mmaximizes p(nix,, X,, ... X3 , S2)?

Despite this, we’ll spend 95% of our time on MLE. Why? Wait and see...
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MLE for univariate Gaussian

e Suppose you have Xq, X,, ... Xg ~(i.i.d) N(ms?)
e But you don’'t know m(you do know s?2)
e MLE: For which mis x;, X,, ... Xz most likely?

m™e =argmax p(X, X,,...Xg | Ms ?)
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Algebra Euphoria

m™ =arg max p(X,, X,,...Xg | Ms ?)

m

— (by i.i.d)

— (monotonicity of
log)

— (plug in formula
for Gaussian)

— (after
simplification)
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Intermission: A General Scalar
MLE strategy

Task: Find MLE g assuming known form for p(Data| q,stuff)
1. Write LL = log P(Data] q,stuff)
2. Work out fLL/fg using high-school calculus

3. Set fLL/9g=0 for a maximum, creating an equation in
terms of g

4. Solve it*
5. Check that you've found a maximum rather than a

minimum or saddle-point, and be careful if q is
constrained

*This is a perfect example of something that works perfectly in
all textbook examples and usually involves surprising pain if
you need it for something new.
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The MLE m

m™® = arg max p(X,, X,,...Xs | Ms ?)
m

R
=argmin § (x - m)?

m i=1

=m s.t. -— =

= (what?)
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Lawks-a-lawdy!

mmleziéR. X|
R

e The best estimate of the mean of a
distribution is the mean of the sample!

At first sight:

This kind of pedantic, algebra-filled and
ultimately unsurprising fact is exactly the
reason people throw down their
“Statistics” book and pick up their “Agent
Based Evolutionary Data Mining Using
The Neuro-Fuzz Transform” book.
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A General MLE strategy

Suppose q = (q;, Gy, ---, 0,)" is a vector of parameters.
Task: Find MLE q assuming known form for p(Data| q,stuff)
1. Write LL = log P(Data| q,stuff)

2. Work out YLL/q using high-school calculus

2Ll
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A General MLE strategy

Suppose q = (q;, Gy, ---, 0,)" is a vector of parameters.
Task: Find MLE g assuming known form for p(Data| q,stuff)
1. Write LL = log P(Data]| q,stuff)

2. Work out fLL/1q using high-school calculus

3. Solve the set of simultaneous equations

fiLL _

2,
fiLL _

0

0
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A General MLE strategy

Suppose q = (q;, Gy, ---, 0,)" is a vector of parameters.
Task: Find MLE q assuming known form for p(Data| q,stuff)
1. Write LL = log P(Data| q,stuff)

2. Work out YLL/q using high-school calculus

3. Solve the set of simultaneous equations

fiLL p

12

fLL _ ,

0w 0 4. Check that you're at
2. a maximum

LL

Copyright © 2001, Andrew W. Moore Maximum Likelihood: Slide 14




A General MLE strategy

Suppose q = (q;, Gy, ---, 0,)" is a vector of parameters.
Task: Find MLE g assuming known form for p(Data| q,stuff)
1. Write LL = log P(Data]| q,stuff)

2. Work out fLL/1q using high-school calculus

3. Solve the set of simultaneous equations

qLL 0
If you can't solve them, 172,
what should you do? qLL
" =0 4. Check that you're at
2 a maximum
Ll _ 0
12,
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MLE for univariate Gaussian

e Suppose you have Xq, X,, ... Xg ~(i.i.d) N(ms?)
e But you don’t know mor s2
* MLE: For which g =(ms?) is Xy, X,,...Xg most likely?

1 1 g
10 P(X, X1, [ *) = - R(logp +>logs )~ —= & (x -m)’*
i=1

LL_1 &
s o,
ILL R 1 &
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MLE for univariate Gaussian

e Suppose you have Xq, X,, ... Xg ~(i.i.d) N(ms?)
e But you don’t know mor s?
e MLE: For which g =(ms?) is X, X,,...Xg most likely?

1
log p(X,,X,,...Xs |M,s ?) =- R(logp +Elogs 2) - = 2a_(>g m)?
R
0=—23 (x-m)
S i=1
R 1 &
0=- + X - m)?
% 2 284|a=-1( 1 )
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MLE for univariate Gaussian
e Suppose you have Xq, X,, ... Xg ~(i.i.d) N(ms?)
e But you don’'t know mor s?
* MLE: For which g =(ms?) is Xy, X,,...Xg most likely?

1 1 &
log p(X,,X,,... X |M,s ?) =- R(logp +—Iogs ) - =7 a (x -m)?
i=1

i=1

1 &
O:_ b ==
. a:_(x m) m Rax
R

R
a (x -m? b what?
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MLE for univariate Gaussian
e Suppose you have Xq, X,, ... Xg ~(i.i.d) N(ms?)
e But you don’t know mor s?

e MLE: For which g =(ms?) is Xy, X,,...Xg most likely?
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Unbiased Estimators

e An estimator of a parameter is unbiased if the

expected value of the estimate is the same as the
true value of the parameters.

o If Xy, X, ... Xg —(i.i.d) N(ms?) then

i m
E[n™] =ES= & x{j=m
éRZ O

nin'e is unbiased
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Biased Estimators

e An estimator of a parameter is biased if the
expected value of the estimate is different from
the true value of the parameters.

e If X4, X5, ... Xg ~(i.i.d) N(ms?) then

él & oo U elaeoR 18 6
E[Srfne]:EéEa (Xi'rﬁnl )ZL]: a Xu'ﬁax
eniz u 8 i=1 =1 g

o C\ C'
(7]

S IS biased
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MLE Variance Bias
o If Xy, Xy, ... Xg ~(i.i.d) N(ms?) then

,

P
R (')u
ez ]-eelf x- L4« Ju- d-537s
SR =1 R]l gH Rg

Intuition check: consider the case of R=1

Why should our guts expect that Szm|e would be an
underestimate of true S2?

How could you prove that?
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Unbiased estimate of Variance
e If X;, X5, ... Xg ~(i.i.d) N(ms?) then

e R R OU
chioeelB g 14 0=g Lo
8 =1 j=1 gH e Rg

] 2
So define S nbiased —

& E[S Enbiased]:S ’
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Unbiased estimate of Variance
o If Xy, Xy, ... Xg ~(i.i.d) N(ms?) then

2
S mle
So define unbiased E?-_ 39 e} E[s jnbiased s ?
¢ Rg
1 &
s 2 - - a mmle 2
unbiased R- 1?:1 ()q )
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Unbiaseditude discussion
e \Which is best?

s?2 = 18 (x - mmIe)Z
me ~ o a i
R i=1
1 &
2 —_ mley 2
S nbissed = R- 1ia:.l(xi -m™)

Answer:

|t depends on the task

*And doesn’t make much difference once R--> large
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Don’t get too excited about being
unbiased

e AsSsume Xy, X, ... Xg ~(i.i.d) N(ms?)
e Suppose we had these estimators for the mean

msuboptimal - 1 éR. X,
R+7+/R &

Are either of these unbiased?

crap — L
m =X Will either of them asymptote to the
correct value as R gets large?

Which is more useful?
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MLE for m-dimensional Gaussian
= Suppose you have X;, X,, ... Xg ~(i.i.d) N(MS)
e But you don’'t know mor S
e MLE: For which g =(mS) is x,, x,, ... x; most likely?

me _ 1 S
o =—a X
R =1

1& T

Smle :_a (X Hmle)(X lJ.mle)
k

R k=1
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MLE for m-dimensional Gaussian
= Suppose you have X;, X, ... Xg ~(i.i.d) N(MS)
e But you don’t know mor S
e MLE: For which g =(mS) is x,, X,, ... X, most likely?

1 OR R 0
ume= =8 x, e :lé X, Where L £i £m
R k=1 R k=1 .
And xy; is value of the
1 & T it component of x,
le — | |
S™e = Ea (Xk - mme)(xk - mme) (the ith attribute of
k= the k" record)
And mMe s the ith
component of ni"e
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MLE for m-dimensional Gaussian
= Suppose you have X;, X,, ... Xg ~(i.i.d) N(MS)
e But you don’'t know mor S
e MLE: For which g =(mS) is x,, x,, ... x; most likely?

Where LEIi£m,1£]J£m

1d&

me —

W =ga X And x,; is value of the ith

) component of x, (the ith
attribute of the kt" record)

mle 1 °R mle mie \T
S™==a X, - M x, - m ) o
R =1 And s;™ is the (i,j)"
component of S™Me
- =
mle — 1 CB ( mle)( mle)
Sij =—aA Xy -m ij'mj
R k=1
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| | F_N

MLE for m-dimens

Q: How would you prove this?

A: Just plug through the MLE
recipe.

Note how S™E s forced to be
symmetric non-negative definite

Note the unbiased case

How many datapoints would you
eed before the Gaussian has a

>
1 & mle n .Wlmle U
I a X Kk = m X Kk =
R-1
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Confidence intervals

We need to talk

We need to discuss how accurate we expect M€ and S™e to be as
a function of R

And we need to consider how to estimate these accuracies from
data...

eAnalytically *
Non-parametrically (using randomization and bootstrapping) *
But we won't. Not yet.

*Will be discussed in future Andrew lectures...just before
we need this technology.
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Structural error

Actually, we need to talk about something else too..

What if we do all this analysis when the true distribution is in fact
not Gaussian?

How can we tell? *
How can we survive? *

*Will be discussed in future Andrew lectures...just before
we need this technology.
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Gaussian MLE in action

Using R=392 cars from the
“MPG” UCI dataset supplied
by Ross Quinlan
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Data-starved Gaussian MLE

Using three subsets of MPG.

Each subset has 6
randomly-chosen cars.
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Multivariate MLE

maan coyY
Mo 24458 BOGIB1  -10.3520 -557.535 233858 -651744 911551 166815
cilindars 547194 10235628 28097 166,712 563483 130042 237505 -2.17143
displecemert 194,412 -G07 5853 168,722 109504 2614.03 928291 150994 142572
hiorsepower 104 489 -233 858 55 3482 361402 1487157 282656 -73147 -530254
et 2TT.58 -551744 120042 B2e291 202656 T21485 976815 -06T7 215
aceeleration 15513 BOISE1T -ZEVR05 156094 7387 -QTEE1E T 81133 205045

moalyear TRBMG 166915 -Z17193 -142572 -0A.0364 -967 228 295046 135689

Covariance matrices are not exciting to look at
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Being Bayesian: MAP estimates for Gaussians

= Suppose you have X, X,, ... Xg ~(i.i.d) N(mS)
e But you don’'t know mor S
» MAP: Which (mS) maximizes p(mS |X;, X,, ... Xg)?

O
@ Step 1: Put a prior on (mS)

Copyright © 2001, Andrew W. Moore Maximum Likelihood: Slide 37

Being Bayesian: MAP estimates for Gaussians
» Suppose you have X, X,, ... Xz ~(i.i.d) N(mS)
e But you don’'t know mor S
. I\/@P: Which (mS) maximizes p(mS |X;, X,, ... Xg)?

@ Step 1: Put a prior on (mS)

Step la: Put a prior on S
(Ng-m-1) S ~ IW(ny, (N-M-1) Sy)

This thing is called the Inverse-Wishart
distribution.

A PDF over SPD matrices!
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— = = = A 8 A

estimates for Gaussians

o | No small: “I am not sure
about my guess of S o* ' | 5 - (Roughly) my best
° rS guess of S
o | No large: “I'm pretty sure | iz )
about my guess of S , “ E[S]=S,
Step 1: P jor on (M

Step 1la: MW

(ng-m-1) S ~ IW(n,, (ng-Mm-1) S ;)

This thing is called the Inverse-Wishart
distribution.

A PDF over SPD matrices!
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Being Bayesian: MAP estimates for Gaussians

» Suppose you have X, X,, ... Xz ~(i.i.d) N(mS)
e But you don’'t know mor S
» MAP: Which (mS) maximizes p(mS |X;, X,, ... Xg)?

Step 1: Put a prior on (mS)
Step la: Put a prioron S

(ng-m-1)S ~ IW(ny, (N-M-1)S ) Together, “S” and

Step 1b: Put a prioronm| S m| S de_flne_ a
joint distribution
Copyright © 2001, Andrew W. Moore Maximum Likelihood: Slide 40
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Being Bayesian: MAP estimates for Gaussians
= Suppose you have X;, X,,— ¥ =(i i d) NimS)

= But you don’'t know mor § k, small: “I am not sure
e MAP: Which (mS) maxim| about my guess of my* )

m, : My best guess of m mS) ko large: “I'm pretty sur“e
= about my guess of m,
E[m] =m, S

(ngm-1)S ~ o (Ng-M-1) Together, “S” and
Step 1b: Put a ronm ‘m| S” define a
P P l joint distribution
m| S ~N(my, S/kp) on (mS)

Notice how we are forced to express our
ignorance of mproportionally to S
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Being Bayesian: MAP estimates for Gaussians

» Suppose you have X, X,, ... Xz ~(i.i.d) N(mS)
e But you don’'t know mor S

» MAP: Which (mS) maximizes p(mS |X;, X,, ... Xg)?

Step 1: Put a prior on (MS) Why do we use this form

of prior?
Step la: Put a prioron S

(Ng-M-1)S ~ IW(ny, (N-M-1)S )
Step 1b: Put a prioronm| S
m| S ~N(my, S/kp

Copyright © 2001, Andrew W. Moore Maximum Likelihood: Slide 42

21



Being Bayesian: MAP estimates for Gaussians
= Suppose you have X, X,, ... Xg ~(i.i.d) N(mS)
e But you don’'t know mor S
» MAP: Which (mS) maximizes p(mS |X;, X,, ... Xg)?

Why do we use this form of

Step 1: Put a prior on (mS) prior?

Step la: Put a prioron S Actually, we don’t have to
ne-m-1)S ~ IW(n,, (n,-M-1)S But it is computationally and
( 0 ) ( 0 ( 0 ) 0) algebraically convenient...

Step 1b: Put a prioronm| S

m| S ~N(my,S/kp)

...it's a conjugate prior.
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Being Bayesian: MAP estimates for Gaussians

» Suppose you have X, X,, ... Xz ~(i.i.d) N(mS)

e MAP: Which (mS) maximizes p(mS |Xy, X,, ... Xg)?
Step 1: Prior: (ng-m-1) S ~ IW(ny, (n-m-1) S,), M| S~ N(m,, S/ kg)
Step 2:

KM,+RX|h,=n +R
ko +R

X = X, Mg =

Qo

I
N

0| -

K=

Ko =k,*tR

O+ M- DS, =10 +m- DS+ - T, - 1) + AT )

ol 1/k, +1/ R

Step 3: Posterior: (ng+m-1)S ~ IW(ng, (ng+m-1) Sy),
m| S ~N(nx, S/ ky)
Result: mMaP =y, E[S [X{, X,, ... Xg 1= Sg
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Being Bayesian 1eLook carefully at what these formulae are
ldoing. It's all very sensible.

° SUppOSG you hayv|-Conjugate priors mean prior- form and pc.)s_terior
form are same and characterized by “sufficient

e MAP: Which (mS]statistics” of the data.

Step 1: Prior: (n,-m-1) S ~{*The marginal distribution on Mis a student-t

*One point of view: it's pretty academic if R > 30

Step 2:

k +RX|n,=n.+R
X, Mg = oMo R 0

: Ke*R Jk =k, +R

Qox

X =

pelli

R 3 _ X - X- Ho)'
(g +m-1)S, =M, +m- 1)S°+é‘1(xk - X)x, - X) + ( 1/100)(+1/Ls)

Step 3: Posterior: (ng+m-1)S ~ IW(ng, (ng+m-1) Sy),
m|S ~N(ny, S/ kg)
Result: Mm@ = my, E[S |X;, X,, ... Xg]= Sy
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Where we're at

Categorical Real-valued Mixed Real /
inputs only inputs only Cat okay

@—»Predict Joint BC Dec Tree

category |Naive BC

nputs
i

(%] . .
5 % Density [ Prob- Joint DE Gauss DE
Q- i ili .
c —> ability  |Naive DE
% m Predict
>
g— real no.
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What you should know

e The Recipe for MLE
e What do we sometimes prefer MLE to MAP?

e Understand MLE estimation of Gaussian
parameters

e Understand “biased estimator” versus
“unbiased estimator”

e Appreciate the outline behind Bayesian
estimation of Gaussian parameters
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Useful exercise
e We'd already done some MLE in this class
without even telling you!
e Suppose categorical arity-n inputs X, X,, ...
Xg~(1.i.d.) from a multinomial

M(P1, P2s .. Pp)
where

P(x=11P)=Dp;
e What is the MLE p=(p;, Py, --- P)?
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