

Copyright © 2001, Andrew W. Moore

Sep 6th, 2001

Maximum Likelihood learning of Gaussians for Data Mining

- Why we should care
- Learning Univariate Gaussians
- Learning Multivariate Gaussians
- What's a biased estimator?
- Bayesian Learning of Gaussians

Copyright © 2001, Andrew W. Moore

A General MLE strategy

Suppose $\mathbf{q} = (\mathbf{q}_1, \mathbf{q}_2, ..., \mathbf{q}_n)^T$ is a vector of parameters. Task: Find MLE \mathbf{q} assuming known form for p(Data| \mathbf{q} ,stuff)

- 1. Write LL = log P(Data| **q**,stuff)
- 2. Work out $\partial LL/\partial q$ using high-school calculus

$$\frac{\partial LL}{\partial ?} = \begin{pmatrix} \frac{\partial LL}{\partial ?_1} \\ \frac{\partial LL}{\partial ?_2} \\ \vdots \\ \frac{\partial LL}{\partial ?_n} \end{pmatrix}$$

Copyright © 2001, Andrew W. Moore

A General MLE strategy

Suppose $\mathbf{q} = (\mathbf{q}_1, \mathbf{q}_2, ..., \mathbf{q}_n)^T$ is a vector of parameters. Task: Find MLE \mathbf{q} assuming known form for p(Data| \mathbf{q} ,stuff)

- 1. Write $LL = \log P(Data | \mathbf{q}, stuff)$
- 2. Work out $\partial LL/\partial q$ using high-school calculus
- 3. Solve the set of simultaneous equations

$$\frac{\partial LL}{\partial ?_1} = 0$$

$$\frac{\partial LL}{\partial ?_2} = 0$$

$$\frac{\partial LL}{\partial ?_2} = 0$$

$$\frac{\partial LL}{\partial ?_n} = 0$$
Copyright © 2001, Andrew W. Moore
Maximum Likelihood: Slide 14

 $\begin{array}{l} \text{DLE for univariate Gaussian} \\ \text{Provide the set of the$

Unbiased estimate of Variance
• If
$$x_1, x_2, ..., x_R \sim (i.i.d) N(\mu, \sigma^2)$$
 then

$$E[\mathbf{s}_{mle}^2] = E\left[\frac{1}{R}\left(\sum_{i=1}^R x_i - \frac{1}{R}\sum_{j=1}^R x_j\right)^2\right] = \left(1 - \frac{1}{R}\right)\mathbf{s}^2 \neq \mathbf{s}^2$$
So define

$$\mathbf{s}_{unbiased}^2 = \frac{\mathbf{s}_{mle}^2}{\left(1 - \frac{1}{R}\right)} \qquad \text{So } E[\mathbf{s}_{unbiased}^2] = \mathbf{s}^2$$

$$\mathbf{s}_{unbiased}^2 = \frac{1}{R-1}\sum_{i=1}^R (x_i - \mathbf{m}^{mle})^2$$

Don't get too excited about being
unbiased• Assume $x_1, x_2, \dots x_R \sim (i.i.d) N(\mu, \sigma^2)$ • Suppose we had these estimators for the mean $\boldsymbol{m}^{suboptimal} = \frac{1}{R+7\sqrt{R}} \sum_{i=1}^{R} x_i$ $\boldsymbol{m}^{crap} = x_1$ Are either of these unbiased?
Will either of them asymptote to the
correct value as R gets large?
Which is more useful?

Copyright © 2001, Andrew W. Moore

Confidence intervals									
We need to talk									
We need to discuss how accurate we expect $\mathbf{m}^{n\!l\!e}$ and $\mathbf{S}^{n\!l\!e}$ to be as a function of R									
And we need to consider how to estimate these accuracies from data									
Analytically *									
 Non-parametrically (using randomization and bootstrapping) * 									
But we won't. Not yet.									
*Will be discussed in future Andrew lecturesjust before we need this technology.									

Copyright © 2001, Andrew W. Moore

Structural error
Actually, we need to talk about something else too
What if we do all this analysis when the true distribution is in fact not Gaussian?
How can we tell? *
How can we survive? *
*Will be discussed in future Andrew lecturesjust before we need this technology.
Copyright © 2001, Andrew W. Moore Maximum Likelihood: Slide 32

	mean	COV						
mpg	23.4459	60.9181	-10.3529	-657.585	-233.858	-5517.44	9.11551	16.6915
cylinders	5.47194	-10.3529	2.9097	169.722	55.3482	1300.42	-2.37505	-2.17193
displacement	194.412	-657.585	169.722	10950.4	3614.03	82929.1	-156.994	-142.572
horsepower	104,469	-233.858	55.3482	3614.03	1481.57	28265.6	-73,187	-59.0364
weight	2977.58	-5517.44	1300.42	82929.1	28265.6	721485	-976.815	-967.228
acceleration	15.5413	9.11551	-2.37505	-156.994	-73.187	-976.815	7 61133	2.95046
modelvear	75.9796	16.6915	-2.17193	-142.572	-59.0364	-967.228	2.95046	13.5699

