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Probability Densities in Data Mining
• Why we should care
• Notation and Fundamentals of continuous 

PDFs
• Multivariate continuous PDFs
• Combining continuous and discrete random 

variables
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Why we should care
• Real Numbers occur in at least 50% of 

database records
• Can’t always quantize them
• So need to understand how to describe 

where they come from
• A great way of saying what’s a reasonable 

range of values
• A great way of saying how multiple 

attributes should reasonably co-occur
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Why we should care
• Can immediately get us Bayes Classifiers 

that are sensible with real-valued data
• You’ll need to intimately understand PDFs in 

order to do kernel methods, clustering with 
Mixture Models,  analysis of variance, time 
series and many other things

• Will introduce us to linear and non-linear 
regression
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A PDF of American Ages in 2000

Copyright © 2001, Andrew W. Moore Probability Densities: Slide 6

A PDF of American Ages in 2000
Let X be a continuous random 
variable.

If p(x) is a Probability Density 
Function for X then…
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Properties of PDFs

That means…
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Properties of PDFs
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Talking to your stomach
• What’s the gut-feel meaning of p(x)?

If 
p(5.31) = 0.06 and p(5.92) = 0.03

then 
when a value X is sampled from the 

distribution, you are 2 times as likely to find 
that X is “very close to” 5.31 than that X is 
“very close to” 5.92.
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Talking to your stomach
• What’s the gut-feel meaning of p(x)?

If 
p(5.31) = 0.03 and p(5.92) = 0.06

then 
when a value X is sampled from the 

distribution, you are 2 times as likely to find 
that X is “very close to” 5.31 than that X is 
“very close to” 5.92.b

a

a

b z2z
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Talking to your stomach
• What’s the gut-feel meaning of p(x)?

If 
p(5.31) = 0.03 and p(5.92) = 0.06

then 
when a value X is sampled from the 

distribution, you are α times as likely to find 
that X is “very close to” 5.31 than that X is 
“very close to” 5.92.b

a

a

b zαz
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Talking to your stomach
• What’s the gut-feel meaning of p(x)?

If 

then 
when a value X is sampled from the 

distribution, you are α times as likely to find 
that X is “very close to” 5.31 than that X is 
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Talking to your stomach
• What’s the gut-feel meaning of p(x)?
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Yet another way to view a PDF
A recipe for sampling a random 

age.

1. Generate a random dot 
from the rectangle 
surrounding the PDF curve. 
Call the dot (age,d)

2. If d < p(age) stop and 
return age

3. Else try again: go to Step 1.
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Test your understanding
• True or False:

1)(: ≤∀ xpx

0)(: ==∀ xXPx
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Expectations
E[X] = the expected value of 
random variable X

= the average value we’d see 
if we took a very large number 
of random samples of X
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Expectations
E[X] = the expected value of 
random variable X

= the average value we’d see 
if we took a very large number 
of random samples of X

∫
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=
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= the first moment of the 
shape formed by the axes and 
the blue curve

= the best value to choose if 
you must guess an unknown 
person’s age and you’ll be 
fined the square of your error

E[age]=35.897
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Expectation of a function
µ=E[f(X)] = the expected 
value of f(x) where x is drawn 
from X’s distribution. 

= the average value we’d see 
if we took a very large number 
of random samples of f(X)
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Note that in general:
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Variance
σ2 = Var[X] = the 
expected squared 
difference between 
x and E[X] ∫

∞

−∞=

−=
x

dxxpx )()( 22 µσ

= amount you’d expect to lose 
if you must guess an unknown 
person’s age and you’ll be 
fined the square of your error, 
and assuming you play 
optimally

02.498]age[Var =
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Standard Deviation
σ2 = Var[X] = the 
expected squared 
difference between 
x and E[X] ∫

∞

−∞=

−=
x

dxxpx )()( 22 µσ

= amount you’d expect to lose 
if you must guess an unknown 
person’s age and you’ll be 
fined the square of your error, 
and assuming you play 
optimally

σ = Standard Deviation = 
“typical” deviation of X from 
its mean

02.498]age[Var =

][Var X=σ

32.22=σ
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In 2 
dimensions

p(x,y) = probability density of 
random variables (X,Y) at 

location (x,y)
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In 2 
dimensions

Let X,Y be a pair of continuous random 
variables, and let R be some region of (X,Y) 
space…
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In 2 
dimensions

Let X,Y be a pair of continuous random 
variables, and let R be some region of (X,Y) 
space…

∫∫
∈

=∈
Ryx

dydxyxpRYXP
),(

),()),((

P( 20<mpg<30 and
2500<weight<3000) =

area under the 2-d surface within 
the red rectangle
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In 2 
dimensions

Let X,Y be a pair of continuous random 
variables, and let R be some region of (X,Y) 
space…

∫∫
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=∈
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P( [(mpg-25)/10]2 + 
[(weight-3300)/1500]2

< 1 ) =

area under the 2-d surface within 
the red oval
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In 2 
dimensions

Let X,Y be a pair of continuous random 
variables, and let R be some region of (X,Y) 
space…
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Take the special case of region R = “everywhere”.

Remember that with probability 1, (X,Y) will be drawn from 
“somewhere”. 

So..
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In 2 
dimensions

Let X,Y be a pair of continuous random 
variables, and let R be some region of (X,Y) 
space…
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In m 
dimensions

Let (X1,X2,…Xm) be an n-tuple of continuous 
random variables, and let R be some region 
of Rm …

=∈ )),...,,(( 21 RXXXP m
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Independence

If X and Y are independent 
then knowing the value of X 

does not help predict the 
value of Y

)()(),( :yx, iff ypxpyxpYX =∀⊥

mpg,weight NOT 
independent
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Independence

If X and Y are independent 
then knowing the value of X 

does not help predict the 
value of Y

)()(),( :yx, iff ypxpyxpYX =∀⊥

the contours say that 
acceleration and weight are 

independent
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Multivariate Expectation

xxxXµX ∫== dpE )(][

E[mpg,weight] =
(24.5,2600)

The centroid of the 
cloud
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Multivariate Expectation

xxxX ∫= dpffE )()()]([
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Test your understanding
? ][][][ does ever) (if When :Question YEXEYXE +=+

•All the time?

•Only when X and Y are independent?

•It can fail even if X and Y are independent?
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Bivariate Expectation

∫== dydxyxpxYXfExyxf ),()],([ then ),( if

∫= dydxyxpyxfyxfE ),(),()],([

∫== dydxyxpyYXfEyyxf ),()],([ then ),( if
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][][][ YEXEYXE +=+
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Bivariate Covariance
)])([(],Cov[ yxxy YXEYX µµσ −−==

])[(][],Cov[ 22
xxxx XEXVarXX µσσ −====

])[(][],Cov[ 22
yyyy YEYVarYY µσσ −====
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Bivariate Covariance
)])([(],Cov[ yxxy YXEYX µµσ −−==

])[(][],Cov[ 22
xxxx XEXVarXX µσσ −====

])[(][],Cov[ 22
yyyy YEYVarYY µσσ −====
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Covariance Intuition

E[mpg,weight] =
(24.5,2600)

8mpg =σ8mpg =σ

700weight =σ

700weight =σ
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Covariance Intuition

E[mpg,weight] =
(24.5,2600)

8mpg =σ8mpg =σ

700weight =σ

700weight =σ

Principal
Eigenvector

of Σ
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Covariance Fun Facts



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•True or False: If σxy = 0 then X and Y are 
independent

•True or False: If X and Y are independent 
then σxy = 0

•True or False: If σxy = σx σy then X and Y are 
deterministically related

•True or False: If X and Y are deterministically 
related then σxy = σx σy

How could 
you prove 
or disprove 
these?
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General Covariance

SµXµXXCov =−−=  ))((E T
xx ][] [

Let X = (X1,X2, … Xk) be a vector of k continuous random variables

jixxjiij XXCov σ== ],[S

S is a k x k symmetric non-negative definite matrix

If all distributions are linearly independent it is positive definite

If the distributions are linearly dependent it has determinant zero
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Test your understanding
? ][][][ does ever) (if When :Question YVarXVarYXVar +=+

•All the time?

•Only when X and Y are independent?

•It can fail even if X and Y are independent?
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Marginal Distributions
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Conditional 
Distributions

yYX
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Conditional 
Distributions

yYX
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Why?
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Independence Revisited
)()(),( :yx, iff ypxpyxpYX =∀⊥

It’s easy to prove that these statements are equivalent…
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More useful stuff
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(These can all be 
proved from 
definitions on 
previous slides)
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Mixing discrete and continuous variables
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Mixing discrete and continuous variables

P(EduYears,Wealthy)
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Mixing discrete and continuous variables

P(EduYears,Wealthy)

P(Wealthy| EduYears)
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Mixing discrete and continuous variables

R
en

or
m

al
iz

ed
Ax

es

P(EduYears,Wealthy)

P(Wealthy| EduYears)

P(EduYears|Wealthy)
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What you should know
• You should be able to play with discrete, 

continuous and mixed joint distributions
• You should be happy with the difference 

between p(x) and P(A)
• You should be intimate with expectations of 

continuous and discrete random variables
• You should smile when you meet a 

covariance matrix
• Independence and its consequences should 

be second nature
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Discussion
• Are PDFs the only sensible way to handle analysis 

of real-valued variables?
• Why is covariance an important concept?
• Suppose X and Y are independent real-valued 

random variables distributed between 0 and 1:
• What is p[min(X,Y)]? 
• What is E[min(X,Y)]?

• Prove that E[X] is the value u that minimizes   
E[(X-u)2]

• What is the value u that minimizes E[|X-u|]?


