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1 Mathematical Preliminaries

1.1 Vectors

The course assumes that you are familiar with the basics of vectors and vector calculations.
Let x denote the n-dimensional vector with components

($1,$2, o ':xn)

Then |x| denotes the length of this vector, using the usual Euclidian definition:

x| = /22 + a2+ +a?

The inner product w.x is defined as:

n
W.X = Z W;Z;
i=1
and has a natural geometric interpretation as:
w.x = |w| x| cos(f)

where 6 is the angle between the two vectors. Thus if the lengths of two vectors are fixed
their inner product is largest when # = 0, whereupon one is just some constant multiple
of the other.

Exercise: This ‘natural geometric interpretation’ is not black magic. Show that
n
> wiz; = |w| x| cos(8)
i=1
by using the Theorem of Pythagoras. Start with a triangle whose corners are the origin

and the points w and x. This triangle is not necessarily right-angled, of course; the angle
at the origin is of size 6.

OThe material in this handout derives from material written by Peter Ross for lecture
notes in “Connectionist Computing”.



1.2 Matrices

The course assumes some familiarity with matrices, which are shown as upper-case bold
letters such as A. If the element of the i-th row and j-th column is a;;, then AT denotes
the matrix that has a;; there instead - the transpose of A. So, for example if Aisa 3 x 3
matrix:

2 3 4
A=[459
6 7 1
then the transpose (written A7) is:
2 46
AT=[3 57
4 9 1

The product of two matrices A and B has Y7, a;bi; in the i-th row and j-th column.
The matrix I is the identity or unit matrix, necessarily square, with 1s on the diagonal
and Os everywhere else. If det(A) denotes the determinant of a square matrix A then the
equation
det(A — AI) =0

is called the characteristic polynomial of A. Using the example above, the characteristic
polynomial would be:

which is
2=X)((B-XN1=X)—63)—3(4(1—-X)—54)+4(28—6(b—)))=0

which simplifies to:
A3 8AT 4+ 820 +26=0

Note that a square matrix must satisfy its own characteristic polynomial, by definition
of the polynomial, so (pre- or post-multiplying through by A~!) it provides a way to
calculate the inverse of a matrix using only matrix multiplication, if that inverse exists.
Clearly the inverse exists if and only if the matrix is square and det(A) # 0 (note that
det(A) is the constant term in the characteristic polynomial).

The roots of the characteristic polynomial are called the eigenvalues of the matrix.
Note that if A is an m X n matrix and x is an n-dimensional (column) vector, then

y = Ax

represents a linear map into an m-dimensional space. If A happens to be a square matrix
then any vector which is transformed by the linear map into a scalar multiple of itself is
called an eigenvector of that matrix. Obviously, in that case Ax = Ax for some A. The



eigenvectors can be found by finding the eigenvalues and then solving the linear equation
set:
(A-ADx=0

An orthogonal matriz is a square matrix A such that A7 = A=, Such matrices represent
a mapping from one rectangular co-ordinate system to another. For such a matrix,

AAT =1

- the inner product of any two different rows is 0 and the inner product of any row with
itself is 1.

1.3 Basic combinatorics

The number of ways of selecting k items from a collection of n items is

(+) =

if the ordering of the selection doesn’t matter. This quantity is also the coefficient of 2* in
the expansion of (1 4 z)™. Stirling’s formula provides a useful approximation for dealing
with large factorials:

n

n! = n"e "V2mn

There are a huge number of formulae involving combinations. For example, since (1 +
z)""! = (1 4+ x)"(1 + ) it is clear that

()« ()= ()

1.4 Basic probability and distributions

and so on.

A random variable X is a variable which, in different experiments carried out under the
same conditions, assumes different values x;, each of which then represents a random event.
A discrete random variable can take one of only a finite, or perhaps a countably infinite,
set of values. A continuous random variable can take any value in a finite or infinite
interval. Random variables are completely characterised by their probability density and
distribution functions.

For a discrete random variable, if p(X = z) is the probability that it takes the value
x then

F(z) =p(X <)

is the distribution function of X. For a continuous random variable, there is a probability
density function f(z) such that

/Oo flz)dz =1

—0o0



and the distribution function is then:
pm»:/”ﬂnﬁ
For a discrete random variable, the mean value p is
B= inp(X = ;)
and for a continuous variable it is

uz/_o;tf(t)dt

The variance o2 is, for a discrete variable:

and for a continuous variable:
ot = [ (t-wf(t)at

There are several widely-occurring distributions that are worth knowing about. Sup-
pose that some event will happen with fixed probability p. Then the probability that it
will happen exactly k£ times in n trials is

( Z’ )pk(l —p)" "

and this is the binomial distribution. It has mean np and variance np(1 — p). If one lets
n — oo one gets the Gaussian or normal distribution, typically parameterised by two
constants a and b; it has density function

1 enea)

av\/ 2w
with mean b and variance a?. If one starts with the binomial distribution and lets n — oo
and p — 0 with the extra assumption that np = a, where a is some constant, then one
gets the Poisson distribution with density function

ake=@

k!
with mean and variance both a.
1.5 Partial differentiation
If 2z = f(x1,29,---,x,) is a function of n independent variables then one can form the
partial derivative of the function with respect to one variable (say z;),

of

al'z‘
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by treating all other variables as constant. For example, if

f=ay+y’
then o7 o/
97 =Y ay—x+3y

The geometric significance of a quantity such as % is as follows. If the function f is
plotted and represents some suitably well-behaved surface, then this partial derivative
represents the slope of the surface in a direction parallel to the z-axis at any given point
(x,y). The total derivative dz is given by

0z

dz = Z oz,

and clearly, if all the z; are functions of one variable ¢ then

0z dx;
FriaD b vy

There is a directly analogous version of this ‘chain rule’ for the case where the z; are each
functions of several variables and you wish to find the partial derivative of z with respect
to one of those variables.

Exercise: Find the partial derivatives of the function

f(@,y,2) = (z + 2y)*sin (zy)

1.6 Optimization: Lagrange multipliers!

Suppose that you wish to find the stationary points (maxima or minima) of some n-
argument function f(x) = f(z1,- -, z,), subject to the m constraints g;(x) = 0, - - -, g (x) =
0. Lagrange showed that they could be found as the solution of the (n +m) equations in
the (n +m) variables z1, -+, Zn, A1, -+, At

(%n o Jaxn
gi(x) =0
gm(X) =0

where the )\; are m specially-introduced variables called Lagrange multipliers. This theo-
rem is certainly not obvious, but should at least be fairly natural-looking, and it provides

! The material in this section is not strictly necessary for the LfD1 course.



a handy way to tackle a range of optimization problems. Notice that the above equations
are the (n + m) partial derivatives of the function

f=23" Xy
j=1

each set to zero.
For example, to find the maximum of f(z,y) = z+y subject to the constraint z2+y* =
1, solve:

1-2\ =
1-2\y
?2+y* -1 = 0

to get * = y = A = £1/4/2, after which you should then check to determine which of
these two solutions is the true maximum.

Exercise: Find the maximum of y — 2 subject to the constraint that y + 2% = 4.
You can find the answer to the same problem experimentally as follows. Plot the

graph of y = 4 — 2% and the graph of y = x+m, and find the largest value of m such that
the two graphs still intersect.



