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Integer L P problem
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e [F(P) = feasible domain of P

. (ﬁ) denote the relaxation of (P) where
the integrality constraints are relaxed
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F(P) = feasible domain of P

Introduction

 Exemple
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Introduction

e Integer L P problem  Exemple
n Min z=—x, -5
Min Zc X ST TR
(P) = s.t. x,+10x, <20
X, <2

n
S. t. E a.x.=b 1i=1---m
ij7j i s s

P X, %, 20,0

X =2

x; 20, integer j=1,-,n e

................................. x; +10x, =20

e How to solve the problem?

Why dont we solve the relaxed
problem, and take the rounded

solution? relaxed problem:
(2,9/5)etz=-11
Rounded solution: (2, 1) et z =-7

But (0, 2) 1s feasible with z=-10




Solution methods

e Foundamental principle  Exemple
Min z=-x,-5x,
Sujeta x, +10x, <20
X, <2

x,, X, =20, entiers

Generate a set of linear constraints

to be added to (P)

x, =2

x, +10x, =20

X, +2x,=4



Solution methods

Foundamental principle  Exemple
Min z=-x, —5x,

Generate a set of linear constraints st x +10x, <20

to be added to (P) in order to X, <9
generate a new problem (PR) such x,+2x, <4
that

F(PR)c F(P)

F(PR)=F(P) /

x, =2

Furthermore, when solving the

x,,x, 2 0,1integer

x, +10x, =20

problem PR, the variables take —9 o o
integer values, and hence it is
optimal for (P).

X, +2x,=4



Cutting plane algorithm

* General statement of the cutting plane algorithm

Introduce new linear constraints to the problem in order to
reduce the feasible domain of the relaxed problem but keep all
the feasible points of the problem.

e In this procedure, we solve a sequence of relaxed problems
until an integer optimal solution 1s reached

e Any problem of the sequence 1s obtained by adding an
additional linear constraint (a cut) to the current problem.



Consider the following integer linear programming problem:

(P) Min Zc].x].

J=1
S. t. Zayxj—bl i=1,---.m

X > 0,integer, j=1,---,n

How to generate a Gomory cut.

Let B be an optimal basis of (?), and let x, be the basic
variable in the i” row of the optimal tableau that is not integer.



The optimal tableau 1s as follows:

basic r.h.s
var. X, Xyooo XpoonXjen Xjuin X X -z

X; t, t, .0 1o 1 0 t, 0 b,

X, t, t, ...1..0... 1, .0 t. 0 b,

X; . tyy 0.0 1 oo, 0 b,
~z c, ¢ ...0..0... ¢ ...0... ¢ 1 [-%

The corresponding row of the tableau 1s as follows:

X, +Ztijxj = b (1)

jelJ
where J ={j: j is an index of a non basic variable}

and b; is not integer.




The corresponding row of the tableau 1s as follows:

X, —I—Ztl.jxj = b; (1)

jeJ
where J ={j:j is an index of a non basic variable}

and b; is not integer.

Let | d | = the largest integer (floor value) < d.

Since x; 20 Vj, then

LTRSS

jeJ jeJ

and consequently

X, + Zttijjxj <Xx, + Ztijxj = bi.

jeJ jeJ

(2)



The cooresponding row of the tableau is as follows: If we account for the fact that the variables x; must take

X+ Ztijx = bi (1) integer values, it follows from (2) that
jel _
where J ={: j is an index of a non basic variable} X+ ZLQ;J% < LbiJ- (3)
—_ jelJ
and b; is not integer. Hence all solutions of (P) satisfy (3).

Let | d | = the largest integer (floor value) < d.

Since x; >0 Vj, then Now consider the relation obtained by substracting
ZJZL%J%‘ < Z;r,.jxj (1) from (3):
Jje Jje B B
Z(LIUJ_IU)XJS(LbiJ_b") (4)
and consequently ~ s
xk+ZLtUijSxk+Ztijxj=bi_ (2) Note that

(aJu)so @ (B Jb)<o

Since any solution of (P) satisfies (1) and (3), then it also satifies (4),

and we can introduce this constraint in (P) without eliminating any solution of (P).




Now consider the relation obtained by substracting
(1) from (3):

jelJ

Note that

(|7 ]-1,) =<0 et (LE,.J—E,-)<O

Since any solution of (P) satisfies (1) and (3), then it also satifies (4),

and we can introduce this constraint in (P) without eliminating any solution of (P).

But the current optimal solution of the relaxed problem (F) where

x; =0 Vje J does not satisfies constraint (4), and thus introducing (4)

reduces the size of the feasible domain of the relaxed problem (F).




To continue the solution process, we introduce the constraint
Z;(MJ_%)XJ < (LEJ_E") < Z}(L%J_tﬁ)xj X = (LEJ_E")
JE JjE

where x_ 1s a slack variable having a cost equal to 0, in the last simplex

tableau to generate a basic solution for the new problem by looking at

x_ as the basic variable in the new row of the tableau.



basic

var.

r.h.s.

Ji

N

RS S

Ewl

mj
|-t;...0..]

—
S

iy Ltin mLZERE

ZJ(LE-J-J— fl-j)xj +Xx_ = (LE J —Ei) in the last row

basic variable in the last row




To continue the solution process, we introduce the constraint
Z}(MJ_%)"J‘ <(|5.]-b) & Z}(L%J_tv)xj +x.=(|b,|-51)
JE Jje
where x_ 18 a slack variable having a cost equal to 0, in the last simplex
tableau to generate a basic solution for the new problem by looking at

x, as the basic variable in the new row of the tableau.

This basic solution 1s not feasible since x, = (Lbi J — 1_91) <0.

Then we continue the solution process using the dual simplex method.



basic

var.

r.h.s.

Ji

t

ml

kN

S

Lt )=t |2

¢

bm
L6 7B 1O
=2




To continue the solution process, we introduce the constraint
Z}(L@J—Qj)xj < (Lbz’J_b") < Z}(L%J_tﬁ)xj X = (Lbe_b")
JE JjE
where x_ 1s a slack variable having a cost equal to 0, in the last simplex
tableau to generate a basic solution for the new problem by looking at

x_ as the basic variable in the new row of the tableau.

This basic solution 1s not feasible since x_ = (LE J — E,) <0.

Then we continue the solution process using the dual simplex method.

Remarks:
1) If Ltl.jJ =1, (l.e., 1, 1s integer) Vj€ J, etsi b; is not integer, then
X, +Ztijxj = b, (1)
e
indicates that (P) is not fejasible since the left hand side take an integer
value for all feasible solution of (P) while the right hand element bi
1S not integer.

2) The same process is applied at each iteration.



Consider the following exemple
Min —-21x, —11x,
S.t. Tx, +4x, +x, =13

X, X,,%, =0, 1nteger



Iteration 1:

Basic solution of (F)

Xty by =
S A A

optimal value = -39

Min
S.t.

—21x, —11x,
Tx;+4x, + x; =13
X;, X, .%; 20, 1nteger

7




215 1)) S(V_’iJ_E") & (1] =13+ :(V_’iJ_Z”')

jeJ jeJ

Iteration 1:

Basic solution of (P) N
X +£x +lx )

b7 77 g
optimal value = -39

Min -21x, —-11x,
s.t. Tx;+4x, + x; =13
X;, X, .%; 20, 1nteger

New constraint:

HEREEE

Graphic interpretation:

v

But x,=13-7x,—4x,. Then
—4x,—13+7x,+4x,<-6 & x <1




Iteration 2:

Solve the relaxed problem
Mln - 21)61 - 1 1x2 A

S.t. Tx, +4x, + x, =13
4 1 6
—7X2—7X3+X4:—; .

X;,X,5,X5,%, 20, Integer

The result:
X, + x, =1

1 7 3 —
X2 +ZX3 ——X4 25

optimal value =-37 1

—39 optimal value in former iteration

v



: - 1

New constraint specified from the 2" row  x, +—x; — % X, = %:

1 X5 + 7 +Z X4+ X5 = 3123 ;(L’ifj"ﬁ)xfg(pij‘zi)

41 4 41 4 2] 2
—lx3—lx4+x5 __1 ;(L%J‘fﬁ)xf”f:(LbiJ_b")

4 4 2 :
Graphic interpretation ] gf;;ét Ny
—X3— X, <2 /_l_x il;H __5
Replace x, by its value obtained 777 7 ’ tf‘_ 7
from the last constraint added of L fehp i s A
—ﬁx —lx + X __b /

7T BT AT T T
to obtain

4 1 6
—X3— =Xy —— X3 +— < =2
A, :
replace x;
Xy, =13-Tx, —4x, N
to obtain g T S
2 4 i

—§13+8xl+3—x2——x2+§S—2 ’ \

7 7 7 7

& 8x; +4x, S—2+§13—g & 2x+x,<3



Iteration 3:

Solve the problem
Min -21x,—11x,
s.t. X, + X, =1 A
X +lx —Zx =§
2 4 3 4 4 2
1 1 1 i
—Zx3—zx4 + X, ——5

X[ Xy.X5, X, X5 2 0, Integer

We obtain
—X, + X,
2x, + x,

x,=0, x,=3, x;=1 1 ' \

: —3'7— optimal value in former iteration
optimal value =-33 2

-39 optimal value in the first iteration

v



Convergence of Gomory cutting plane algorithm

Reference:

A. Schrijver, Theory of Linear and Integer Programming,
Wiley & Sons, 1986, 354 - 357

Under some assumptions for selecting the row of the
tableau to specify the next cut, this author shows that:

"... the cutting plane method terminates”



Solution methods

Foundamental principle  Exemple
Min z=-x, —5x,

Generate a set of linear constraints st x +10x, <20

to be added to (P) in order to X, <9
generate a new problem (PR) such x,+2x, <4
that

F(PR)c F(P)

F(PR)=F(P) /

x, =2

Furthermore, when solving the

x,,x, 2 0,1integer

x, +10x, =20

problem PR, the variables take —9 o o
integer values, and hence it is
optimal for (P).

X, +2x,=4



Branch & Bound method



Min iciixj Min icjxj
.| Branch & Bound method |7 s Sov-5 -1

x; 20, integer j=1,--,n x, 20, j=L-n

(P) s.t. Zaﬁxiizbi i
j=1

e Here also we solve a sequence of relaxed problems.

e First we solve (P) . If the optimal solution x 1is integer, then
this solution 1s optimal for the original problem (P).

* Otherwise we use a variablex, having value x, which is not
integer.

e (Consider two new constraints
x, < L;lJ (floor of x,)
and

l

x. > [;l_‘ (ceeling of x,)



Min z =-x, —5x,
s.t. 11x, + 6x, <66
x, +10x, <45

x,,x, 20, integer

opt. sol. of the relaxed problem:
x, =3.75, x,=4.125
z=-24.375

\ml +6x, =66



Slice of F (ﬁ)

eliminated Min z=-x, —5x,
s.t. 1lx, + 6x, <66
x, +10x, <45

x,, %, 20, integer

Opt. sol. of the relaxed problem:
x, =3.75, x,=4.125
z=-24.375

New constraints to consider:
x, <[3.75] =3

and
X, 2 (3.75_| =4

\ml +6x, =66

With these two new constraints
- feasible point of ( P) are maintained

- a slice of the feasible domain of the
relaxed problem is eliminated.




S.tL.

Min z =-x, —5x,

11x, + 6x, <66
x, +10x, <45

x,,x, 20, integer

Opt. sol. of the relaxed problem:
x, =3.75, x,=4.125
z=-24.375

Slice of F (?)

eliminated

/' \ml +6x, =66

New constraints to consider:
X <[375] =3

and
x, 2[3.75| =4

and F (53) are left, and their intersection 1s empty.

But what is left of F (ﬁ) 1S not connected since two subsets F (Fz)




The best optimal solution of (P, ) and (P,)
is the optimal sqlution of (P).

1

Min z =-x, —5x,
S.t.

1x, + 6x, < 66
x, +10x, <45

x,,x, 2 0, integer

New constraints to consider:

x, £[3.75] =3
and
X, 2 (3.75—| =4
\1 lx, +6x, =66
Continue the process by defining the problem (£ )-associated with F (Fz)
(P) Min z =—x, - 5x, P3) Min z=-x -5x,
and (P,) as33901qq§dm <_F6%P ) s.t.  11x, + 6x, <66
x, +10x, <45 x, +10x, <45
X, >4 X, <3
x,,x, =20, integer x,,X, 2 0, integer




e Next iteration
Select one of the two problems (P,) or (P5)
Solve this selected problem as we did for (P).

* In our exemple, we select the problem (P5)



x1i10x9=45 _________ A\ (P,) Min z =-x, —5x,
q o o o O w ~ S.t. 11X1 + 6X2 <66

x, +10x, <45
X, <3

X, X, 20, Integer

Opt. sol. of the relaxed prob. (53):
x, =3, x,=4.2

(@ o) 0 o 0
z=-24
a a a a 3

\1 lx, +6x, =66
Slice of F (E) New constraints to considered:

eliminated x, < |_4.2J =4

and
x,2[42] =5




(P)  Min z=-—x, —5x,

s.t. 11x,+ 6x, <66
x,+10x, <45
X, <3

x;, X, 2 0, Integer

New constraints to considered:
x, < L4.2J =4
and
x,2[42] =5
\1 1x, +6x, =66
(P4) Min z =—x, —5x, (P,) Min z=-x, —5x,
s.t. 1lx;+ 6x, <66 s.t. 1lx, + 6x, <66
x, +10x, <45 j
% 23 x, +10x, <45
X2 2 5 Xl < 3
X, X, 20, 1nteger X, <4
x,,x, 2 0, integer




 Next iteration

Select a problem in the set {P,,P,,P.} which have not been
solved yet.

Solve this selected problem as we did for (P).

* In our exemple, we select the problem (P-)



) Min z=—x, —5x,
s.t. 1lx, + 6x, <66

x, +10x, <45
X, <3
X, <4

X, X, 2 0, integer

Opt. sol. of the relaxed problem(ﬁs ):

x, =3, x,=4
z=-23

\ml +6x, =66

Since the optimal solution of the relaxed sub problem is integer, then it

1s a feasible solution of (P).

Do not generate new sub problems since we have identified the best feasible
solution 1in this part of the feasible domain of (P).

During this solution process, we keep the best feasible integer solution found so far,
and its value becomes an upper bound BS for the optimal value of (P).



 Next iteration

Select a problem in the set { /. P, } which have not been solved
yet.

Solve this selected problem as we did for (P).

* In our exemple, we select the problem (P,)



x,+10x, =45 (P,)  Min z=—x —5x,
s.t. 1lx, + 6x, <66
a O O
x, +10x, <45
X, <3
Q (@) (@)
X, > 5
x;,Xx, =0, integer
® @) ©)
Problem (E) 1s not feasible
® (@) (0] -
F(P:)=
\1 lx, +6x, =66

Stop looking for feasible solutions in the part since it is empty.




e Next iteration
Select a problem in the set {£,} which has not been solved yet.
Solve this selected problem as we did for (P).

* Then we select the problem (P,)



10x, =45 (Pz) Min z=-x,—5x,
s.t. 1lx, + 6x, <66

x, +10x, <45
X} >4

x,,x, 20, integer

Opt. sol. of the relaxed problem (ﬁz):
x, =4, x,=3.667
7=-22.333

\1 lx, +6x, =66

The optimal solution of the relaxed problem is not integer but

its value z=-22.333 > BS =-23

Stop looking for an integer solution in the part of the feasible domain of

(P) since 1t 1s not possible to find one having a value smaller than the BS = — 23.



The procedure stops when all the relaxed problems have been
solved.

The 1nteger solution having its value equal to BS is an optimal
solution of (P).



Summary of the Branch & Bound approach

e [terative approach.
e At each iteration,
- a list of candidate problems 1s available to be solved. When
the procedure starts, the list includes only the problem (P)
- a candidate problem is selected, and the correponding
relaxed problem 1s solved
- the optimal solution of the relaxed problem allows to update
the list of candidate problems or the upper bound and the
best integer solution found so far.



The Branch & Bound method

e Initialisation
The list of candidate problem includes only the problem (P)
BS =
Go to Steo 2.

e Step?2
Select the first candidate problem (PC) on the top of the list.



o Step 2
Select the first candidate problem (PC) on the top of the list.

e Step 3
To analyse (PC), solve the relaxed problem (P_C)
If F(P_C) = ®d, go to Stepl .
If v(P_C) > BS, goto Step 1.

If the optimal solution of (P_C) 1s integer, then
if v(P_C) < BS, then BS = V(P_C),
g0 to Stepl.



e Step 3
To analyse (PC), solve the relaxed problem (P_C)

It F(P_C) = ®d, go to Stepl .
It v(P_C) > BS, go to Step 1.

It the optimal solution of (P_C) 1s integer, then
if v (P_C) < BS, then BS :=v (P_C),

go to Stepl.
« Step 4

Select a variable x; which 1s not integer.

Generate a first new problem by including the constraint

X, 2 ( —| to the problem (PC) and place it on the top of the list.

Generate a second new problem by including the constraint

X, < L J to the problem (PC), and place it on the top of the list.
Go to Step 2.



o Step 2
Select the first candidate problem (PC) on the top of the list.

e Step 3
To analyse (PC), solve the relaxe problem (P_C)
If F(P_C) = ®d, go to Stepl .
If v(P_C) > BS, goto Step 1.
If the optimal solution of (P_C) 1s integer, then
if V(P_C) < BS, then BS := V(P_C),
g0 to Stepl.



Enumeration tree of the Branch & Bound

Candidate problem ( ]
?ng; ( }—)) x,=3.75
k,
(Pz) X 24 1 < 3
(P-) (Ps) || x,=42
x, =5 Xy <4
Non int. sol. ?

z=-22.333>BS

Infeasible

) Int. sol.
solution

_ - BS=-23

-
Optimal solution



How to search 1n the tree (how to select the next candidate problem)

a) Depth first search (select the last generated candidate problem):
decend rapidly in the tree in order to reach as soon as

possible a feasible integer solution

b) Search using the best node (using the best candidate problem):
require to complete some iterations to solve the candidate
problem at each node 1n order to identify the node having

the best potentiel to improve the upper bound



Selection of the separating variable x, (xj

The variable x; such that
a)x; — LYJ.J 1s the largest
b)x, — ijJ 1s the smallest

C) X, — L)_CJ.J 1s closer to 0.5



Solving the relaxed candidate problem using the dual simplex method

The optimal solution of the current relaxation of the candidate problem

(at the current node) is not feasible for the relaxed problem obtained
by adding a constraint of the type x, 2 P—cﬂ oux; < L)_ch.
Then we can use the dual simplex method to solve the

relaxed candidate problem using the optimal solution

of the current problem to generate the initial basic solution.



Reference.
A. Atamturk, M.W.P. Savelsbergh, "Integer-Programming Software
Systems", Annals of Operations Research 140, 67-124, 2005.



