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Illustration of the notion

• Consider an enterprise

producing r items:    

fk = demand for the item k =1,…, r

using s components: 

hl = availability of the component l = 1,…, s

• The enterprise can use any of the n process (activities):

xj = level for using the process j = 1,…, n

cj = the unit cost for  using the process j = 1,…, n 

• The process j

produces ekj units of the item k =1,…, r

uses glj units of the component l = 1,…, s

for each unit of its use



Illustration of the notion

• Consider an enterprise

producing r items:   

fk = demand for the item k =1,…, r

using s components:  

hl = availability of the component l = 
1,…, s

• The enterprise can use any of the n process
(activities):

xj = level for using the process j = 1,…, n 

cj = the unit cost for  using the process j = 
1,…, n

• The process j

produces ekj units of the item k
=1,…, r

uses glj units of the component l = 
1,…, s

each time it is used at level 1

• The enterprise problem: determine the  
level of each process for satisfying the 
without exceeding the availabilities in 
order to minimize the total production 
cost.
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Illustration of the notion

• A business man makes an offer to buy all the components and to sell the 

items required by the enterprise to satisfy the demands.

• He must state proper unit prices (to be determined) to make the offer

interesting for the enterprise: 

vk item unit price k = 1, 2, … , r

wl component unit price l = 1, 2, …, s.

vk

wl
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Illustration of the notion

The business man must state 
proper unit prices (to be
determined) to make the offer
interesting for the enterprise

To complete its analysis, the 
enterprise must verify that for 
each process j, the cost of making
business with him is smaller or 
equal than using the process j. But 
the cost of making business with
him is equal to the difference
between buyng the items required
and selling the components 
unused in order to simulate using
one unit of process j (cj ). 

1 1

buying the selling the 
items components

r s

kj k lj l j

k l

e v g w c
= =

−∑ ∑
��� �����

≤

1

1

1

min

S. t       1,2,..., (demands)

1,2,..., (availabilities)

0 1,2,...,

n

j j

j

n

kj j k

j

n

lj j l

j

j

z c x

e x f k r

g x h l s

x j n

=

=

=

=

≥ =

≤ =

≥ =

∑

∑

∑

vk

wl



Illustration of the notion

• The business man problem is to maximize his profit while maintaining

the prices competitive for the enterprise
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Illustration of the notion

• The enterprise problem: multiply the availability constraints by -1
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Enterprise problem

Business man problem
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Primal dual problems

Linear programming problem specified with equalities

Linear programming in standard form
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Duality theorems

• It is easy to show that we can move from one pair of primal-dual problems

to the other. 

• It is also easy to show that the dual of the dual problem is the primal 

problem.

• Thus we are showing the duality theorems using the pair where the primal  

primal is in the standard form:
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Duality theorems

• Weak duality theorem

If                                         (i.e., x is feasible for the primal problem) and 

if                                 (i.e., y is feasible for the dual problem), then

Proof Indeed,                                                               
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Duality theorems

• Corollary If                                            and             , and if

, then x* and y* are optimal solutions for the primal and dual 

problems, respectively..

Proof It follows from the weak duality theorem that for any feasible

solution x of the primal problem

Consequently x* is an optimal solution of the primal problem.

We can show the optimality of y* for the dual problem using a similar

proof. 
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Duality theorems

• Strong duality theorem If one of the two primal or dual problem has a 
finite value optimal solution, then the other problem has the same property, 
and the optimal values of the two problems are equal. If one of the two
problems is unbounded, then the feasible domain of the other problem is
empty. 

Proof The second part of the theorem follows directly from the weak
duality theorem. Indeed, suppose that the primal problem is unbounded
below, and thus cTx→ – ∞. For contradiction, suppose that the dual 
problem is feasible. Then there would exist a solution                           ,

and from the weak duality theoren, it would follow that ; i.e., bTy
would be a lower bound for the value of the primal objective function cTx, a 
contradiction.
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Recall: The simplex multipliers

Denote the vector
specified by

Then

or

where denotes the jth column
of the contraint matrix A

m
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 is the simplex multipliers vector

associated with the basis .B

π

The vector  has one element associated

with each row (constraint) of the tableau.

π

T T T 1

Bc c c B A
−

= −



Duality theorems

To prove the first part of the theorem, suppose that x* is an optimal solution 

of the primal problem with a value of z*. 

Let                          be the basic variables.  

Let                                   , and π be the simplex multipliers associated with

the optimal basis. Recall that the relative costs of the variables are specified

as follows

where denotes the jth column of the matrix A.

Suppose that the basic optimal solution has the following property

Consequently
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Duality theorems

Suppose that the basic optimal solution has the following property

Consequently

and the matrix format of these relations: 

This implies that

i.e., π is a feasible solution of the dual problem.
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Duality theorems

Determine the value of the dual objective function for the dual feasible

solution π. Recall that

It follows that

Consequently, it follows from the corollary of the weak duality theorem

that π is an optimal solution of the dual problem, and that
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Complementary slackness theory

• We now introduce new necessary and sufficient conditions for a pair of 

feasible solutions of the primal and of the dual to be optimal for each of 

these problems. 

• Consider first the following pair of primal-dual problems. 
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Complementary slackness theory

• Complementary slackness theorem 1

Let x and y be feasible solution for the primal and the dual, respectively. 

Then x and y are optimal solutions for these problems if and only if for all 

j = 1,2,…,n

Poof First we prove the sufficiency of the conditions. Assume that

the conditions (i) et (ii) are satisfied for all j=1,2,…,n. Then
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Complementary slackness theory

Consequently

and the corollary of the weak duality theorem implies that x et y are optimal

solutions for the primal and the dual problems, respectively. 
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Complementary slackness theory

Now we prove the necessity of the sonditions. Suppose that the 

solutions x et y are optimal solutions for the primal and the dual problems, 

respectively, and

Then referring to the first part of the theorem
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Complementary slackness theory

• Now consider the other pair of primal-dual problems

• Complementary slackness theorem 2

Let x and y be feasible solution for the primal and dual problems, 

recpectively. Then x and y are opyimal solutions of these problems

if and only if

for all  j = 1,2,…,n                            for all i=1,2,…,m
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Complementary slackness theory

Proof This theorem is in fact a corollary of the complementary slackness

theorem 1. Transform the primal problem into the standard form using the 

slack variables si , i=1,2,…,m:

The dual of the primal problem in standard form
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Complementary slackness theory

Use the result in the preceding theorem to this pair of primal-dual problems

For j=1,2,…,n

and for i=1,2,…,m

Tmin

S. t.

, 0

c x

Ax Is b

x s

− =

≥

( )

( )

T

T

0

0

j j j

j j j

i x a y c

ii a y c x

•

•

> ⇒ =

< ⇒ =

( )

( ) 00

00

=⇒<−

=−⇒>

ii

ii

syiv

ysiii

T

T

max

S. t.

0

b y

A y c

I y

≤

− ≤

x

s

y



Complementary slackness theory

For j=1,2,…,n

and for i=1,2,…,m

and then the conditions become
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Dual simplex algorithm

• The dual simplex method is an iterative procedure to solve a linear

programming problem in standard form. 
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Dual simplex algorithm

• At each iteration,  a basic infeasible solution of problem is available, except

at the last iteration, for which the relative costs of all variables are non 

negatives.

• Exemple
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Dual simplex algorithm

Analyse one iteration of the dual simplex algorithm, and suppose that the 

current solution is as follows:
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If 0   1,2, , ,  then the solution is feasible

and optimal. The algorithm stops.
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Leaving criterion

0rsa < ⇐
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We select the entering variable  in such a way that

1) the value of the leaving variable  increases when

    the value of  increases

ii) the relative costs of all the variables remains non

    negat
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ive when the pivot on  is completed to modify

    the tableau. 
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For all  such that 0,  we have to inforce the non negativity

of the relative cost by selecting properly the pivot element .
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Entering criterion

For all  such that 0,  we have to inforce the non negativity

of the relative cost; i.e., 
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Then the index  of the entering variable is such that

max : 0            or          min : 0 
j js s

rj rj
j nj n

rs rj rs rj

s

c cc c
a a

a a a a==

      
= < = <   

− −      
……

,    such that 0
j s

rj

rj rs

c c
j a

a a
≤ ∀ <



Pivot

• To obtain the simplex tableau associated with the new basis where the 

entering variable xs remplaces the leaving variable xr we complete the pivot 

on the element 0.
rs

a <



Exemple

• x is the leaving variable, and consequantly, the pivot is completed in the 

first row of the tableau

• h is the entering variable, and consequently, the pivot is completed on the 

element -1/4

• After pivoting, the tableau becomes

This feasible solution 

is optimal

basic var.

basic var.

         r.h.s.       

        r.h.s.         



Convergence when the problem is non degenerate

• Non degeneracy assumption:

the relative costs of the non basic variables are positive at each iteration

• Theorem: Consider a linear programming problem in standard form.

If the matrix A is of full rank, and if the non degeneracy assumption is
verified, then the dual simplex algorithm terminates in a finite number of 
iterations.

T     min

Subject to

        0

          , ,

            matrix

n m

z c x
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c x R b R

A m n

=

=

≥

∈ ∈

×



• Proof: 

Since the rank of matrix A is equal to m, then each basic feasible solution 

includes m basic variables strictly positive (non degeneracy assumption).

But there is a finite number of ways to select  columns among the 

 columns of  to specify an  sub matrix of :

!
         

! ( )!

m

n A m m A

nn

m m n m

×

 
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But the non feasible basis of  are a subset of these. Then 

!
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is an upper bound on the number of feasible basis of .
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• The influence of pivoting on the objective function during an iteration of 

the simplex

→ sc×
rs

r

a

b

Substact from

since 0, 0, and 0 under the non degeneracy ass.
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Then and the value of the objective function increases stricly at

each iteration. 

Consequently, the same basic non feasible solution cannot repeat during the 

completion of the dual simplex algorithm. 

Since the number of basic non feasible solution is bounded, it follows that

the dual simplex algorithm must be completed in a finite number of 

iterations. 

,z z>�

since 0, 0, and 0 under the non degeneracy ass.
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Comparing

(primal) simplexe alg.  and dual simplexe alg.

Simplex alg.

Search in the feasible domain

Search for an entering variable to 

reduce the value of the objective function

Search for a leaving variable preserving

the feasibility of the new solution

Stop when an optimal solution is found

or when the problem is not bounded

below

Dual simplex alg.

Search out of the feasible domain

Search for a leaving variable to eliminate

a negative basic variable

Search for an entering variable preserving

the non negativity of the relative costs

Stop when the solution becomes feasible

or when the problem is not feasible


