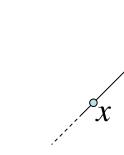
Convexity

Convex sets

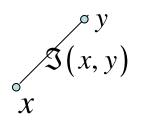
Definition: Let $x, y \in R^n$, the straight line through x and y is specified as follows

$$\{z \in R^n : z = \theta x + (1 - \theta) y, \ \theta \in R^1\}.$$



Definition: Let $x, y \in R^n$, the line segment linking x and y is specified as follows

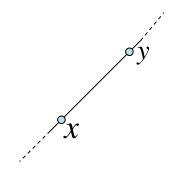
$$\Im(x,y) = \{z \in R^n : z = \theta x + (1-\theta)y, \ \theta \in [0,1]\}.$$



Definition: A set $X \subset R^n$ is convex if for any pair of points $x, y \in X$, the line segment $\Im(x, y) \subset X$.

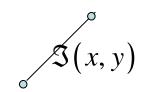
Definition: Let $x, y \in \mathbb{R}^n$, the straight line through x and y is specified as follows

$$\{z \in R^n : z = \theta x + (1 - \theta) y, \ \theta \in R^1\}.$$

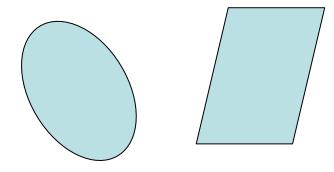


Definition: Let $x, y \in R^n$, the line segment linking x and y is specified as follows

$$\Im(x,y) = \{z \in R^n : z = \theta x + (1-\theta)y, \ \theta \in [0,1]\}.$$



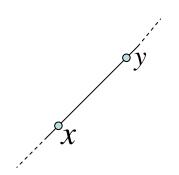
Definition: A set $X \subset R^n$ is convex if for any pair of points $x, y \in X$, the line segment $\Im(x, y) \subset X$.



Convex sets

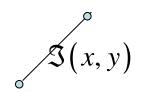
Definition: Let $x, y \in \mathbb{R}^n$, the straight line through x and y is specified as follows

$$\{z \in R^n : z = \theta x + (1 - \theta) y, \ \theta \in R^1\}.$$

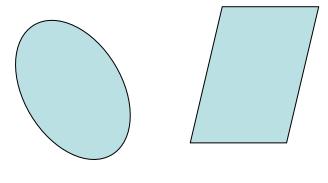


Definition: Let $x, y \in R^n$, the line segment linking x and y is specified as follows

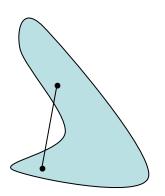
$$\Im(x,y) = \{z \in R^n : z = \theta x + (1-\theta)y, \ \theta \in [0,1]\}.$$

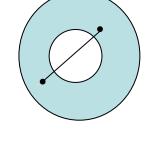


Definition: A set $X \subset R^n$ is convex if for any pair of points $x, y \in X$, the line segment $\Im(x, y) \subset X$.



Convex sets





Non convex sets

Recall: Notation et definitions

Notation

 \mathbb{R}^n vectorial space of n dimension vectors.

 $f: \mathbb{R}^n \to \mathbb{R}^1$ real valued function (taking its value in \mathbb{R}^1)

For any $x \in \mathbb{R}^n$

 $||x|| = \sqrt{x^T x}$ is the euclidean norm and

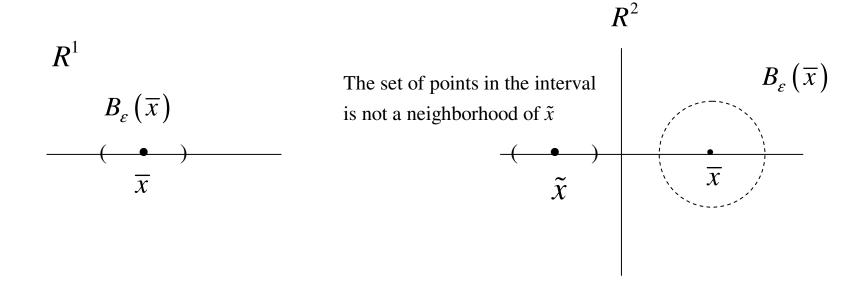
 $x^{T}x = \sum_{j=1}^{n} x_{j}^{2}$ is the scalar product of x by itself

Definition. A point $\overline{x} \in R^n$ is a local minimum of f if there exists a neighborhood of \overline{x} denoted

$$B_{\varepsilon}(\overline{x}) = \left\{ x \in \mathbb{R}^{n} : \left\| x - \overline{x} \right\| = \sqrt{\left(x - \overline{x} \right)^{\mathsf{T}} \left(x - \overline{x} \right)} < \varepsilon \right\}$$

such that

$$f(\overline{x}) \le f(x) \quad \forall x \in B_{\varepsilon}(\overline{x})$$



Definition. A point $\overline{x} \in R^n$ is a local minimum of f if there exists a neighborhood of \overline{x} denoted

$$B_{\varepsilon}(\overline{x}) = \left\{ x \in R^{n} : \left\| x - \overline{x} \right\| = \sqrt{\left(x - \overline{x} \right)^{\mathsf{T}} \left(x - \overline{x} \right)} < \varepsilon \right\}$$

such that

$$f(\overline{x}) \leq f(x) \qquad \forall \ x \in B_{\varepsilon}(\overline{x})$$
Local min.

Definition. A point $\overline{x} \in R^n$ is a local minimum of f if there exists a neighborhood of \overline{x} denoted

$$B_{\varepsilon}(\overline{x}) = \left\{ x \in \mathbb{R}^{n} : \left\| x - \overline{x} \right\| = \sqrt{\left(x - \overline{x} \right)^{\mathsf{T}} \left(x - \overline{x} \right)} < \varepsilon \right\}$$

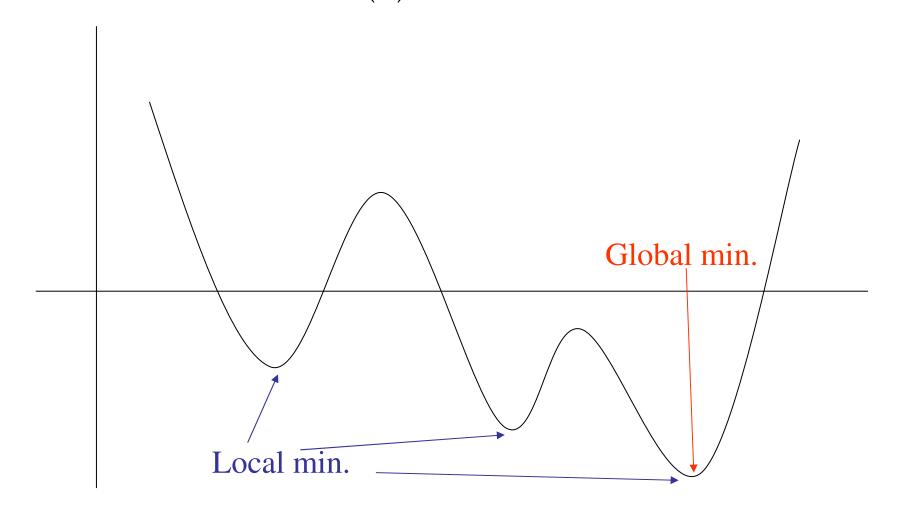
such that

$$f(\overline{x}) \le f(x) \quad \forall x \in B_{\varepsilon}(\overline{x})$$

Definition. A point $\overline{x} \in \mathbb{R}^n$ is a global minimum of f if

$$f\left(\overline{x}\right) \le f\left(x\right) \qquad \forall \ x \in R^n$$

Definition. A point $\overline{x} \in R^n$ is a global minimum of f if $f(\overline{x}) \le f(x) \quad \forall x \in R^n$



Convex function

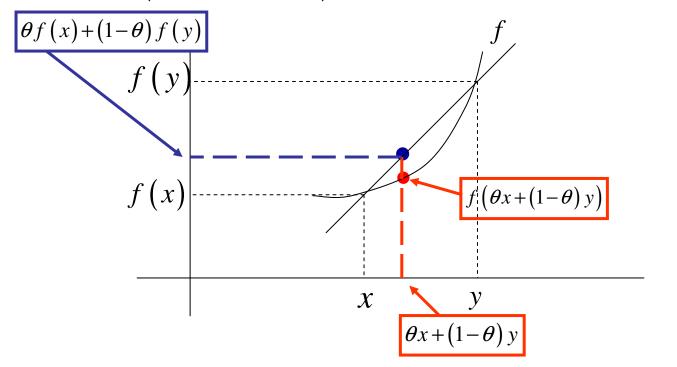
Definition: Let $X \subset R^n$ be a convex set, a real valued fonction $f: X \to R^1$ is convex if for all pairs of points $x, y \in X$,

$$f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y) \quad \forall \theta \in [0,1].$$

Fonctions convexes

Definition: Let $X \subset R^n$ be a convex set, a real valued function $f: X \to R^1$ is convex if for all pairs of points $x, y \in X$,

$$f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y) \quad \forall \theta \in [0,1].$$



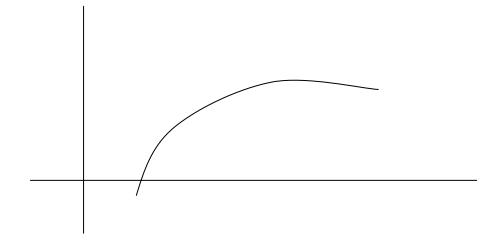
Definition: Let $X \subset R^n$ be a convex set, a real valued fonction $f: X \to R^1$ is convex if for all pairs of points $x, y \in X$,

$$f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y) \quad \forall \theta \in [0,1].$$

Definition: Let $X \subset R^n$ be a convex set, a real valued function $f: X \to R^1$ is concave if for all pairs of points $x, y \in X$,

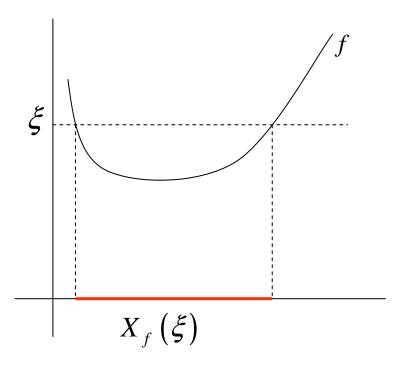
$$f(\theta x + (1-\theta)y) \ge \theta f(x) + (1-\theta)f(y) \quad \forall \theta \in [0,1].$$

Donc f est concave si $-f$ est convexe.



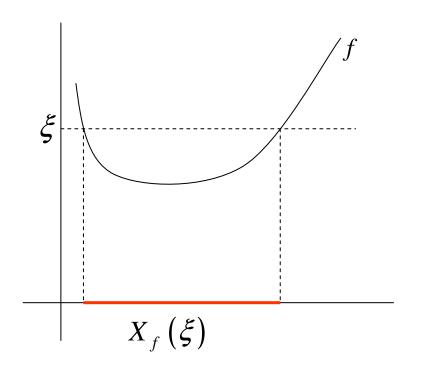
Proposition 1: Let $X \subset R^n$ be a convex set. If $f: X \to R^1$ is convex, then the set $X_f(\xi) = \{x \in X : f(x) \le \xi\}$ is convex for all $\xi \in R^1$.

Proof. Let x et $y \in X_f(\xi)$ and $\theta \in (0,1)$. The, since f is convex, $f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y) \le \theta \xi + (1-\theta)\xi = \xi,$ inducing that $(\theta x + (1-\theta)y) \in X_f(\xi)$. Thus $X_f(\xi)$ is convex.



Proposition 1: Let $X \subset R^n$ be a convex set. If $f: X \to R^1$ is convex, then the set $X_f(\xi) = \{x \in X : f(x) \le \xi\}$ is convex for all $\xi \in R^1$.

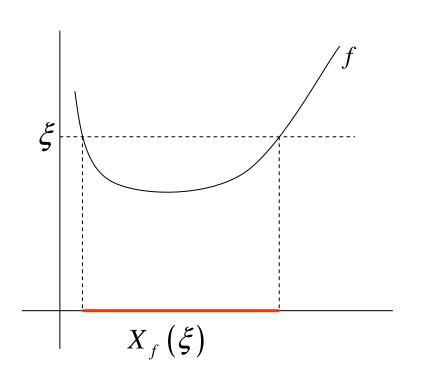
Proof. Let x et $y \in X_f(\xi)$ and $\theta \in (0,1)$. The, since f is convex, $f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y) \le \theta \xi + (1-\theta)\xi = \xi,$ inducing that $(\theta x + (1-\theta)y) \in X_f(\xi)$. Thus $X_f(\xi)$ is convex. \square

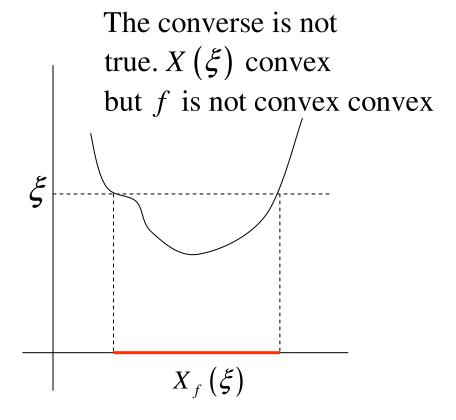




Proposition 1: Let $X \subset R^n$ be a convex set. If $f: X \to R^1$ is convex, then the set $X_f(\xi) = \{x \in X : f(x) \le \xi\}$ is convex for all $\xi \in R^1$.

Proof. Let x et $y \in X_f(\xi)$ and $\theta \in (0,1)$. The, since f is convex, $f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y) \le \theta \xi + (1-\theta)\xi = \xi,$ inducing that $(\theta x + (1-\theta)y) \in X_f(\xi)$. Thus $X_f(\xi)$ is convex. \square





$$f(\theta x + (1-\theta)y) = \sum_{i=1}^{m} \lambda_i f_i(\theta x + (1-\theta)y)$$

$$f(\theta x + (1 - \theta) y) = \sum_{i=1}^{m} \lambda_{i} f_{i}(\theta x + (1 - \theta) y)$$

$$\leq \sum_{i=1}^{m} \lambda_{i} \left[\theta f_{i}(x) + (1 - \theta) f_{i}(y)\right] \quad \text{(since } f_{i} \text{ convex and } \lambda_{1} \geq 0)$$

$$f(\theta x + (1 - \theta) y) = \sum_{i=1}^{m} \lambda_{i} f_{i}(\theta x + (1 - \theta) y)$$

$$\leq \sum_{i=1}^{m} \lambda_{i} \left[\theta f_{i}(x) + (1 - \theta) f_{i}(y)\right] \text{ (since } f_{i} \text{ convex and } \lambda_{i} \geq 0)$$

$$= \theta \sum_{i=1}^{m} \lambda_{i} f_{i}(x) + (1 - \theta) \sum_{i=1}^{m} \lambda_{i} f_{i}(y)$$

$$f(\theta x + (1 - \theta) y) = \sum_{i=1}^{m} \lambda_{i} f_{i}(\theta x + (1 - \theta) y)$$

$$\leq \sum_{i=1}^{m} \lambda_{i} \left[\theta f_{i}(x) + (1 - \theta) f_{i}(y)\right] \text{ (since } f_{i} \text{ convex and } \lambda_{i} \geq 0)$$

$$= \theta \sum_{i=1}^{m} \lambda_{i} f_{i}(x) + (1 - \theta) \sum_{i=1}^{m} \lambda_{i} f_{i}(y)$$

$$= \theta f(x) + (1 - \theta) f(y).$$

Proposition 3: Let $X \subset \mathbb{R}^n$ be a convex set. If $f: X \to \mathbb{R}^1$ is convex,

if $x^1, ..., x^m \in X$, and if $\lambda_1, ..., \lambda_m$ are non negative scalars such that $\sum_{i=1}^m \lambda_i = 1$,

then
$$f\left(\sum_{i=1}^{m} \lambda_i x^i\right) \le \sum_{i=1}^{m} \lambda_i f\left(x^i\right)$$
.

Proposition 4: Let $X \subset R^n$ be a convex set. Let $f: X \to R^1$ be a convex fonction. If \overline{x} is a local minimum of f on X, then \overline{x} is a global minimum of f on X.

Proposition 4: Let $X \subset R^n$ be a convex set. Let $f: X \to R^1$ be a convex fonction. If \overline{x} is a local minimum of f on X, then \overline{x} is a global minimum of f on X.

Proof. For contradiction, suppose there exixts another point $\tilde{x} \in X$ such that $f(\tilde{x}) < f(\bar{x})$.

Proposition 4: Let $X \subset \mathbb{R}^n$ be a convex set. Let $f: X \to \mathbb{R}^1$ be a convex fonction. If \overline{x} is a local minimum of f on X, then \overline{x} is a global minimum of f on X.

Proof. For contradiction, suppose there exixts another point $\tilde{x} \in X$ such that $f(\tilde{x}) < f(\overline{x})$. Since f is convex, $f(\theta \tilde{x} + (1-\theta)\overline{x}) \le \theta f(\tilde{x}) + (1-\theta)f(\overline{x}) < \theta f(\overline{x}) + (1-\theta)f(\overline{x}) = f(\overline{x})$ for all $\theta \in (0,1]$. But for $\theta > 0$ sufficiently small, $x(\theta) = \theta \tilde{x} + (1-\theta)\overline{x} \in B_{\varepsilon}(\overline{x}) \cap X$.

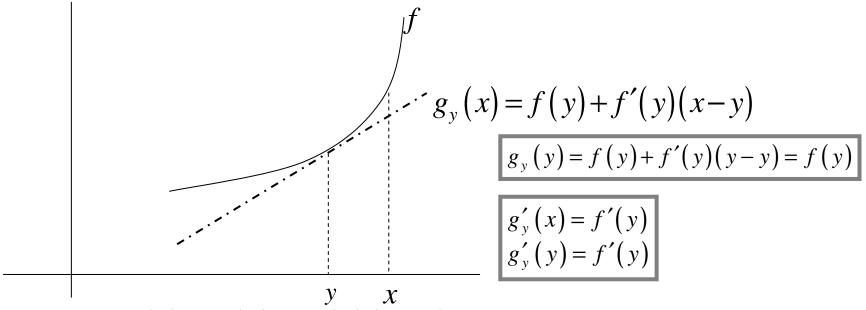
Then $f(x(\theta)) < f(\overline{x})$ where $x(\theta) \in B_{\varepsilon}(\overline{x}) \cap X$, contradicting the fact that \overline{x} is a local minimum of f on X.

$$f(x) \ge f(y) + \nabla f(y)^{\mathrm{T}}(x - y) \qquad \nabla f(x) = \left[\frac{\delta f(x)}{\delta x_1}, \dots, \frac{\delta f(x)}{\delta x_n}\right]^{\mathrm{T}}$$

for all pairs of points $x, y \in X$.

Let us illustrate the gradient inequality for a function $f: \mathbb{R}^1 \to \mathbb{R}^1$. In this case the gradient inequality reduces to

$$f(x) \ge f(y) + f'(y)(x - y).$$



The line $g_y(x) = f(y) + f'(y)(x - y)$ has the following probperties: $g_y(y) = f(y)$; $g'_y(y) = f'(y)$.

Hence the line $g_y(x) = f(y) + f'(y)(x - y)$ takes the same value as f at point y, and its slope is the same as the slope of f at the point y. Thus this line $g_y(x)$ is a support of f at point y.

The gradient inequality indicates that the function takes a value always larger or equal to the support function at any point y.

$$f(x) \ge f(y) + \nabla f(y)^{\mathrm{T}}(x - y)$$

for all pairs of points $x, y \in X$.

$$f(x) \ge f(y) + \nabla f(y)^{\mathrm{T}}(x - y) \qquad \left| \nabla f(x) = \left[\frac{\delta f(x)}{\delta x_1}, \dots, \frac{\delta f(x)}{\delta x_n} \right]^{\mathrm{T}} \right|$$

for all pairs of points $x, y \in X$.

Proof. (necessity \Rightarrow) Let f be convex. Then for all pairs of points $x, y \in X$ and for all $\theta \in [0,1]$

$$f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y)$$

or

$$f(y+\theta(x-y))-f(y) \le \theta(f(x)-f(y)). \tag{4.1}$$

$$f(x) \ge f(y) + \nabla f(y)^{\mathrm{T}}(x - y)$$

for all pairs of points $x, y \in X$.

Proof. (necessity \Rightarrow) Let f be convex. Then for all pairs of points $x, y \in X$ and for all $\theta \in [0,1]$

or

If $f \in C^1/X$ (f continuously differentiable on X), then for all pair of points $r, s \in X$, there exists a point z on the line segment between r and s such that the Taylor development of first order holds

$$f(s) = f(r) + \nabla f(z)^{\mathrm{T}}(s-r)$$

$$f(x) \ge f(y) + \nabla f(y)^{\mathrm{T}}(x - y)$$

$$\nabla f(x) = \left| \frac{\delta f(x)}{\delta x_1}, \dots, \frac{\delta f(x)}{\delta x_n} \right|^{\mathrm{T}}$$

for all pairs of points $x, y \in X$.

If $f \in C^1 / X$ (f continuously differentiable on X), Proof. (necessity \Rightarrow) I then for all pair of points $r, s \in X$, there exists a point $z \not \in X$ and for all $\theta \in [0,1]$ on the line segment between r and s such that $f(\theta)$ the Taylor development of first order holds

or

$$f(s) = f(r) + \nabla f(z)^{\mathrm{T}}(s-r)$$

$$f(y+\theta(x-y)) - f(y) \le \theta(f(x)-f(y)). \tag{4.1}$$

Referring to Taylor Theorem, there exists $\tau \in [0,1]$ such that

$$f(y+\theta(x-y)) = f(y) + \nabla f \left[\tau(y+\theta(x-y)) + (1-\tau)y\right]^{T} (y+\theta(x-y)-y)$$
$$f(y+\theta(x-y)) - f(y) = \theta \nabla f \left[y+\tau\theta(x-y)\right]^{T} (x-y). \tag{4.2}$$

$$f(y+\theta(x-y))-f(y) \le \theta(f(x)-f(y)). \tag{4.1}$$

Referring to Taylor theorem, there exists $\tau \in [0,1]$ such that

$$f(y+\theta(x-y)) = f(y) + \nabla f \left[\tau(y+\theta(x-y)) + (1-\tau)y\right]^{\mathrm{T}} (y+\theta(x-y)-y)$$
$$f(y+\theta(x-y)) - f(y) = \theta \nabla f \left[y+\tau\theta(x-y)\right]^{\mathrm{T}} (x-y). \tag{4.2}$$

$$f(y+\theta(x-y))-f(y) \le \theta(f(x)-f(y)). \tag{4.1}$$

Referring to Taylor theorem, there exists $\tau \in [0,1]$ such that

$$f(y+\theta(x-y)) = f(y) + \nabla f \left[\tau(y+\theta(x-y)) + (1-\tau)y\right]^{T} (y+\theta(x-y)-y)$$
$$f(y+\theta(x-y)) - f(y) = \theta \nabla f \left[y + \tau \theta(x-y)\right]^{T} (x-y). \tag{4.2}$$

Using relations (4.1) et (4.2), for all $\theta \in [0,1]$

$$\theta \nabla f \left[y + \tau \theta (x - y) \right]^{\mathsf{T}} (x - y) \le \theta (f(x) - f(y)).$$

$$f(y+\theta(x-y))-f(y) \le \theta(f(x)-f(y)). \tag{4.1}$$

Referring to Taylor theorem, there exists $\tau \in [0,1]$ such that

$$f(y+\theta(x-y)) = f(y) + \nabla f \left[\tau(y+\theta(x-y)) + (1-\tau)y\right]^{T} (y+\theta(x-y)-y)$$
$$f(y+\theta(x-y)) - f(y) = \theta \nabla f \left[y + \tau \theta(x-y)\right]^{T} (x-y). \tag{4.2}$$

Using relations (4.1) et (4.2), for all $\theta \in [0,1]$

$$\theta \nabla f \left[y + \tau \theta (x - y) \right]^{T} (x - y) \le \theta (f(x) - f(y)).$$

If $\theta > 0$, then we can devide on both side by θ to obtain

$$\nabla f \left[y + \tau \theta (x - y) \right]^{\mathrm{T}} (x - y) \le (f(x) - f(y))$$

for all $\theta \in (0,1]$. Hence, taking the limit when $\theta \to 0$ we obtain

$$\lim_{\theta \to 0} \nabla f \left[y + \tau \theta (x - y) \right]^{T} (x - y) \le \lim_{\theta \to 0} \left(f(x) - f(y) \right)$$

or

$$\nabla f \left[y + \lim_{\theta \to 0} \tau \theta (x - y) \right]^{T} (x - y) \le (f(x) - f(y))$$
$$f(x) \ge f(y) + \nabla f(y)^{T} (x - y).$$

(sufficiency ←) Now we show the converse.

Since $f(x) \ge f(y) + \nabla f(y)^{\mathrm{T}}(x - y)$ for all pairs of points $x, y \in X$

$$f(x) \ge f(\theta x + (1-\theta)y) + \nabla f(\theta x + (1-\theta)y)^{\mathrm{T}}(x - \theta x - (1-\theta)y)$$
(4.3)

$$f(y) \ge f(\theta x + (1-\theta)y) + \nabla f(\theta x + (1-\theta)y)^{\mathrm{T}}(y - \theta x - (1-\theta)y). \tag{4.4}$$

Since $f(x) \ge f(y) + \nabla f(y)^{T}(x - y)$ for all pairs of points $x, y \in X$

$$f(x) \ge f(\theta x + (1-\theta)y) + \nabla f(\theta x + (1-\theta)y)^{\mathrm{T}}(x - \theta x - (1-\theta)y)$$
(4.3)

$$f(y) \ge f(\theta x + (1-\theta)y) + \nabla f(\theta x + (1-\theta)y)^{\mathrm{T}}(y - \theta x - (1-\theta)y). \tag{4.4}$$

(4.3) et (4.4) can be written as

$$f(x) \ge f(\theta x + (1-\theta)y) + (1-\theta)\nabla f(\theta x + (1-\theta)y)^{\mathrm{T}}(x-y) \tag{4.3}$$

$$f(y) \ge f(\theta x + (1-\theta)y) - \theta \nabla f(\theta x + (1-\theta)y)^{\mathrm{T}}(x-y).$$
 (4.4)

Since $f(x) \ge f(y) + \nabla f(y)^{T}(x - y)$ for all pairs of points $x, y \in X$

$$f(x) \ge f(\theta x + (1-\theta)y) + \nabla f(\theta x + (1-\theta)y)^{\mathrm{T}}(x - \theta x - (1-\theta)y)$$
(4.3)

$$f(y) \ge f(\theta x + (1-\theta)y) + \nabla f(\theta x + (1-\theta)y)^{\mathrm{T}}(y - \theta x - (1-\theta)y). \tag{4.4}$$

(4.3) et (4.4) can be written as

$$f(x) \ge f(\theta x + (1-\theta)y) + (1-\theta)\nabla f(\theta x + (1-\theta)y)^{\mathrm{T}}(x-y) \tag{4.3}$$

$$f(y) \ge f(\theta x + (1-\theta)y) - \theta \nabla f(\theta x + (1-\theta)y)^{\mathrm{T}}(x-y).$$
 (4.4)

Multiply (4.3) by θ and (4.4) by $(1-\theta)$

$$\theta f(x) \ge \theta f(\theta x + (1-\theta)y) + \theta(1-\theta)\nabla f(\theta x + (1-\theta)y)^{\mathrm{T}}(x-y)$$

$$(1-\theta)f(y) \ge (1-\theta)f(\theta x + (1-\theta)y) - (1-\theta)\theta \nabla f(\theta x + (1-\theta)y)^{\mathrm{T}}(x-y)$$

Since $f(x) \ge f(y) + \nabla f(y)^{T}(x - y)$ for all pairs of points $x, y \in X$

$$f(x) \ge f(\theta x + (1-\theta)y) + \nabla f(\theta x + (1-\theta)y)^{\mathrm{T}}(x - \theta x - (1-\theta)y)$$
(4.3)

$$f(y) \ge f(\theta x + (1-\theta)y) + \nabla f(\theta x + (1-\theta)y)^{\mathrm{T}}(y - \theta x - (1-\theta)y). \tag{4.4}$$

(4.3) et (4.4) can be written as

$$f(x) \ge f(\theta x + (1-\theta)y) + (1-\theta)\nabla f(\theta x + (1-\theta)y)^{\mathrm{T}}(x-y) \tag{4.3}$$

$$f(y) \ge f(\theta x + (1-\theta)y) - \theta \nabla f(\theta x + (1-\theta)y)^{\mathrm{T}}(x-y).$$
 (4.4)

Multiply (4.3) by θ and (4.4) by $(1-\theta)$

$$\theta f(x) \ge \theta f(\theta x + (1-\theta)y) + \theta(1-\theta)\nabla f(\theta x + (1-\theta)y)^{T}(x-y)$$

$$(1-\theta)f(y) \ge (1-\theta)f(\theta x + (1-\theta)y) - (1-\theta)\theta \nabla f(\theta x + (1-\theta)y)^{\mathrm{T}}(x-y)$$

Summing up the two relations:

$$\theta f(x) + (1-\theta) f(y) \ge f(\theta x + (1-\theta) y).$$

Corollairy 6: Let $X \subset \mathbb{R}^n$ be a convex set. Le $f: X \to \mathbb{R}^1$ be a differentiable convex function of class C^1/X . Then if $\nabla f(x^*)^T(x-x^*) \ge 0$ for all $x \in X$, then x^* is a global minimum of f on X.

Corollairy 6: Let $X \subset \mathbb{R}^n$ be a convex set. Le $f: X \to \mathbb{R}^1$ be a differentiable convex function of class C^1/X . Then if $\nabla f(x^*)^T(x-x^*) \ge 0$ for all $x \in X$, then x^* is a global minimum of f on X.

Proof. This result follows directly from the gradient inequality. Indeed, since f is convex on X, it follows that

$$f(x) \ge f(x^*) + \nabla f(x^*)^{\mathrm{T}}(x - x^*)$$

for all $x \in X$. By assumption $\nabla f(x^*)^T(x-x^*) \ge 0$, and then

$$f(x) - f(x^*) \ge \nabla f(x^*)^{\mathrm{T}} (x - x^*) \ge 0$$

implying that $f(x) \ge f(x^*)$ for all $x \in X$. Thus x^* is a global minimum of f on X.

Corollairy 6: Let $X \subset \mathbb{R}^n$ be a convex set. Le $f: X \to \mathbb{R}^1$ be a differentiable convex function of class C^1/X . Then if $\nabla f(x^*)^T(x-x^*) \ge 0$ for all $x \in X$, then x^* is a global minimum of f on X.

Proof. This result follows directly from the gradient inequality. Indeed, since f is convex on X, it follows that

$$f(x) \ge f(x^*) + \nabla f(x^*)^{\mathrm{T}}(x - x^*)$$

for all $x \in X$. By assumption $\nabla f(x^*)^T(x-x^*) \ge 0$, and then

$$f(x) - f(x^*) \ge \nabla f(x^*)^{\mathrm{T}} (x - x^*) \ge 0$$

implying that $f(x) \ge f(x^*)$ for all $x \in X$. Thus x^* is a global minimum of f on X.

Consequence: If $\nabla f(x^*) = 0$, then x^* is a global minimum global of f on X.