Convexity



Convex sets



Definition: Let x, y e R", the straight line through
x and y 1s specified as follows

{ZE R':z=6x+(1-0)y, ¢ Rl}.

Definition: Let x, ye R", the line segment
linking x and y 1s specified as follows

S(x,y)={ze R":z=0x+(1-0)y, 6<[0,1]}.

Definition: A set X < R" 1s convex 1if for any pair of
points x, y€ X, the line segment 3 (x,y) c X.



Definition: Let x, y e R", the straight line through Y
x and y 1s specified as follows
{zeR":z=9x+(1—9)y, HERI}. A
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points x, y€ X, the line segment 3 (x,y) c X.
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Convex sets Non convex sets




Recall: Notation et definitions

e Notation
R" vectorial space of n dimension vectors.

f:R" — R' real valued function (taking its value in R')

For any xe R"

HxH x x 1S the euclidean norm and

x'x= ij 1s the scalar product of x by itself

j=1



Definition. A point x € R" is a local minimum of f if there exists

a neighborhood of x denoted

Bg(f)z{xe R": ‘x—;“z\/(x—f)T(x—f) <8}

such that
F(F)<F(x)  VxeB, (%)
R2
Rl
. The set of points in the interval B € (f)
B, (x ) is not a neighborhood of ¥ IR
——) ——) .
X

X X




Definition. A point x € R" 1s a local minimum of f if there exists

a neighborhood of x denoted

Bg(f):{xe R :x—x] = J(x-%)" (x-¥) <g}

such that

FF)Sf(x) Y xeB ()
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Definition. A point x € R" is a local minimum of f if there exists

a neighborhood of x denoted

B, (x) ={xe R’ :“x—;“z\/(x—)_c)T(x—)_c) <8}

such that

f(x)<f(x)  VxeB(x)

Definition. A point x € R" 1s a global minimum of f 1f

flx)<sf(x) Vaxer



Definition. A point x € R" 1s a global minimum of f if

flx)sf(x) Vaxer
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Convex function

Definition: Let X < R" be a convex set, a real valued
fonction f : X — R' is convex if for all pairs of points
x,vye X,

f(6x+(1-60)y)<6f (x)+(1-6)f(y) Vée[o01]



Fonctions convexes

Definition: Let X < R" be a convex set, a real valued
fonction f : X — R' is convex if for all pairs of points
x,ve X,

f(6x+(1-60)y)<6f(x)+(1-6)f(y) Vée[01]

07 (x)+(1-0) f (y) J




Definition: Let X < R" be a convex set, a real valued
fonction f : X — R' is convex if for all pairs of points
x,ye X,

7 (6x+(1-6)y)<0f (x)+(1-60) f () VOe[0.1].

Definition: Let X < R" be a convex set, a real valued
fonction f : X — R' is concave if for all pairs of points
x,ye X,

f(6x+(1-6)y)20f (x)+(1-8) £ (v) Voe[o.1]
Donc f est concave s1 — f est convexe.

—




Proposition 1: Let X < R" be a convex set. If f : X — R' is
convex, then the set X, (§) ={xe X : f(x)< &} is convex for

all e R'.

Proof. Letx etye X, (£) and @€ (0,1). The, since f is convex,
f(0x+(1-6)y)<6f (x)+(1-6) f (y) <05 +(1-6)¢ = ¢,
inducing that (6x+(1-6)y)e X, (£). Thus X , (&) is convex.

O



Proposition 1: Let X < R" be a convex set. If f : X = R' is
convex, then the set X , (&) = {xe X:f(x)< é‘} is convex for

all e R'.

Proof. Letx et ye Xf (f) and @ e (0,1). The, since f 1s convex,
f(6x+(1-0)y)<6f (x)+(1-6) f (y) <€ +(1-6) & =&,
inducing that(9x+(1—9) y)e X, (£). Thus X , (&) is convex. O
The converse 1s not

true. X (£) convex
but f 1s not conyex convex




Proposition 1: Let X = R” be aconvex set. If f : X — R' is
convex, then the set X , (&) = {xe X : f(x)< &} is convex for

all e R'.

Proof. Let x et ye X, (£) and @€ (0,1). The, since f is convex,
f(6x+(1-0)y)<of(x)+(1-8) f(y)<OE+(1-6)E =,
inducing that(0x+(1—0) y)e X, (£). Thus X, (£) is convex. O

The converse 1s not
true. X (£) convex
but f 1s not convex convex




Proposition 2: Let X c R". If f,: X — R' is convex for i =1,...,m and
if A,...,A are non negative scalars, then f (x) = Z&fl (x) is
i=1

convex on X.
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Proof. For all pairs of points x, ye X and for all 8¢ [O,l]
f(6x+(1-86)y lef (6x+(1-6)y)
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< i Hf )+(1-0) f, (y)] (since f, convex and A > 0)



Proposition 2: Let X c R". If f,: X — R' is convex fori=1,...,m and
if A,,..., A, are non negative scalars, then f (x Zl fi(x

convex on X.

Proof. For all pairs of points x, ye X and for all 8¢ [O,l]
f(6x+(1-86)y lef (6x+(1-6)y)

< Zl Hf -0) f, (y)] (since f, convex and A > 0)

m
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Proposition 2: Let X c R". If f,: X — R' is convex fori=1,...,m and
if A,,..., A, are non negative scalars, then f (x Zl fi(x

convex on X.

Proof. For all pairs of points x, ye X and for all 8¢ [O,l]
f(6x+(1-86)y lef (6x+(1-6)y)

< i& [Hfl (x)+(1-96) f, (y)] (since f; convex and A >0)



Proposition 3: Let X < R” be a convex set. If f: X — R' is convex,

if x',....x"e X, and if A,..., A are non negative scalars such that Z/Il =1,
i=1



Proposition 4: Let X — R" be a convex set. Let f: X = R' bea
convex fonction. If x is a local minimum of f on X, then x is a
global minimum of f on X.



Proposition 4: Let X — R" be a convex set. Let f: X = R' bea
convex fonction. If x is a local minimum of f on X, then x is a
global minimum of f on X.

Proof. For contradiction, suppose there
exixts another point xe X such that

f(x)<f(x).



Proposition 4: Let X — R" be a convex set. Let f: X = R' bea
convex fonction. If x is a local minimum of f on X, then x is a
O

global minimum of f on X. e
Proof. For contradiction, suppose there m
exixts another point xe X such that al
f (%)< f(X). Since f is convex,
£ (67 +(1-6)%) < 0 (7)+(1-6) £ (F) < 0f (F)+(1-6) £ (F) = £ (7)
for all @€ (O, 1]. But for 8 > 0 sufficiently small,

x(0)=0x+(1-68)xe B, (x)N X.
Then f (x(@)) < f(x) where x(8)e B, (x)N X,contradicting the fact
that x is a local minimum of f on X. m



Proposition 5: (gradient inequality). Let X < R" be a convex set. Letf : X — R’

be a differentiable function in C' / X. Then f is convex on X if
and only 1f

T Of(x Of(x !
F(x)2 7 (y)+VF(y) (x-y) Vf(x){ QL) """ gﬂ)}

for all pairs of points x, ye X.




Let us illustrate the gradient inequality for a function f : R' — R'.
In this case the gradient inequality reduces to

f(x)=f(y)+f M(x-y).

The line g, (x)=f(y)+f’(y)(x—y) has the following probperties:

g, (»)=r(y): & (y)=r()
Hence the line g (x ( ) f ( )+ f ( )( ) takes the same value as
f at point y, and its slope 1s the same as the slope of f at the point y.
Thus this line g, (x) is a support of f at point y.
The gradient inequality indicates that the function takes a value always
larger or equal to the support function at any point y.




Proposition 5: (gradient inequality). Let X < R" be a convex set. Let f : X — R'

be a differentiable function in C' / X. Then f is convex on X if
and only 1f

F)2 F(9)+VF () (x—y)

for all pairs of points x, ye X.



Proposition 5: (gradient inequality). Let X < R" be a convex set. Let f : X — R'

be a differentiable function in C' / X. Then f is convex on X if
and only 1f

F)2 )4V ) (rmy) [P0 S 2L

for all pairs of points x, ye X.

Proof. (necessity = ) Let f be convex. Then for all pairs of points x, ye X
and for all 8¢ [0,1]

f(6x+(1-6)y)<of(x)+(1-6) f ()

or

Fly+0(x=y))-rf(y)<o(f(x)-f(¥)). (4.1)



Proposition 5: (gradient inequality). Let X = R" be a convex set. Letf : X — R’

be a differentiable function in C' / X. Then f is convex on X if
and only 1f

Sf (x) 5f(x)T

f(x)Zf(y)+Vf(y)T(x—y) Vf(x){ ox, 7 Sx.

for all pairs of points x, ye X.

Proof. (necessity = ) Let f be convex. Then for all pairs of points x, ye X
and for all < [0,1]
If fe C'/X (f continuously differentiable on X),

or then for all pair of points r,s € X, there exists a point z

on the line segment between r and s such that (4.1)

the Taylor development of first order holds

f(s)=f(r)+Vf(2) (s-r)




Proposition 5: (gradient inequality). Let X < R" be a convex set. Letf : X — R’

be a differentiable function in C' / X. Then f is convex on X if
and only 1f

. 5f(x)  f(x)]
P2 (e () (xmy) [l S22

for all pairs of points x, ye X.
If fe C'/ X (f continuously differentiable on X),

Proof. (necessity => ) lthen for all pair of points r,s € X, there exists a point zf X
and for all @ e [0, 1] on the line segment between r and s such that
f (5- the Taylor development of first order holds

or f(s)=f(r)+Vf(2) (s=7)
fy+0(x=y))-f(y)<6(f(x)-f(¥)). (4.1)
Referring to Taylor Theorem, there exists 7€ [0,1] such that
f(y+0(x=))=F(3)+Vf[2(y+6(x=))+(1-7)y] (y+6(x-y)-)
F(y+6(x=y))=f(»)=6Vf[y+70(x=y)] (x-y).  (42)




Fly+0(x=y))-rf(y)<o(f(x)-f(y)). (4.1)

Referring to Taylor theorem, there exists 7€ [O,l] such that
f(y+0(x=))=F () +Vf[2(y+8(x=))+(1-7)y] (y+8(x=y)-)
f(y+6(x=9))-f(») =6 y+18(x-y)] (x-»).  (42)



‘f (y+6(x-y))- y1<6’ (x)- £ (). (4.1)

Referring to Taylor theorem, there exists 7€ [O 1] such that
f(y+6(x=y)=7(> >+Vf[ r(y+0(x-y))+(1-7)y] (y+6(x=y)-)

F(y+6(x=y)-f(y)=6vf[y+e0(x=y)] (x=¥). (42)
Using relations (4.1) et (4.2), for all ¢ [0,1]

vf[y+70(x—y)] (x=y)<6(f(x)-£(»))-




Fly+60(x—y))-f(y]<o(f(x)-F(y)). (4.1)

Referring to Taylor theorem, there exists 7€ [O,l] such that
T
f(y+0(x=y))=F(3)+Vf | 2(y+6(x-y))+(1-7)y| (y+6(x=¥)-)

f(y+6(x=y))-f ()= [ y+18(x-y)] (x=»).  (42)
Using relations (4.1) et (4.2), for all 8 |0,1]
vf[y+70(x—y)] (x=y)<6(f(x)-£(»))-
If >0, then we can devide on both side by & to obtain
Vi [y+e0(x=)] (x=)<(£(x)- 1 ()
for all &€ (0,1]. Hence, taking the limit when 8 — 0
we obtain

‘lgig(l)Vf[y+T9(x—y)]T (x—y) SIim(f(x)—f(y))

6—0
or

Vs [ y+limeo(x=)] (v=3)<(f (1)- £ (5))
F(x)2 £ ()49 () ()



(sufficiency <) Now we show the converse.



(sufficiency <) Now we show the converse.
Since f (x) = f(y)+Vf (y)T (x—y) for all pairs of points x, ye X

F(x)2 f(0x+(1-0)y)+Vf (6x+(1-6)y) (x—6x—(1-80)y) (4.3)
F(9)2 f(6x+(1-60)y)+Vf (6x+(1-8)y) (y-6x—(1-6)y). (4.4)
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(4.3) et (4.4) can be written as

f(x)zf(6x+(1-6)y)+(1-6)Vf (6x+(1-0)y)
f(»)zf(0x+(1-68)y) -6 VF(6x+(1-6)y)

T

(x—y) (4.3)
(x—y). (4.4)

T



(sufficiency <) Now we show the converse.
Since f (x) = f(y)+Vf (y)T (x—y) for all pairs of points x, ye X
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(sufficiency <) Now we show the converse.
Since f (x) = f(y)+Vf (y)T (x—y) for all pairs of points x, ye X

F(x)2 f(0x+(1-0)y)+Vf (6x+(1-6)y) (x—6x—(1-80)y) (4.3)

F(9)2 f(6x+(1-60)y)+Vf (6x+(1-8)y) (y-6x—(1-6)y). (4.4)
(4.3) et (4.4) can be written as

f(x)zf(6x+(1-6)y)+(1-6)Vf (6x+(1-0)y)

f(»)zf(0x+(1-68)y) -6 VF(6x+(1-6)y)
Multiply (4.3) by € and (4.4) by (1-6)

0f (x)20f (6x+(1-8)y)  +0(1-6)Vf(6x+(1-6)y) (x—)
(1-6) f ()2 (1-8) f (6x+(1-8) y)-(1-6) &V (6x+(1-8) y) (x—y)

Summing up the two relations :

of (x)+(1-0)f (y)= f(6x+(1-6)y). O

T

(x—y) (4.3)
(x—y). (4.4)

T



Corollairy 6: Let X — R" be a convex set. Le f: X — R' be a differentiable

convex function of class C' / X. Then if Vf (x *)T (x — X *) > ( for all
x€ X, then x *1s a global minimum of f on X.



Corollairy 6: Let X — R" be a convex set. Le f: X — R' be a differentiable

convex function of class C' / X. Then if Vf (x *)T (x — X *) > ( for all
x€ X, then x *1s a global minimum of f on X.

Proof. This result follows directly from the gradient inequality. Indeed,
since f 1s convex on X, it follows that

f ()2 F (x5)+VF (x#) (x=x%)
for all xe X. By assumption Vf (x*)" (x—x*) >0, and then
f(x)—f(x*) > Vf(x*)T (x—x*) >0
implying that f (x)> f (x*) for all xe X. Thus x*is a global minimum
of f onX. m



Corollairy 6: Let X — R" be a convex set. Le f: X — R' be a differentiable

convex function of class C' / X. Then if Vf (x *)T (x — X *) > ( for all
x€ X, then x *1s a global minimum of f on X.

Proof. This result follows directly from the gradient inequality. Indeed,
since f 1s convex on X, it follows that

f ()2 F (x5)+VF (x#) (x=x%)
for all xe X. By assumption Vf (x*)" (x—x*) >0, and then
f(x)—f(x*) > Vf(x*)T (x—x*) >0
implying that f (x)> f (x*) for all xe X. Thus x*is a global minimum
of f onX. m

Consequence: If Vf (x*)=0, then x *is a global minimum global of f on X.



