Optimality conditions
for
constrained optimisation



Recall: Optimisation conditions for unconstrained
problem with one variable function

e One variable function: f:R' — R’



One variable function: f : R' — R'
Result: Let ce R' such that
, df (c , x)—flc
Q) P (o)
dx x> xX—c
Then c 1is neither a local minimum nor a local maximum of f.

#0.

Furthermore,
i) if f”(c) > 0, There exists an interval (c—J, ¢+ J) with § > 0 such that

f(x)< f(c) V xe(c-6,c)
flc)< f(x) V xe(c, c+0)
and f 1s increasing at ¢
ii) if f*(c) <0, there exists an interval (¢ —J, ¢+ J) with § >0 such that

f(x)> f(c) V xe(c-6,c)
flc)> f(x) V xe(c, c+0)

and f 1s decreasing at ¢



Result : (Second derivative test)
Let ce R' such thatf’(c)=0.

Assume also that the second derivative f”(x) exists Vxe B, (c¢).
i) If f”(c) <0, then c is a local maximum of f.
i) If f”(c) >0, then c is a local minimum of f.

Remark: f”(c) denotes the second derivative of f & ¢

F(e) =L (o) T L L )

x—e X—cC dx

Intuitive justification of ii):
If f”(c) >0, thenf” is an increasing function at c,
and 1t follows that ¢ 1s a local minimum.



Recall: Optimisation conditions for unconstrained
problem with several variables function

Several variables function: f:R" = R'

To extend the preceding results obtained for one variable function:
f:R" >R & f:R'" >R

5f (x) 5f(X)T

f'(X)HVf(X){

ox,  Ox
(8 f (x) 5 f(x)"

ox0x,  Ox0x

[ (x) e Vif(x)= : :
5 f (x) 3 f (x)

| 0X,0X, 0x,0x, )




To extend the preceding results obtained for one variable function:
f:R">R & f:R'"—> R

Sf(x)  Sf(x)]
ox, ox,

f'(x)er(x){

d, ... d,\[y 5 F(x) 55 (x)

. .. . L *f(x *f(x

w(x)=x"Dx=[x,....,x,]| : D { } ror Tl o
dnl e dnn xn f”(.X) HVZf(X) =

f(x)  &f(x)

0x,0x, 0x,0x,

Definition: The quadratic form associated with the a real valued
nxn matrix D is the fonction ¥ : R" — R' specified as follows
w(x)=x"Dx.

Définition: A real valued nxXn matrix D 1s positive semi-definite
( positive definite) if ¥ (x)>0 Vxe R" (y(x)>0Vxe R", x #0).

Results: A real valued nXn matrix D is positive semi-definite
( positive definite) if and only 1f all its eigenvalues are non negative
(positive).



Necessary conditions

Lemma: Let X < R" be an open set and f € C*/ X be twice
continuously differentiable. If xe X 1s a local minimum of f

on X, then Vf (x)=0and V’f (x)is a|positive semi-definite

matrix.

Sufficient conditions

Lemma: Let X < R" be an open set and f € C*/ X be twice
continuously differentiable. If Vf (x*)=0and V’f (x*)is

a

positive definite

on X.

matrix, then x* is a local minimum of f



Conter-exemple: The conditions Vf (x)=0 and V* f (x)

being a positive semi definite matrix are not sufficient to
garantee that x 1s a local minimum.

f(x. y)—x3+y3
Vi (x,y) [3x 3y]

Vif(xy)= (6)6 ¥ j

0O 6y



Conter-exemple: The conditions Vf (x)=0 and V* f (x)
being a positive semi definite matrix are not sufficient to
garantee that x 1s a local minimum.

At the pointx =y =0
f (x, y)—x3+y3 f(x,)=0
Vf (x,y)=[3x"3y"] vf(0,0)=[0,0]'

sz(x,y)=(6x Oj v2f(o,0)=[0

0
pos. semi def.
0 6y 0 0



Conter-exemple: The conditions Vf (x)=0 and V* f (x)

being a positive semi definite matrix are not sufficient to
garantee that x 1s a local minimum.
At the pointx =y =0

f (x, y)—x3+y3 f(x,)=0

Vf (x,y)=[3x"3y"] V£ (0,0)=[0,0]'

Vif(x,y)= (6)6 0 j V:£(0,0)= [O Oj pos. semi def.
0 6y 0 0

Then the conditions are satisfied at x = y =0.



Conter-exemple: The conditions Vf (x)=0 and V* f (x)
being a positive semi definite matrix are not sufficient to
garantee that x 1s a local minimum.

At the pointx =y =0

f (=, y)—x3+y3 f(xy)=0

Vf (x,y)=[3x"3y"] V£ (0,0)=[0,0]'

Vif(x,y)= (6)6 0 j V:£(0,0)= [O Oj pos. semi def.
0 6y 0 0

Then the conditions are satisfied at x = y =0.

But for an £>0 sufficiently small, [—%,—%} e B,(0,0) and

c £ E ’ E ’ 2&’
! (‘5"5)‘(7) (5) = <o-s0.




Conter-exemple: The conditions Vf (x)=0 and V* f (x)

being a positive semi definite matrix are not sufficient to
garantee that x 1s a local minimum.
At the pointx =y =0

f (=, y)—x3+y3 f(xy)=0

Vf (x,y)=[3x"3y"] V£ (0,0)=[0,0]'

Vif(x,y)= (6)6 0 j V:£(0,0)= [O Oj pos. semi def.
0 6y 0 0

Then the conditions are satisfied at x = y =0.

But for an £>0 sufficiently small, [—%,—%} e B,(0,0) and

c £ E ’ E ’ 2&’
! (‘5"5)‘(7) o(5) =5 <o=s0.

and [0,0] is not a local minimum even if the conditions

are satisfied.



Lagrangean multipliers
Consider the following mathematical programming problem

Min f(x)
S.t. fl.(x)=0 i=1,....,m
xe X

where X < R" and the functions f: X — R, fi:X —>Ri=1,...

(D)



Lagrangean multipliers
Consider the following mathematical programming problem

Min f(x)
S.t. fl.(x)zO i=1,....m (D
xe X
where X — R” and the functions f : X — R', fi:X —>R)i=1,....m.

To obtain the lagrangean function of (1), we associate a
lagrangean multiplicateur A, with each constraint fonction f; :

L(2x)= £ (1)+ Y A1 ().



Optimisation conditions for constrained problem

Consider the following mathematical programming problem
Min f (x)
S.t. fl.(x)zO i=1,....m (1)
xe X
where X < R" and the functions f: X — R', fi:X —>R)i=1,....m

To obtain the lagrangean function of (1), we associate a
lagrangean multiplicateur A, with each constraint fonction f; :

L(2x)= £ (x)+ 2 A1 (x).

Without any assumption on X or on the fonctions f and f;, we can derive
sufficient conditions for a point x * to be a global optimal solution
for problem (1).



Consider the following mathematical programming problem
Min f (x)
S.t. fl.(x)zO i=1,....m (D
xe X



Consider the following mathematical programming problem
Min f (x)
s.t. f, (x) =0 i=1,....m
xe X

Theorem 1: Assume that the lagrangean function of (1)

L(2x)= £ (x)+ A, ()

has a global minimum x  on X when the multiplier vector

A=A"1If f; (x*) =0foralli=1,...,m, thenx is a gobal optimal

solution of (1).

(D)



Consider the following mathematical programming problem
Min f (x)
S.t. fl.(x)zO i=1,....m (1)
xe X

Theorem 1: Assume that the lagrangean function of (1)

L(2x)= £ ()42 45, (1)

has a global minimum x on X when the multiplier vector
A=A"1If f; (x*) =0foralli=1,...,m, thenx is a gobal optimal
solution of (1).

Proof. For contradiction, suppose that x is not a global optimal solution
of (1). Then there exists another solution x € X such that f;, (x) =0 for all

i=1,...,m andf (X)< f(x).



Theorem 1: Assume that the lagrangean function of (1)

L(2x)= £ ()42 45, (1)

has a global minimum x  on X when the multiplier vector
A=A".1f f; (x*) =0foralli=1,...,m, then x isa gobal optimal

solution of (1).

Proof. For contradiction, suppose that x is not a global optimal solution
of (1). Then there exists another solution X € X such that f, (x) =0 for all

i=1,...m,andf (X)< f(x).



Theorem 1: Assume that the lagrangean function of (1)

L(2x)= £ ()42 45, (1)

has a global minimum x  on X when the multiplier vector
A=A".1f f; (x*) =0foralli=1,...,m, then x isa gobal optimal

solution of (1).

Proof. For contradiction, suppose that x is not a global optimal solution
of (1). Then there exists another solution X € X such that f, (x) =0 for all

i=1,...m,andf (X)< f(x).
Hence, for all A4



Theorem 1: Assume that the lagrangean function of (1)

L(2x)= £ ()42 45, (1)

has a global minimum x  on X when the multiplier vector
A=A".1f f; (x*) =0foralli=1,...,m, then x isa gobal optimal

solution of (1).

Proof. For contradiction, suppose that x is not a global optimal solution
of (1). Then there exists another solution X € X such that f, (x) =0 for all

i=1,...m,andf (X)< f(x).
Hence, for all A4

and



Theorem 1: Assume that the lagrangean function of (1)

L(2x)= £ ()42 45, (1)

has a global minimum x  on X when the multiplier vector
A=A".1f f; (x*) =0foralli=1,...,m, then x isa gobal optimal

solution of (1).

Proof. For contradiction, suppose that x is not a global optimal solution
of (1). Then there exists another solution X € X such that f, (x) =0 for all

i=1,...m,andf (X)< f(x).
Hence, for all A4

and

f(§)+i/1ifi(§)<f(x*)+i/1ifi(x*).

If A=A, then the preceding relation contradicts the fact that
x is a global minimum of the lagrangean on X when A= A1". O



Consider the following mathematical programming problem
Min f (x)
S.t. fl.(x)SO i=1,....m (2)
xe X



Consider the following mathematical programming problem
Min f (x)
s.t. f, (x) <0 i=1....,m
xe X

Theorem 2: Assume that the lagrangean function of (2)

L(A,x)=f (X)+Zj:ﬂlfz (x)

has a global minimum x on X when the multiplier vector

A=A"If f,(x")<0, 4 >0, and 4’ f,(x")=0foralli=1,...,m

then x~ is a gobal optimal solution of (2).

(2)



Consider the following mathematical programming problem
Min f (x)
S.t. fl.(x)SO i=1,....m (2)
xe X

Theorem 2: Assume that the lagrangean function of (2)

L(Ax)= £ (x)+ Y A (x)
i=l1
has a global minimum x on X when the multiplier vector
A=A"Iff(x")<0, 4 >0, and 4 f,(x")=0foralli=1,...,m,

then x is a gobal optimal solution of (2).

Proof. For contradiction, suppose that x is not a global optimal solution
of (2). Then there exists another solution X € X such that f; (x) <0 for all

i=1,....m,and f (X)< f(x*).



Theorem 2: Assume that the lagrangean function of (2)

L(A.x)=f (x)+ 2 A4S ()
i=1
has a global minimum x on X when the multiplier vector
A=AIf £,(x')<0, 4 20, and 4'f, (x") =0 forall i=1,...,m,

then x is a gobal optimal solution of (2).

Proof. For contradiction, suppose that x is not a global optimal solution
of (2). Then there exists another solution x € X such that f, (f) <0 for all

i=1,...,mandf (x)< f(x").



Theorem 2: Assume that the lagrangean function of (2)

L(2.3)=1 (2)+ 2 A1 ()

has a global minimum x on X when the multiplier vector
A=AIf £,(x')<0, 4 20, and 4'f, (x") =0 forall i=1,...,m,

then x is a gobal optimal solution of (2).

Proof. For contradiction, suppose that x is not a global optimal solution
of (2). Then there exists another solution x € X such that f, (f) <0 for all

i=1,...m andf (%)< f(x").
Hence, for 4 >0

m

Y Af(x¥)<0  and iﬂjfi (x7)=0

i=1



Theorem 2: Assume that the lagrangean function of (2)

L(A.x)=f (x)+ 2 A4S ()
i=1
has a global minimum x on X when the multiplier vector
A=AIf £,(x')<0, 4 20, and 4'f, (x") =0 forall i=1,...,m,

then x is a gobal optimal solution of (2).

Proof. For contradiction, suppose that x is not a global optimal solution
of (2). Then there exists another solution x € X such that f, (f) <0 for all

i=1,...m andf (%)< f(x").
Hence, for 4 >0

and



Theorem 2: Assume that the lagrangean function of (2)

L(2.3)=1 (2)+ 2 A1 ()

has a global minimum x on X when the multiplier vector
A=AIf £,(x')<0, 4 20, and 4'f, (x") =0 forall i=1,...,m,

then x is a gobal optimal solution of (2).

Proof. For contradiction, suppose that x is not a global optimal solution
of (2). Then there exists another solution x € X such that f, (f) <0 for all

i=1,...m andf (%)< f(x").
Hence, for 4 >0

m

Z/Ii*fi (X)<0 and iﬂjfi (x7)=0
and . .

PR ARE < ()2 A (+),

The preceding relation contradicts the fact that x is a global minimum
of the lagrangean on X when A =A4".



First order Karush-Kuhn-Tucker (KKT)
optimality conditions
To have conditions easier to verify, we need additional
assumptions on X and on the fonctions f and f,.

If X is convex, and if f and f, are differentiable and convex in
problem (2)

Min f(x)
S.t. f( )S i=1,....m (2)
xe X
and if 4, 20,i=1,...,m
then the lagrangean L(A,x)=f (x)+22ifi (x)

i=1
1s also a convex fonction of x on X since

A >0etf (x) convex = A f (x) convex

x)+ Zﬂl f;(x) sum of convex fonctions.



If f andf, are differentiable and convex, then the lagrangean
L(A,x)=f(x)+ Z/il f;(x) is also a differentiable and convex function in x,
i=1

and hence x is a global minimum on X when A=A if

VXL(/I*,X*) = Vf (x* ) + i/’iiji (x*) =0.



If f andf, are differentiable and convex, then the lagrangean

L(A,x)=f(x)+ Z/ll f;(x) is also a differentiable and convex function in x,
i=1

and hence x is a global minimum on X when A= A" if

V.L(A )=V (x7)+ iziji (x")=0.

Thus, theorem 2 can be written as:
Theorem 2: Assume that the
lagrangean function of problem (2)

L(2x)= £ (x)+ AL, ()

has a global minimum x~ on X
when the multiplier vector A = A",

Iff,(x')<0,4 20,and A £, (x") =0

foralli=1,...,m,

K-K-T

If there exists a vector A such that for x € X

VXL(/I*,x*)

A1 (x)=0
fl.(x*)SO
A >0

v (x)+ Y 4 Vr () =0
i=1
i=1,....,m
i=1,....m
i=1,....m

then x~ is a gobal optimal solution of (2).




Sufficiency of the K-K-T conditions

Referring to theorem 2, we can show that the K-K-T conditions are
sufficient when in addition X is convex and the fonctions f and f,
are convex on X.



Sufficiency of the K-K-T conditions

Referring to theorem 2, we can show that the K-K-T conditions are
sufficient when in addition X is convex and the fonctions f and f,
are convex on X.

We can also use the gradient inequality to show the same result.
Theorem 3: Assume that X 1s convex and that the fonctions f et f; are

differentiable and convex. If the K-K-T conditions are verified at x_,
then x is a global minimum of the problem (2).



Sufficiency of the K-K-T conditions

Referring to theorem 2, we can show that the K-K-T conditions are
sufficient when in addition X is convex and the fonctions f et f,
are convex on X.

We can also use the gradient inequality to show the same result.
Theorem 3: Assume that X 1s convex and that the fonctions f and f; are

differentiable and convex. If the K-K-T conditions are verified at x_,
then x is a global minimum of the problem (2).

Proof. Since the lagrangean is convex (shown before),
then it follows from the gradient inequality that for all xe X

P+ Y AL 2 F (3 )+ DAL ) V() DAV ()| (3-)



Theorem 3: Assume that X is convex and that the fonctions f and f, are
differentiable and convex. If the K-K-T conditions are verified at x_,
then x is a global minimum of the problem (2)

Proof. Since the lagrangean is convex (shown before),
then it follows from the gradient inequality that for all xe X

f(x)+iljfi(x)2f(x*)+i/1:fi(x*)+ Vf(x*)+il:Vf;(x*) (x-x')



Theorem 3: Assume that X is convex and that the fonctions f and f, are
differentiable and convex. If the K-K-T conditions are verified at x_,
then x is a global minimum of the problem (2)

Proof. Since the lagrangean is convex (shown before),
then it follows from the gradient inequality that for all xe X

f(x)+ixljfl.(x)2f(x*)+i/ljfi(x*)+ Vf(x*)+i/ljw‘i(x*) (x-x')




Theorem 3: Assume that X is convex and that the fonctions f and f, are
differentiable and convex. If the K-K-T conditions are verified at x_,
then x is a global minimum of the problem (2)

Proof. Since the lagrangean is convex (shown before),
then it follows from the gradient inequality that for all xe X

f(x)+i/1;fi(x)2f(x*)+iﬂjfi(x*)+ Vf(x*)+z/1:Vfi(x*) (x—x*)

0 0




Theorem 3: Assume that X is convex and that the fonctions f and f, are
differentiable and convex. If the K-K-T conditions are verified at x_,
then x is a global minimum of the problem (2)

Proof. Since the lagrangean is convex (shown before),
then it follows from the gradient inequality that for all xe X

f(x)+i/ljfi(x)2f(x*)+iﬂjfi(x*)+ Vf(x*)+z/1:Vfi(x*) (x—x*)

-

0

K-K-T Then, for all xe X

V(A5 )=V ()Y Avs (v ) =0 f(x7)=F(x)S Z’f:ﬂf (x)<0
0




Theorem 3: Assume that X is convex and that the fonctions f and f, are
differentiable and convex. If the K-K-T conditions are verified at x_,
then x is a global minimum of the problem (2)

Proof. Since the lagrangean is convex (shown before),
then it follows from the gradient inequality that for all xe X

f(x)+i/ljfi(x)2f(x*)+iﬂjfi(x*)+ Vf(x*)+z/1:Vfi(x*) (x—x*)

-

K-K-T
V.L(A,x")=Vf(x \
i=1
Af(x)=0 i=1,...,
fi(x")<0 i=1,...,
/1?20 i=1,...,

0
Then, for all xe X

f(f)—f(x)ﬁi/ljfi(x)SO

and



Necessity of the K-K-T conditions

Assume that x € X, I (x*) <0,i=1,...,m, and 1s a local minimum of
problem (2):

Min f(x)
S.t. fi(x)SO i=1,....m (2)
xe X.

Are the K-K-T satisfied; i.e.,
can we find a multiplier vector A such that

V()= (x)+ YAV (x) =0
i=1

A f(x)=0 i=1,...n

f.(x")<0 i=1,...,n

A >0 i=1,...,n?



Assume that x € X, f (x*) <0,i=1,...,m, and 1s a local minimum of
problem (2):

Min f(x)
s.t. fi(x)<0 i=1,...,m (2)
xe X.

Are the K-K-T satisfied; 1.e.,
can we find a multiplier vector A such that

V(2 x) =V (x)+ Y 2V () =0
/ll.*fi(x*):() izlzz.l..,n

f.(x)<o0 i=1,...,n
A =0 i=1,...,n?



Assume that x € X, I (x*) <0,i=1,...,m, and 1s a local minimum of
problem (2):

Min f(x)
S.t. fi(x)SO i=1,....m (2)
xe X.

Are the K-K-T satisfied; i.e.,
can we find a multiplier vector A such that

V(A ) = (x)+ YA (x) =0

Af(x7)=0 i=1,...n
f.(x")<0 i=1,...,n
A =0 i=1,...,n?

It 1s more difficult to answer to this question than it was in studying the
suffidiency.

The K-K-T are satisfied when the feasible domain of problem (2)

(and hence the constraint functions f;, i =1,...,n) verifies some
conditions.

Different sets of such conditions exist.



To analyse the necessity of the K-K-T conditions, additional notions and
preliminary results related to theorems of alternatives are required



To analyse the necessity of the K-K-T conditions, additional notions and
preliminary results related to theorems of alternatives are required

Definitions.
The hyperplan specified by a point a € R" and a scalar £ is the following set in R"

H(a,,b’)z{xe R" :asz,B}.



To analyse the necessity of the K-K-T conditions, additional notions and
preliminary results related to theorems of alternatives are required

Definitions.
The hyperplan specified by a point a € R" and a scalar £ is the following set in R"

H(a,p) ={xe R':a'x= ,B}
The half spaces (closed) associated with the hyperplan H (a, §) are the following
sets in R" : 3

H+[a,,b’]={xe R" :asz,b’}
H‘[a,ﬁ]z{xe R" :aTxS,B}.

Remark: It is easy to verify that these sets are convex.



Definition. Separating hyperplan .
The hyperplan H (a, B ) separates two non empty sets X and Y if

a'x>fforallxe X (i.e.,X cH+[a,,B])
a'y<pBforallyeY (i.e., Y cH‘[a,,b’]).

The separation is strict if the inequalities in both preceding relations
are strict.



Definition. Separating hyperplan .
The hyperplan H (a, B ) separates two non empty sets X and Y if

a'x>fforallxe X (i.e.,X cH” [a,ﬁ])
a'y<pBforallyeY (i.e., Y cH‘[a,,B]).

The separation is strict if the inequalities in both preceding relations
are strict.

H (al’ﬁl) H (al, ,Bl) separating hyperplan
H ( a’, ,82) strict separating hyperplan
H (a2 , B, )



Theorem 4: Let the vectors x, y,ae R". If a’ y < a' x, then for all
f< (0,1),
a'y<a' (9x+(1—9)y) <a'x.



Theorem 4: Let the vectors x, y,ae R". If a’ y < a' x, then for all
f< (0,1),
a'y<a' (9x+(1—9)y) <a'x.

Proof. aT(9x+(1—9)y) (9x+(1 9) ):aTx
aT(9x+(1—¢9)y) (9y+1 6? y)= !



Théoreme 5: (Separating theorem) If X < R" is a non empty convex
set and if y¢ X, then there exists an hyperplan separating (strictly)

X aIld y. @
*y



Théoreme 5: (Separating theorem) If X < R" is a non empty convex
set and if y¢ X, then there exists an hyperplan separating (strictly)
X and y.

Proof. There exists a point x’ € X such that

0 o
|%° = 3| = min|x- y]
xeX

( where HzH =+/z' z denotes the euclidean norm of z).



Théoreme 5: (Separating theorem) If X < R" is a non empty convex
set and if y¢ X, then there exists an hyperplan separating (strictly)
X and y.

Proof. There exists a point x’ € X such that

|+ =] = minllx—|

xeX

(where HzH =+/z' z denotes the euclidean norm of z).

It is easy to verify that X is a convex set, and consequently the
line segment 3 (xo x) — X for all xe X. Then for all 8¢ [0,1]

1= y]<[(6x+(1-6) ") - ),



Théoreme 5: (Separating theorem) If X < R" is a non empty convex
set and if y¢ X, then there exists an hyperplan separating (strictly)
X and y.

Proof. There exists a point x’ € X such that

=]

0
HX — yH = IIllIl
xe X

(where HzH =+/z' z denotes the euclidean norm of z).

It is easy to verify that X is a convex set, and consequently the
line segment 3 (xo x) — X for all xe X. Then for all 8¢ [0,1]

[ =] <](ex+(1-0)2") -
Thus for all fe [O 1]
T

(xo—y)T (xo—y)S((0x+(1—H)x0)—y) ((6’x+(1—9)x0)—y)



Théoreme 5: (Separating theorem) If X < R" is a non empty convex
set and if y¢ X, then there exists an hyperplan separating (strictly)

X and y.
— 0
Proof. There exists a point x’ € X such that @x Loy
0

Hx —yH—mm x—|
xe X

(where HzH =+/z' z denotes the euclidean norm of z).

It is easy to verify that X is a convex set, and consequently the
line segment 3 (xo x) — X for all xe X. Then for all 8¢ [0,1]

[ =] <](ex+(1-0)2") -
Thus for all fe [O 1]
T

(xo—y)T (xo—y)S((0x+(1—H)x0)—y) ((6’x+(1—9)x0)—y)
(=) (=) <((x"=y) +0(x=2)) (x* =)0 ("))



Théoreme 5: (Separating theorem) If X < R" is a non empty convex
set and if y¢ X, then there exists an hyperplan separating (strictly)

X and .
— 0
Proof. There exists a point x’ e X such that @x Loy
0 .
xe X

[« -5
(where HzH =+/z' z denotes the euclidean norm of z).

It is easy to verify that X is a convex set, and consequently the
line segment 3 (x x) — X for all xe X. Then for all 8¢ [0,1]

[ =] <](ex+(1-0)2") -
Thus for all fe [O 1]

(xo—y)T(xO—y) ((6’x+1 H ) y)T((0x+(l—H)x0)—y)
(2= y) (2" =) ((x" = y)+0(x=2)) ((x°=y)+6(x-x"))
(# =) (2 =)< (x"=y) (x"=y)+20(x=2) (x*=¥)+

0 (x—xO)T (x—xo)



Thus for all @e [O ]

(<" -

(x" -
M)

( Ox —y)T((9x+(1—6’)xO)—y)
( x" y +6? x X ))T((x y)+6?(x—x0))
( = +2«9(x X ) (xo—y)+

0 (x—xO)T (x—xo).
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T T
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(x I L )< (3" y)’o— +29(x—x°)T(x0—y)+
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T

ZH(x—xO)T(xO—y)+92(x—x0) (x—xO)ZO.
T
But this implies (x— xo) (xO — y) > 0.
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6 (x-x) (x-x").
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But this implies (x—x°) (x’ - y)>0. Indeed if
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> 6°

7|(x=") ()

20




Thus for all 8 [0,1]

(2= y) (¥ = y)=((0x+(1-6)x°) - y) ((6x+(1-6)")-y)

(" =3) (2= ») < ((x° = v) + 8 (x=x")) ((x°=¥) + 6 (=)

(i) < (=T elmy) +20(x-x°) (x° = y) +
6 (x—x*) (x—x°).

Consequently for all 8¢ [O, 1]
20(x—x") (x*=y)+6*(x=x°) (x=x*)20.

But this implies (x—x°) (x’ - y)>0. Indeed if

(x=x°)" (x" = y) <0, then for §>0 small enough
26](x— ) (5= 3> 8 (x =) (=)

and then we would have

2é(x—xO)T(xo—y)+6?~2(x—x0)T (x—x0)<0.




We then have(x—xO)T (xo _ y)

XOT(XO—y)SxT(x

1V

-]

O or

—y).



We then have(x—xO)T (xo — y) >0 or
T(xo—y). (5.3)

Since y¢ X Hx —yH2 (xo y)T(xO—y)>O, or
)

(x —y)<x’ (x —y). (5.4)
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y' (0= y) <" (2= y). (5.4)
Thus applying theorem 4 with the vectors (x°— y),

x”,y, using 9=%, and referring to (5.4)

V(a0 = y) < (2 3) (30 3) < (¥ - ).



We then have(x—xO)T (xo — y) >0 or

KT (10— y) <2 (20— y). (5.3)
Since ye X.[x" [ =(x"~ ) (x~y)>0. or

y' (0= y) <" (2= y). (5.4)
Thus applying theorem 4 with the vectors (x°— y),

x”,y, using 9=%, and referring to (5.4)

V(a0 = y) < (2 3) (30 3) < (¥ - ).

Combining with relation (5.3),

yT (xo—y)<%(xo+y)T (xo—y)< Xt (xo—y) <x' (xo—y).
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Combining with relation (5.3),

yT(xo_y)%(xuy)T(xo_y)<x0T(xo_y)ng(xo_y).
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Combining with relation (5.3),

yT(xo_y)%(xuy)T(xo_y)<x0T(xo_y)ng(xo_y).

Thus

V(0= y) <o (24 y) (2= y) <t (30 )

Since this relation holds for all xe X, it follows that
the hyperplan H (a, ) where a = (xo —~ y) and

T _
B= %(xo + y) (xo — y) 1s separating (strictly) X and y.
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Theorem 6:(Farkas Lemma) Let the vectors
a',....a" and be R™ . A sufficient condition for b

to be a non negative linear combination of the a’

(1.e., a sufficient condition for the existence of non negative
scalars x,,...,x, such that b=a'x, +...+a"x,) is that each time
there exists ye R™ such that y'a’ >0 for all j =1,...,n, then

necessarely it follows that y'b > 0.
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if y'a’ >0forallj=1,....n, >:>{

dx,,...,x, 20 such that

b=

a'x,+..+a"x, }

We will rather show the contrapose of the implication:

for all ye R"™,

if y'a’ >0forallj=1,...,n,

1

then necessarily y'b >0

1.€.,

2

{le,...,xn > () such that}
—

e | n
b=ax +...+ax,

N

><:—|{

E y€ R™, such that
yTaj >0forallj=1,...,n,
and y'b<0

dx,,...,x, 20 such that

. | n
b=ax +...+a x,

'
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To show that

{Z[xl,...,xn > () such that}
=

b=a'x +..+a"x,

3 y€ R™, such that
yTaj >0 forallj=1,...,n,
and y'b<0

Vo

consider the following set
V4 ={ze R":3x,,...,x, 20 suchthat z=a'x, +...+a"x, }
It 1s easy to show that Z 1s convex. It 1s also possible to show

that Z 1s a close set (i.e. / = Z).

z —alx + . +a”x1 z —alx + . +a”x2

6z' +(1-6)z* =a [exll+(1—6?)x1]+...+a [Hxn+(1—9)x,f]
and then 87 +(1-6)z°e Z




To show that
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To show that
E ye R™, such that
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by theorem 5, there exists an hyperplan H( p, ) separating
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pb<fB<p'z for all ze Z. (5.5)
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Since that an assumption of the contrapose is that b¢ Z = Z, then
by theorem 5, there exists an hyperplan H (p, ) separating
strictly Z and b :

pb<B<p'z for all ze Z. (5.5)
But Oe Z,implying that 5 < 0,and consequently

p'b<0.
Furthermore, p'z > 0 for all ze Z. Indeed, if € Z were existing
such that p'Z <0, then since Z is a cone (i.e., if z€ Z then
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But Oe Z,implying that 5 < 0,and consequently
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Furthermore, p' z >0 for all ze Z. Indeed, if 7 € Z were existing
such that p'z <0, then since Z is a cone (i.e., if z€ Z then
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But Oe Z,implying that 5 < 0,and consequently

p'b<0.
Furthermore, p' z >0 for all ze Z. Indeed, if 7 € Z were existing
such that p'z <0, then since Z is a cone (i.e., if z€ Z then

Aze Z for all 4 >0), we would get that pT (/IZ) > — o0

A—o0

contradicting (5.5).
Since it is easy to verily that a’ e Z, j=1,...,n,
V4 :{ze R":3x,,...,x, >0 suchthatz =a'x, +...+a"x, }
it follows that p'a’ >0, j=1,...,n.
We have shown the contrapose since p € R" is

such that p'a’ >0, j=1,....nand p' b <0.



Theorem 6:(Farkas Lemma) Let the vectors
a',....a" and be R™ . A sufficient condition for b

to be a non negative linear combination of the a’

(1.e., a sufficient condition for the existence of non negative
scalars x,,...,x, such that b=a'x, +...+a"x,) is that each time
there exists ye R™ such that y'a’ >0 forallj=1,...,n, then

necessarely it follows that y' b > 0.

Proof. We have to show that
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Corollary 7: (Theorem of alternatives) Let A be a matrix

m X n. Exactly one of the two following alternatives holds:
I The system Ax = b, x >0 has a solution x€ R"

II ThesystemA'y>0, o'y <0 has a solution ye R"™.

[ The system |a,, d,, ... a,,|x=Db, x>0 has a solution xe R"

II The systema,jTyzO,jzl,...,n, b'y <0 has a solution ye R™.




Corollary 7: (Theorem of alternatives) Let A be a matrix

m X n. Exactly one of the two following alternatives holds:
I The system Ax = b, x >0 has a solution x€ R"

II ThesystemA'y>0, o'y <0 has a solution ye R"™.

Proof. It 1s easy to verify that the two alternatives cannot hold
simultaneously, since otherwise the following relation would be
verified:

0>b'y=x"A"y>0

a contradiction.
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II ThesystemA'y >0, b'y <0 has a solution ye R".

I The system [a,1 ey - a,n]x =b, x 20 has a solution xe R"

II The system a,jTy >0, j=1,...,n, b' y <0 has a solution ye R".

.1leme

Leta,j, j=1,...,n, be the j column of A.

Consider the alternative II. It 1s verified or not.

In the case where 1t 1s not holding, it follows that the system
A"y >0, b'y <0 has no solution ye R™;

1.e., the system a.jTy >0,j=1,...,n, bTy < (0 has no
solution ye R™. Then for all ye R",

if a,jTy >0, j=1,...,n, then necessarily bTy > 0.

Then by theorem 6, there exists a vector x€ R",x >0 such

that Ax =a,;x; +...+a,,x, =b, and alternative I holds.

*n""n



I  The system Ax = b, x >0 has a solution xe R"

II ThesystemA'y >0, b"y <0 has a solution y € R"

I The system [a,, d., ... a,,]x=b, x 20 has a solution x€ R"

II The system a.jTy >0, j=1,...,n, b' y <0 has a solution ye R".

'The case where the systemAx =5, x >0 has a solution.

c'd=|c|||d|cos &

The systemA'y >0,b" y <0
has no solution




I  The system Ax = b, x >0 has a solution xe R"

II Thesystem A"y >0, b"y <0 has a solution y € R"

I The system [a,, ., ... d,,]x=Db, x>0 has a solution xe R"

IT The system a.jTy >0, j=1,...,n, b' y <0 has a solution ye R™.

The case where the systemAx =b, x >0 has no solution solution.

and
T
a02 y 2 O

The system A"y >0,b"y <0
has a solution



Now return to analyse the necessity of the K-K-T conditions using
Corollary 7.
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Assumption to be verified : Suppose that we can show that

there is no vector d € R" such that Vs (x* )T J<0 vr (x* )T
Vfi(x*)TdSO ieA(x")| i Jaso
. Vf, (') d<0 Vf, (x

vf(x') d <0 ) V)

Then the system

(9, (x). ¥, ()] d <0, Vi (x') d <0
has no solution.
Now _apply Corollary 7:

{H =V () Y, (x)ﬂ d >0,vf (x") |d <0 has no solution d e R”}

implies that

{I: —[Vfi1 (x*),...,Vfik (x* )]/i*z LA ] > (0 has a solution}

L) lk

Ax =b, X=>0 has a solution xe R"

II ThesystemA'y >0, b'y <0 has a solution ye R™.




Now apply Corollary 7:
* * T * T
{II = V1, (x), ., (x) | 20,VF(x") d <0 has no solution d e R”}

implies that

{I: —[Vfi1 (x*) ..... Vfik (x*ﬂ /i*=Vf (x*), /i*=[/1:,,l;€ ] >( has a solution}.
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Hence we obtdin the K-KAT conditions




ThlS can be written as

N

[ — Z /IVf —Vf ) [/l:,...,/l;]ZOhasasolution

Let/l —O for allig A(x" Aen

PIRAACHIL
ieA(x*)

A f, (x*)zO for all i ¢ A(x*).

Hence we obtain the K-K£T conditions
VF (£)+ Y AV (x7)=0
i=1

A f(x)=0 i=1,....n

/1?20 i=1,...,n




ThlS can be written as

N

[ — Z ﬂ,Vf —Vf ) [/l:,...,/I;}ZOhasasolution

Letﬂ —Oforalllé A( ) Then
> AVf(x)=0
iEA(x*)

A f, (x*)=0 for all i ¢ A(x*).

Hence we obtain the K-K-T conditions

Vf(x*)+zm:/1:Vfi(x )=0

A f(x)=0 i=1,....n

/1;20 i=1,....n




BUT

Assumption to be verified : Suppose that we can show that

there is no vector d € R" such that
%k T ES
Vi (x) d<0 ie A(x")

Vi (x") d <0

is not necessarily verified for all local solution x~ for all

problems as illustrated in the following example.



Min f(x;,x,)=—x
S.t. fl(xl,xz)z(xl—1)3+x2SO
fo (X, %) ==x,<0
0

fs(xlaxz) =-x, < 0.



Min f(x;,x,)=—x

S.t. fi(x,%x,) = ( ) X, <0
fo(x1,%,) =—x, <0
f3(x.,) = xz—O
The feasible domain of this problem is illustrated in the

figure below under the curve f; (x;,x,), above the x, axis,

and on the right of the x, axis.

X




Min f(x;,x,)=—x

s.t. f; (xl,xz) =(x —1)3 +x, <0
fo(xp,%,) = =%, <0
f3(x1,%,) =—x, <0.

The feasible domain of this problem is illustrated in the

figure below under the curve f; (x;,x,), above the x, axis,

and on the right of the x, axis.

X, It 1s easy to verify that
x =[1,0]" is a global optimal
solution of this problem.

Moreover, A ( X ) =11,3}.




Min f(x;,x,)=—x

s.t. f; (xl,xz) =(x —1)3 +x, <0
fo(xp,%,) = =%, <0
f3(x1,%,) =—x, <0.

The feasible domain of this problem is illustrated in the

figure below under the curve f; (x;,x,), above the x, axis,

and on the right of the x, axis.

X, It 1s easy to verify that
x =[1,0]" is a global optimal
solution of this problem.

Moreover, A ( X ) =1{1,3}.










vf (x")=[-10]".
Vf, (x) = 3(x1—1)2,1J et Vi, (x*) = [0.1]"

vty (x7)=[0.-1]"
We would like the system

AT
Vf(x') d <0
AT
Vfi (") d <0
; Vi (x') d <0
\\ to have no solution d
x; X,



vf (x")=[-10]".
Vf, (x) = 3(x1—1)2,1J et Vi, (x*) = [0.1]"
vty (x7)=[0.-1]"
But the system
T
Vf(x") d=-d, <0
T
Vfi(x") d=d, <0

v, (x') d=—-d, <0

\\ has solution d =[1,0].

X

*
X



But the system
T

Vf(x") d=-d <0
T

Vi(x") d=d, <0

Vi, (x') d=-d, <0

has a solution d =[1,0].

If we look at the la direction d =[1,0] at the point x ,
then it points directly out of the feasible domain.
We will restrict the constraints

of the problems to eliminate

those where such a situation

> eXx1sts.




Kuhn-Tucker constraints qualification

Notation: R denotes the feasible domain of problem 2
SR={xe R:3i,1<i<m, such that f, (x) =0}.

Definition. Let the point x € OR, fis ... . f, satisfy the constraints
qualification at the point x if for any vector d where the system

Vf, (E)T d<0, ic A(X), is verified, there exists a differentiable function
a:[0,1] - R such that a(0)=x and &' (0) = od,o>0.



Notation: R denotes the feasible domain of problem (5.2)
SR={xe R:3i,1<i<m, such that f, (x)=0}.

Definition. Let the point x € 515, fi» --- . f, satisty the constraints
qualification at the point x if for any vector d where the system
Vf, ()_c)T d<0,ic A(X), is verified, there exists a differentiable function

2:[0,1] = R such that (0) =X and &/ (0) = od, > 0.

In the preceding example, the constraints f,, f,, f;
are not satisfying the constraints qualification

at the point x* € OR.



Notation: R denotes the feasible domain of problem (5.2)
SR={xe R:3i,1<i<m, such that f, (x)=0}.

Definition. Let the point x € 515, fi» --- . f, satisty the constraints
qualification at the point x if for any vector d where the system

Vf, ()_C)T d<0,ic A(X), is verified, there exists a differentiable function
o:[0,1] - R such that &(0) =X and &’(0) = od,o > 0.

In the preceding example, the constraints f,, f,, f;
are not satisfying the constraints qualification

Xy at the point x* € OR.
Indeed, there 1s no differentiable
function « taking its values

in R and having its slope at 0 equal to
a positive multiple of d,since d points

out directly outside R.




Definition. Let the point x € 51?, fi» ... . f, satisty the constraints
qualification at the point x if for any vector d where the system
Vf, (E)T d<0,ic A(X), is verified, there exists a differentiable function

a:[0,1] = R such that &(0) =X and &’(0) = od,c > 0.

Graphic interpretation.

N
a(6)=x+6d
a(0)=x
o' (0)=d







Theorem 8: (Necessity of K-K-T optimality conditions) Let x € X be a
local optimal solution of problem 2, and let X be open. Furthermore,

if x"€ SR, then fis..., f, satisfy the constraints qualification at point x .
Then there exists a vector of multipliers A = [ﬂf,...,ﬂ;] > (0 such that

Vf(x*)+i/1i*Vfi(x*)=O Mtf];())go i= 1,
i=1 xe X

ﬂi*fl.(x*)zO i=1,...,m.



Theorem 8: (Necessity of K-K-T optimality conditions) Let x € X be a
local optimal solution of problem 2, and let X be open. Furthermore,

if x"€ SR, then fis..., f, satisfy the constraints qualification at point x .
Then there exists a vector of multipliers 4" = [ﬂf,...,ﬂ;] > () such that

Vf(x*)+i/1i*Vfi(x*)=O Mtsz())go i= 1,
i=1 xe X

ﬂi*ﬁ.(x*)zO i=1,...,m.

Proof. If x" is a point inside the feasible domain R (.e.,f, ( x*) <0 for all i),

then let /11* =0foralli=1,...,m.



Theorem 8: (Necessity of K-K-T optimality conditions) Let x € X be a
local optimal solution of problem 2, and let X be open. Furthermore,

if x"€ SR, then fis..., f, satisfy the constraints qualification at point x .
Then there exists a vector of multipliers 4" = [ﬂf,...,ﬂ;] > () such that

Vf(x*)+i/1i*Vfi(x*)=O Mtsz())go i= 1,
i=1 xe X

ﬂl.*ﬁ.(x*)zO i=1,...,m.

Proof. If x is a point inside the feasible domain R (1e.,f (x*) <0 for all i),
then let /11* =0 for all i =1,...,m. Indeed, in this case , if Vf (x*) would take

a value different from O, then the direction d = —Vf (x*) would be a descent

direction for f atx .



Recall

Lemma: Let X cR", feC'/X,andxe X.Ifde R" is

a feasible direction at x and V¥ (x)T d < 0, then there exists
a scalar £ >0 such that forall 0<7<¢&

f(x+zd)< f(x).

(i.e.,d 1s a/descent direction|at x.)

f(x+6d)-f(x)
6

=Vf (x) d <0,then

there exists a scalar £>0 such that forall 7#0, - <7<,
fx+7d)-f(x)

z'
Then restrict 7 to be positive in order to have

f(x+7d)—f(x)<0 ou f(x+7d)<f(x).

Proof : Since Iim
8—0

< 0.




Theorem 8: (Necessity of K-K-T optimality conditions) Let x € X be a
local optimal solution of problem 2, and let X be open. Furthermore,

if x"€ SR, then fis..., f, satisfy the constraints qualification at point x .
Then there exists a vector of multipliers 4" = [ﬂf,...,ﬂ;] > () such that

Vf(x*)+i/1i*Vfi(x*)=O Mtsz())go i= 1,
i=1 xe X

ﬂl.*ﬁ.(x*)zo i=1,...,m.

Proof. If x is a point inside the feasible domain R (1e.,f (x*) <0 for all i),
then let /11* =0 for all i =1,...,m. Indeed, in this case , if Vf (x*) would take

a value different from O, then the direction d = —Vf (x*) would be a descent

direction for f at x . Hence, it would exist a scalar 7>0 sufficiently small
to have (x* +2'd) € B, (x* ) NR and f (x* + Td) <f (x*), a contradiction.



Let x € OR . Let us show that

ssumption to be verified : Suppose that we can show that
here is no vector d € R" such that

Vf. (x*)Td <0 i€ A(x*)
vf(x') d <0

1s verified under the assumptions of the theorem.




Let x" € OR . Let us show that
lAssumption to be verified : Suppose that we can show that
h

ere 18 no vector d € R" such that
Vi, (x') d<0 e Ax) (5.6)
vf(x') d <0

is verified under the assumptions of the theorem. Indeed, for contradiction

assume that such a vector d would exist. Since fis---» [, satisty the constraints
qualification at point x , then there exists a differentiable fontion « : [O, 1] — R

such that &(0) =x" and &’(0) = od,o>0.



Let x" € OR . Let us show that
lAssumption to be verified : Suppose that we can show that
h

ere 18 no vector d € R" such that
Vi, (x') d<0 e Ax) (5.6)
vf(x') d <0

is verified under the assumptions of the theorem. Indeed, for contradiction

assume that such a vector d would exist. Since fis---» [, satisty the constraints
qualification at point x , then there exists a differentiable fontion « : [O, 1] — R

such that a(O) =x and 0/(0) = O'c?, o > (0. Thus,
- (@(0)-7(x)
m

6—50 V)

1imf(x+‘9€é)_f(x) =Vf(x)'d

-0

e

=Vf(x') @(0)=0vf(x') d <o,

implying the existence of 6 e [O, 1] sufficiently small to have a(é) € B, (x*)

~

such that f (0{(63)) <f (x*), a contradiction since a(é)e R.



Let x" € OR . Let us show that
lAssumption to be verified : Suppose that we can show that
h

ere 18 no vector d € R" such that
Vi, (x') d<0 e Ax) (5.6)
vf(x') d <0

is verified under the assumptions of the theorem. Indeed, for contradiction

assume that such a vector d would exist. Since fis---» [, satisty the constraints
qualification at point x , then there exists a differentiable fontion « : [O, 1] — R

such that 0((0) =x and 0/(0) = O'c?, o > (0. Thus,

i GO ()
. 00 6

1imf(a(0))_f(x )=Vf(x*)T o (0)=0Vf(x") d <0,

00 0

implying the existence of 6 e [O, 1] sufficiently small to have a(é) € B, (x*)

A

such that f (0{(63)) <f (x*), a contradiction since 0((9)6 R.

The rest of the proof is completed as before when we were assuming that the
hypothesis was verified.



K-K-T condition for linear programming

K-K-T conditions <> duality and complementary slackness results.



K-K-T condition for linear programming

K-K-T conditions <> duality and complementary slackness results.
For linear programming,
— K-K-T conditions are sufficient since linear fonctions are

convex.



K-K-T condition for linear programming

K-K-T conditions <> duality and complementary slackness results.
For linear programming,
— K-K-T conditions are sufficient since linear fonctions are
convex.
— K-K-T conditions are necessary since linear fonctions always satisfy
the constraints qualification.



K-K-T condition for linear programming

K-K-T conditions <> duality and complementary slackness results.
For linear programming,
— K-K-T conditions are sufficient since linear fonctions are
convex.
— K-K-T conditions are necessary since linear fonctions always satisfy
the constraints qualification.

Consider the following linear programming problem:

n

Min E C;X;

J=1



Consider the following linear programming problem:

n

Min E C;X;

J=1



Consider the following linear programming problem:

n

Min E C;X;

j=1
n

S.t. Zaiij.Zbi i=1,....m

Jj=1

This problem is equivalent to

n

Min E C;X;

j=1
n
S.t —Zaljxj +b. <0
=1
—x.<0



Consider the following linear programming problem:

n

Min E C;X;

Jj=1

n
S.t. Zaiij.Zbi i=1,....m
J=1

This problem is equivalent to

n

Min E C;X;

J=1
n

s.t. —Zaijxj+biSO i=l...m A

1
J=1

—x; <0 j=1,...,n. A

m+ j
Associate a multiplier A, with each of the m first constraints and a
multiplier 4, . with each of the n last constraints.



n
Min E C;X;
j=1
n

st =Y aux;+b <0 i=l..m ]

J=1

—-x;<0 j=1,...,n. A

m+ j

Associate a multiplier 4, with each of the m first constraints and a
multiplier 4 . . with each of the n last constraints.

m+ j



n
Min chxj
j=1
n
st =Y aux;+b <0 i=l..m ]

J=1

—-x;<0 j=1,...,n. A
Associate a multiplier 4, with each of the m first constraints and a
multiplier 4 . . with each of the n last constraints.

m+ j
The K K-T conditions are the following: vf(x*)+zm: 29f () =0
a a m+n )% i=1
f —I—Zﬂ f Cj _Z&alj _ﬂ'm+] = ]:1, N

J i=m+1 i=1



Primal Min Zc.x.

J J
j=1
n

S.t. Zaljxj 2b i=1,....m

j=1
K-K-T conditions
C; —Z/Lag A, =0 j=1L...n
i=1

A {—Zaijxj +bl}=0 i=1,...,m

j=1

Aons (—xj)=0 j=L...,n



Consider the dual problem:

n

Primal Min Zc X
j=1
S.t. Zaljijbi i=1,....m
=1
XJZO j=1,...,n
K-K-T conditions
cj—z/liaij—ﬂm+j=0 j=1...,n
i=1
/L{—Zaijxj+biJ=O i=1,...,m
j=1
lmﬂ(—xj):O j=L...,n
—Zaijxj+biSO i=1,....m
=1
—ijO j=1,...,n
A 20 i=1,..m+n

Dual Max by,
i=1

s.t. Zaijyiﬁcj J=

i=1
y; 20

..

l

)

L...



Consider the dual problem:

n

Primal Min Zc X

j=1
S.t. ZainJ.Zbi i=1,....m
j=1
ijO j=1,...,n
K-K-T conditions
cj—Z/liaij—ﬂmﬂ:O j=L...,n
i=1

j=1

A

&{—Zaljxj+biJ=O i=1,...

wi(—%,)=0 j=1...

Dual Max Zbi Y,
i=1

N

S.t. Zaijyi <c¢; j=1,...

i=1
y, 20 i=1,...,m.

The vector [4,,...,4,] is a feasible
solution for the dual: forj=1,...,n

cj—z/?,iay ~Ape; =0
=1
m

C, —Z/’Liaij A ; 20
=1

m

Z/liaij <c,

=1

Furthermore,

A20 i=1,....m.




Consider the dual problem:

n

Primal Min Zc X
j=1
S.t. Zaijijbi i=1,....m
j=1
XJZO j=1,...,n
K-K-T conditions
cj—z/liaij—ﬂm+j=0 j=1...,n
i=1
/L{—Zaijxj+biJ=O i=1,...,m
j=1
lmﬂ.(—xj):O j=L...,n
—Zaijxj+biSO i=1,....m
=1
—ijO j=1,...,n
A 20 i=1,..m+n

Dual Max Zbi \z

i=l1

s.t. Zaijyiﬁcj J=

i=1
y; 20

..

l

)

L...



Consider the dual problem:

n

Primal Min Zc X

Dual Max be Y,

1=1,...

The vector [21,...,2,

., | is an optimal

solution for the dual: forj =1,...,n
X; (cj —Z/liaij —ﬂmﬂ.] =0

CiX; —Zﬂal]x] —ﬂmﬂ =

j=1
S.t. Zaijijbi i=1,....m
j=1
ijO j=1,...,n
K-K-T conditions
c].—Z/'Ll.azl.j—/’tm+ j=1...,n
i=1 \
&{—Zaljxj+biJ=O i=1,...,m
j=1 .
/1m+j(—xj)=0 j=1,...,n
—Zaijxj+b <0 i=1....m
j=1
—ijO j=1...,n
A,20 j=1..,m+n



Consider the dual problem:

Primal Min Zc X Dual Max be \z
j=1 i=1
s.t. Zaijijbi i=1,....m S.t. Zaijyiﬁcj j=1...,n
j=1 i=1
ijO j=1,...,n y, 20 i=1....m
K-K-T conditions The vector[A4,,..., 4, | is an optimal
- , solution for the dual:

Cj—Zﬂiaij—/'Lm+j=O j=1...,n

i=1 Zcx _ZZ/IaU A
/L[—Zaljxj+bij=0 i=1,....m Forz_l,,,J,,lml1




Consider the dual problem:

Primal Min Zc X

J=1
n

S.t. Zaijxj 2b i=1,....m

J=1

cj—Z/liaU A, =0 j=1...n
i=l
&{—Zaljxj+bJ=O i=1,...,m
j=1
}Lm+j(—x]):O j=L...,n
—Zaijxj+b <0 i=1....m
j=1

Dual Max be Y,

i=l
m

s.t. Zaijyi <c; j=L...,n

i=1
y, 20 i=1,...,m.

The vector [4,,...,4,] is an optimal

solution for the dual:

Zcx —ZZﬂ,aU X,

]111

S 0o S has

i=1 j=1
Consequently

Zn:cjxj =Zm:/1ib
j=1 i=1

and the result follows from the
weak duality theorem.




Consider the dual problem:

n

Primal Min Zc X
j=1
s.t. Zaljijbi i=1,....m
=1
XJZO j=1,...,n
K-K-T conditions
cj—z/liaij—ﬂm+j=0 j=1...,n
i=1
/L{—Zaijxj+biJ=O i=1,...,m
j=1
lmﬂ(—xj):O j=L...,n
—Zaijxj+biSO i=1,....m
=1
—ijO j=1,...,n
A 20 i=1,..m+n

Dual Max by,
i=1

s.t. Zaijyiﬁcj J=

i=1
y; 20

..

l

/)

L...



Consider the dual problem:

n

Primal Min Zc X

j=1
s.t. Zaijijbi i=1,....m
j=1
x; 20 j=1,...,n
K-K-T conditions
¢ =D Ay Ay =0 =l —y
i=1
%{‘Z%%"‘Q}ZO i=1,...,m
j=1
ﬂmﬂ(—xj):O j=L...,n
—Zaijxj+blSO i=1,....,m
j=1
—x]SO j=1...,n
A,20 j=1..,m+n

Dual Max be Y,
i=1

s.t. Zai]yiﬁcj j=1,...,n
i=1
y, 20 1=1,..
For j=1,...,n
cj—z/liaij—/lmﬂzO
i=1
4 m
X; c]—z/lial]—/lmﬂ =0
\ i=1
4 m
X Cj_zﬂ“iaij = XA, =
\ i=1
Fori=1,....m




