Lagrangean Relaxation

Consider the following mathematical programming problem: (D)

$$(P) \qquad \text{Min } f(x)$$
s.t $x \in X_1 \subset R^n$

$$x \in X_2 \subset R^n$$

$$x \in X \subset R^n$$
here $f: R^n \to R^1$

where $f : \mathbb{R}^n \to \mathbb{R}^1$.

Suppose that X_1 et X_2 are generated as follows:

$$X_{1} = \{ x \in R^{n} : f_{i}(x) \leq 0, i = 1, ..., m \}$$

$$X_{2} = \{ x \in R^{n} : g_{i}(x) \leq 0, i = 1, ..., q \}.$$

Assume that $x \in X_1$ and $x \in X$ are contraints easy to deal with, then it is interesting to take advantage of putting aside the complicating constraints $x \in X_2$.

But we must account for these in solving then problem.

Consider the following mathematical programming problem: (P) Min f(x)s.t $x \in X_1 \subset R^n$ $x \in X_2 \subset R^n$ $x \in X \subset R^n$ where $f: R^n \to R^1$.

Suppose that X_1 et X_2 are generated as follows:

$$X_{1} = \left\{ x \in R^{n} : f_{i}(x) \leq 0, \ i = 1, ..., m \right\}$$
$$X_{2} = \left\{ x \in R^{n} : g_{i}(x) \leq 0, \ i = 1, ..., q \right\}.$$

Lagrangean relaxation is to replace solving problem (P) by solving a sequence of alternate problems (lagrangean relaxations):

$$(P_{\lambda}) \qquad G(\lambda) = \operatorname{Min}\left\{f(x) + \sum_{i=1}^{q} \lambda_{i} g_{i}(x)\right\}$$

s.t. $f_{i}(x) \leq 0 \qquad i = 1, \dots, m$
 $x \in X.$

for different values of the multipliers $\lambda = [\lambda_1, \dots, \lambda_q]^T \ge 0.$

$$(P_{\lambda}) \qquad G(\lambda) = \operatorname{Min}\left\{f(x) + \sum_{i=1}^{q} \lambda_{i} g_{i}(x)\right\}$$

s.t. $f_{i}(x) \leq 0 \qquad i = 1, \dots, m$
 $x \in X.$

for different values of the multipliers $\lambda = [\lambda_1, \dots, \lambda_q]^T \ge 0.$

Hence, the complicating constraints $g_1(x), \ldots, g_q(x)$ are introduced in the objective function with multipliers $\lambda_1, \ldots, \lambda_q \ge 0$ to simulate their violation, in some sense.

$$(P_{\lambda}) \qquad G(\lambda) = \operatorname{Min}\left\{f(x) + \sum_{i=1}^{q} \lambda_{i} g_{i}(x)\right\}$$

s.t. $f_{i}(x) \leq 0 \qquad i = 1, \dots, m$
 $x \in X.$

for different values of the multipliers $\lambda = \begin{bmatrix} \lambda_1, \dots, \lambda_q \end{bmatrix}^T \ge 0.$

 $(P) \qquad \text{Min} \quad f(x) \\ \text{s.t.} \quad x \in X_1 \subset R^n \\ x \in X_2 \subset R^n \\ x \in X \subset R^n \end{cases}$

Referring to lagrangean duality theory, we note that $G(\lambda)$ is the objective function of the lagrangean dual (D) of problem (P)with respect to constraints $g_1(x), \dots, g_q(x)$:

$$(D) \qquad \max_{\lambda \ge 0} \left\{ G(\lambda) \right\} = \max_{\lambda \ge 0} \left\{ \min_{\substack{x \in X_1 \\ x \in X}} \left\{ f(x) + \sum_{i=1}^q \lambda_i g_i(x) \right\} \right\}$$

 $\begin{array}{ll} \operatorname{Min} & f(x) \\ \text{s.t.} & x \in X_1 \subset R^n \\ & x \in X_2 \subset R^n \end{array}$

$$(P_{\lambda}) \qquad G(\lambda) = \operatorname{Min}\left\{f(x) + \sum_{i=1}^{q} \lambda_{i} g_{i}(x)\right\}$$

s.t. $f_{i}(x) \leq 0 \qquad i = 1, \dots, m$
 $x \in X.$

for different values of the multipliers $\lambda = [\lambda_1, \dots, \lambda_q]^T \ge 0.$

$$(D) \qquad \max_{\lambda \ge 0} \left\{ G(\lambda) \right\} = \max_{\lambda \ge 0} \left\{ \min_{\substack{x \in X_1 \\ x \in X}} \left\{ f(x) + \sum_{i=1}^q \lambda_i g_i(x) \right\} \right\}$$

By the weak duality theorem , the optimal value $G(\lambda)$ of (P_{λ}) is a lower bound on the optimal value of (P).

This is why (P_{λ}) is a relaxation of (P).

$$(P_{\lambda}) \qquad G(\lambda) = \operatorname{Min}\left\{f(x) + \sum_{i=1}^{q} \lambda_{i} g_{i}(x)\right\}$$

s.t. $f_{i}(x) \leq 0 \qquad i = 1, \dots, m$
 $x \in X.$

for different values of the multipliers $\lambda = \begin{bmatrix} \lambda_1, \dots, \lambda_q \end{bmatrix}^T \ge 0.$

 $(P) \qquad \begin{array}{l} \text{Min} \quad f(x) \\ \text{s.t.} \quad x \in X_1 \subset R^n \\ x \in X_2 \subset R^n \\ x \in X \subset R^n \end{array}$

Furthermore, if we identify a vector of multipliers $\lambda \ge 0$ such that the optimal solution x^{λ} of (P_{λ}) satisfies the conditions:

$$g_i(x^{\lambda}) \leq 0 \quad i = 1, ..., q \quad (\text{feasibility})$$

$$\lambda_i g_i(x^{\lambda}) = 0 \quad i = 1, ..., q \quad (\text{complementarity})$$

then x^{λ} is an optimal solution of (P) .

At each iteration of the lagrangean relaxation method, a problem

$$(P_{\lambda}) \qquad G(\lambda) = \operatorname{Min}\left\{f(x) + \sum_{i=1}^{q} \lambda_{i} g_{i}(x)\right\}$$

s.t. $f_{i}(x) \leq 0 \qquad i = 1, \dots, m$
 $x \in X.$

is solved for a fixed value of the multipliers vector $\lambda = [\lambda_1, \dots, \lambda_q]^T \ge 0$.

The problem to solve at the next iteration is obtained by modifying the values of the multipliers $\lambda = [\lambda_1, \dots, \lambda_q]^T \ge 0.$

One way of doing this modification is by referring to optimizing the dual problem.