
Lagrangean Relaxation



( ) ( )

( ){ }

1

2

1

1 2

1

2

Consider the following mathematical programming problem:
Min

                          s.t
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Assume that and  are contraints  to deal with,
then it is interesting to take advantage of putting
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n relaxation is to replace solving problem  by solving

a sequence of alternate problems :
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Hence, the  constraints , ,  are 

introduced in the objective function with multipliers , , 0 

to simulate their violation, in some sense
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Referring to lagrangean duality theory, we note that   is 

the objective function of the lagrangean dual  of problem

with respect to constraints , , :
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Max Max Min

By the weak duality theorem , the optimal value  of 

is a lower bound on the optimal value of .
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Furthermore, if we identify a vector of multipliers  0 
such that the optimal solution  of  satisfies the conditions:

0 1, , feasibility

0 1, , complementarity
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At each iteration of the  , a problem
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is solved for a fixed value of the multiplier

lagrangean relaxati

s vec

on m

tor ,

e h d

.

t

,

o

0

q

i i
i

i

q

P G f x g x

f x i m

x X

λ
λ λ

λ λ λ

=

= +∑

≤ =
∈

 = ≥ 

K

K

One way of doing this modification is by referring to optimizing
the dual problem.
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The problem to solve at the next iteration is obtained by modifying

the values of the multipliers , , 0. 
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