Lagrangean Relaxation

Consider the following mathematical programming problem:

$$
(P) \qquad \text{Min} \quad f(x)
$$
\n
$$
\text{s.t} \quad x \in X_1 \subset R^n
$$
\n
$$
\overline{x \in X_2 \subset R^n}
$$
\n
$$
x \in X \subset R^n
$$
\n
$$
\text{where } f \colon R^n \to R^1
$$

where $f: R^n \to R^1$. $f:R^n\rightarrow R^p$

Suppose that X_1 et X_2 are generated as follows:

$$
X_{1} = \{x \in R^{n} : f_{i}(x) \leq 0, i = 1,..., m\}
$$

$$
X_{2} = \{x \in R^{n} : g_{i}(x) \leq 0, i = 1,..., q\}.
$$

Assume that $x \in X_1$ and $x \in X$ are contraints easy to deal with, then it is interesting to take advantage of putting aside the complicating constraints $x \in X_2$.

But we must account for these in solving then problem.

 (P) Min $f(x)$ 12 $x \in X \subset R^n$ 1 Consider the following mathematical programming problem:s.t $x \in X \subset R^n$ where $f: R^n \to R^1$. $x \in X_{2} \subset R^{n}$ $x \in X_1 \subset R$ ⁿ $f:R^n\rightarrow R^p$

Suppose that X_1 et X_2 are generated as follows:

$$
X_{1} = \{ x \in R^{n} : f_{i}(x) \le 0, \ i = 1, ..., m \}
$$

\n
$$
X_{2} = \{ x \in R^{n} : g_{i}(x) \le 0, \ i = 1, ..., q \}.
$$

Lagrangean relaxation is to replace solving problem $\left(P\right)$ by solving a sequence of alternate problems (lagrangean relaxations):

$$
(P_{\lambda}) \qquad G(\lambda) = \text{Min}\Big\{f(x) + \sum_{i=1}^{q} \lambda_{i} g_{i}(x)\Big\}
$$

s.t. $f_{i}(x) \leq 0$ $i = 1,..., m$
 $x \in X.$

for different values of the mul \blacksquare tipliers $\lambda = [\lambda_1, ..., \lambda_q]$ ^{≥ 0}.

Lagrangean relaxation is to replace solving problem $\left(P\right)$ by solving a sequence of alternate problems (lagrangean relaxations):

$$
(P_{\lambda}) \qquad G(\lambda) = \text{Min}\left\{f(x) + \sum_{i=1}^{q} \lambda_{i} g_{i}(x)\right\}
$$

s.t. $f_{i}(x) \leq 0$ $i = 1,..., m$
 $x \in X.$

for different values of the mul \blacksquare tipliers $\lambda = [\lambda_1, ..., \lambda_q]$ ^{≥ 0}.

Hence, the complicating constraints $g_1(x),..., g_q(x)$ are introduced in the objective function with multipliers $\lambda_1, \ldots, \lambda_n \geq 0$ to simulate their violation, in some sense.*q*aultipliers $\lambda_1^1, \ldots, \lambda_a^1 \geq 1$

Lagrangean relaxation is to replace solving problem (P) by solving a sequence of alternate problems (lagrangean relaxations):

$$
(P_{\lambda}) \qquad G(\lambda) = \text{Min}\left\{f(x) + \sum_{i=1}^{q} \lambda_{i} g_{i}(x)\right\}
$$

s.t. $f_{i}(x) \leq 0$ $i = 1,..., m$
 $x \in X.$

for different values of the mul \blacksquare tipliers $\lambda = [\lambda_1, ..., \lambda_q]^{1} \geq 0.$

((P) Min $f(x)$ 2Mins.t. $x \in X_1 \subset R^n$ *P* $)$ *Min* $f(x)$ $x \in X_1 \subset R'$ $x \in X_{2} \subset R$ ^{*r*} $x \in X \subset R$ ^{*r*} $\in X_1 \subset$ \in $X_{_2}$ \subset \in $X \subset$

Referring to lagrangean duality theory, we note that $G(\lambda)$ is the objective function of the lagrangean dual (D) of problem (P) with respect to constraints $g_1(x), \ldots, g_q(x)$:

$$
(D) \quad \operatorname{Max}_{\lambda \geq 0} \left\{ G(\lambda) \right\} = \operatorname{Max}_{\lambda \geq 0} \left\{ \operatorname{Min}_{x \in X_1} \left\{ f(x) + \sum_{i=1}^q \lambda_i g_i(x) \right\} \right\}
$$

Lagrangean relaxation is to replace solving problem (P) by solving a sequence of alternate problems (lagrangean relaxations):

 (P) Min $f(x)$

(P) Min $f(x)$
s.t. $x \in X_1 \subset R^n$
 $x \in X_2 \subset R^n$ *P x x x x x z******z z z*

1 2

 $\in X_1 \subset$
 $\in X_2 \subset$

 $x \in X \subset R$ ^{*r*}

 \in $X \subset$

$$
(P_{\lambda}) \qquad G(\lambda) = \text{Min}\Big\{f(x) + \sum_{i=1}^{q} \lambda_{i}g_{i}(x)\Big\}
$$

s.t. $f_{i}(x) \leq 0$ $i = 1,...,m$
 $x \in X.$

for different values of the mult \blacksquare ipliers $\lambda = [\lambda_1, ..., \lambda_q]^T \ge 0.$

$$
(D) \quad \operatorname{Max}_{\lambda \geq 0} \left\{ G(\lambda) \right\} = \operatorname{Max}_{\lambda \geq 0} \left\{ \operatorname{Min}_{x \in X_1} \left\{ f(x) + \sum_{i=1}^q \lambda_i g_i(x) \right\} \right\}
$$

By the weak duality theorem , the optimal value $G(\lambda)$ of (P_{λ}) is a lower bound on the optimal value of (P) .

This is why (P_{λ}) is a relaxation of (P) .

Lagrangean relaxation is to replace solving problem (P) by solving a sequence of alternate problems (lagrangean relaxations):

$$
(P_{\lambda}) \qquad G(\lambda) = \text{Min}\Big\{f(x) + \sum_{i=1}^{q} \lambda_{i}g_{i}(x)\Big\}
$$

s.t. $f_{i}(x) \leq 0$ $i = 1,...,m$
 $x \in X.$

for different values of the mult \blacksquare ipliers $\lambda = [\lambda_1, ..., \lambda_q]^T \ge 0.$

((P) Min $f(x)$ 2s.t. $x \in X_1 \subset R^n$ $x \in X_1 \subset R'$ $x \in X_{2} \subset R$ ^{*r*} $x \in X \subset R$ ^{*r*} $\in X_1 \subset$ \in $X_{_2}$ \subset \in $X \subset$

such that the optimal solution x^{λ} of (P_{λ}) satisfies the conditions: Furthermore, if we identify a vector of multipliers $\lambda \geq 0$ \mathbf{U} \mathbf{U}

$$
g_i(x^{\lambda}) \le 0 \quad i = 1,...,q
$$
 (feasibility)
\n
$$
\lambda_i g_i(x^{\lambda}) = 0 \quad i = 1,...,q
$$
 (complementary)
\nthen x^{λ} is an optimal solution of (P) .

At each iteration of the lagrangean relaxation method, a problem

$$
(P_{\lambda}) \qquad G(\lambda) = \text{Min}\Big\{f(x) + \sum_{i=1}^{q} \lambda_{i}g_{i}(x)\Big\}
$$

s.t. $f_{i}(x) \leq 0$ $i = 1,...,m$
 $x \in X.$

Tis solved for a fixed value of the multipliers vector $\lambda = |\lambda_1, \dots, \lambda_n| \geq 0$. *q*e multipliers vector $\lambda = [\lambda_1, ..., \lambda_q]$ ^{\geq} \cdots

Tthe values of the multipliers $\lambda = [\lambda_1, ..., \lambda_q]^T \ge 0$. The problem to solve at the next iteration is obtained by modifying

One way of doing this modification is by referring to optimizingthe dual problem.