
European Journal of Operational Research 178 (2007) 755–766

www.elsevier.com/locate/ejor
Discrete Optimization

An exact algorithm for a single-vehicle routing problem
with time windows and multiple routes

Nabila Azi, Michel Gendreau, Jean-Yves Potvin *

Département d’informatique et de recherche opérationnelle and Centre de recherche sur les transports, Université de Montréal,

C.P. 6128, succursale Centre-ville, Montréal, Québec, Canada H3C 3J7

Received 19 January 2005; accepted 8 February 2006
Available online 3 May 2006
Abstract

This paper describes an exact algorithm for solving a problem where the same vehicle performs several routes to serve a
set of customers with time windows. The motivation comes from the home delivery of perishable goods, where vehicle
routes are short and must be combined to form a working day. A method based on an elementary shortest path algorithm
with resource constraints is proposed to solve this problem. The method is divided into two phases: in the first phase, all
non-dominated feasible routes are generated; in the second phase, some routes are selected and sequenced to form the vehi-
cle workday. Computational results are reported on Euclidean problems derived from benchmark instances of the classical
vehicle routing problem with time windows.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Transportation; Routing; Single vehicle; Time windows; Multiple uses; Elementary shortest paths
1. Introduction

In this work, we consider a variant of the vehicle
routing problem with time windows (VRPTW)
where the same vehicle can perform several routes
during its workday. Surprisingly, this problem has
received little attention in the literature in spite of
its importance in practice. For example, in the home
delivery of perishable goods, like food, routes are of
short duration and must be combined to form a
complete workday. We believe that this type of
problem will become increasingly important in the
0377-2217/$ - see front matter � 2006 Elsevier B.V. All rights reserved

doi:10.1016/j.ejor.2006.02.019

* Corresponding author. Tel.: +1 514 343 7093; fax: +1 514 343
7121.

E-mail address: potvin@iro.umontreal.ca (J.-Y. Potvin).
future with the advent of electronic services, like e-
groceries, where customers can order goods through
the internet and have them delivered at home.

The vehicle routing problem with multiple uses of
vehicles, but no time windows, has been addressed
through heuristic means in [7,14]. In [14], different
solutions to the classical vehicle routing problem
are generated using a tabu search heuristic. The
routes obtained are then combined to produce
workdays for the vehicles by solving a bin packing
problem, an idea previously introduced in [7]. A
recent work in [3] reports about insertion heuristics
that can efficiently handle different types of con-
straints including time windows and multiple uses
of vehicles. In [2], the authors introduce the home
delivery problem, which is more closely related to
.

mailto:potvin@iro.umontreal.ca

756 N. Azi et al. / European Journal of Operational Research 178 (2007) 755–766
real-world applications. Here, a probability of
occurrence and a revenue are associated with each
potential customer. When a new request occurs, a
decision to accept or reject it must be taken in
real-time, and a time window for service is deter-
mined. Although vehicle routes are generated and
used to decide about the acceptance or rejection of
a particular request, the ‘‘real’’ routes are executed
later. Logistics and socio-economic considerations
about different types of home delivery problems,
with a particular emphasis on electronic groceries,
can also be found in [8–11,15].

In this paper, an exact algorithm for solving a
single-vehicle routing problem with time windows
and multiple routes is reported. To the best of our
knowledge, this is the first time that an exact algo-
rithm is devised for this kind of problem. The out-
line of the paper is as follows. In Section 2, a
mathematical programming formulation is pro-
posed. The problem-solving approach, based on
an elementary shortest path algorithm with resource
constraints, is then presented in Section 3. Compu-
tational results on problem instances derived from
Solomon’s VRPTW testbed [13] are reported in Sec-
tion 4. Finally, concluding remarks follow in Sec-
tion 5.

2. Problem formulation

The problem considered can be stated as follows.
We have a single vehicle of capacity Q delivering
perishable goods from a depot to a set of customer
nodes N = {1,2, . . . ,n} in a complete directed graph
with arc set A. A distance dij and a travel time tij are
associated with every arc (i, j) 2 A. Each customer
i 2 N is characterized by a demand qi, a service or
dwell time si and a time window [ai,bi], where ai is
the earliest time to begin service and bi the latest
time. Accordingly, the vehicle must wait if it arrives
at customer i before time ai. The vehicle workday is
made of a set of routes K = {1,2, . . . ,k} where each
route starts and ends at the depot (some of these
routes might be empty). We assume, without loss
of generality, that the routes are served in the order
1,2, . . . ,k. The depot is denoted by 0 or n + 1
depending if it is the initial or terminal node of an
arc, with s0 = sn+1 = 0, q0 = qn+1 = 0, a0 = an+1 =
0; b0 = bn+1 =1; the symbol N+ is used for N [
{0,n + 1} and A+ for A [{(0, n + 1)}, where
(0,n + 1) is a dummy arc with distance d0,n+1 = 0
and travel time t0,n+1 = 0. Due to the transportation
of perishable goods, every customer in a route must
be served before a given deadline associated with
that route. The latter is defined by adding a constant
tmax to the route start time. Also, a setup time rr for
loading the vehicle is associated with each route
r 2 K. The objective is to minimize the total distance
traveled to serve all customers while satisfying the
capacity, time window and deadline constraints.

This problem can be formulated as follows, using
M as an arbitrary large constant:

min
X
r2K

X
ði;jÞ2A

dijxr
ij ð1Þ

s:t:
X
j2Nþ

xr
ij ¼ yr

i ; i 2 N ; r 2 K; ð2Þ

X
r2K

yr
i ¼ 1; i 2 N ; ð3Þ

X
i2Nþ

xr
ih�

X
j2Nþ

xr
hj ¼ 0; h 2 N ; r 2 K; ð4Þ

X
i2Nþ

xr
0i ¼ 1; r 2 K; ð5Þ

X
i2Nþ

xr
iðnþ1Þ ¼ 1; r 2 K; ð6Þ

X
i2N

qiy
r
i 6 Q; r 2 K; ð7Þ

tr
i þ siþ tij �M 1� xr

ij

� �
6 tr

j; ði; jÞ 2 Aþ; r 2 K;

ð8Þ
aiyr

i 6 tr
i 6 biyr

i ; i 2 N ; r 2 K; ð9Þ
t1
0 P r1; ð10Þ

tr
nþ1 þ rrþ1

6 trþ1
0 ; r ¼ 1; . . . ;k� 1; ð11Þ

rr ¼ b
X
i2N

siyr
i ; r 2 K; ð12Þ

tr
i 6 tr

0 þ tmax; i 2 N ; r 2 K; ð13Þ
xr

ij binary; ði; jÞ 2 Aþ; r 2 K; ð14Þ

yr
i binary; i 2 N ; r 2 K; ð15Þ

where

• xr
ij is 1 if arc (i, j) 2 A+ is in route r, 0 otherwise;

note that xr
0;nþ1 is 1 if route r is empty;

• yr
i is 1 if customer i is in route r, 0 otherwise;

• tr
i is the time of beginning of service at customer i

in route r;
• tr

0 is the start time of route r;
• tr

nþ1 is the end time of route r.

In this formulation, Eq. (3) states that every cus-
tomer should be visited exactly once. Eqs. (4)–(6)
are flow conservation constraints that describe the

N. Azi et al. / European Journal of Operational Research 178 (2007) 755–766 757
vehicle path. Eq. (7) states that the total demand on
a route should not exceed the vehicle capacity. Eqs.
(8)–(11) ensure feasibility of the time schedule. Eq.
(12) defines the vehicle setup time as the sum of ser-
vice times of all customers in a route, multiplied by
parameter b. Finally, Eq. (13) corresponds to the
deadline constraint for serving a customer. Note
that Eq. (9) forces the tr

i variables to 0 when cus-
tomer i is not in route r. Consequently, Eq. (13) is
automatically satisfied in this case.

In practice, it might not be possible to serve all
customers with the vehicle due to the time window
constraints. An alternative objective is thus to max-
imize the number of served customers and, for the
same number of served customers, to minimize the
total distance. The objective in the above formula-
tion can be modified to account for the number of
served customers, namely:

min
X
r2K

X
ði;jÞ2A

dijxr
ij � a

X
r2K

X
i2N

yr
i : ð16Þ

By setting the weighting parameter a to a sufficiently
large value, the desired hierarchic objective is ob-
tained. Note also that the equality sign in constraint
(3) should be replaced by a 6 sign. The latter prob-
lem is the one that is considered in the following.

3. Problem-solving approach

The problem is addressed via an approach that
exploits an elementary shortest path algorithm with
resource constraints, noted FDGG in the following
[6]. The latter extends Desrochers’ algorithm [5] for
the shortest path problem with resource constraints
to generate elementary paths only. After briefly
introducing FDGG, our problem-solving methodol-
ogy is described in the next subsections.

3.1. An elementary shortest path algorithm with

resource constraints

FDGG is a label correcting algorithm that solves
the elementary shortest path problem with resource
constraints on graphs with, possibly, negative
cycles. In this context, a path is characterized by
the consumption of each resource, in addition to
its length. Accordingly, when different paths lead
to the same node, it might well be that no path dom-
inates, or is better than the others, over all criteria.
As a consequence, many different labels are typi-
cally maintained at each node (i.e., all non-domi-
nated paths leading to that node).
Since elementary paths must be generated, cycles
are detected by keeping a trace of previously visited
nodes. More precisely, a path p from some origin
node o to some node j is labeled with Rp ¼
ðdp; t1

p; . . . ; tl
p; sp; V 1

p; . . . ; V n
pÞ, where L = {1, . . . , l} is

the set of resources, dp is the length of path p, tk
p is

the consumption of resource k = 1, . . . , l, sp is the
number of unreachable nodes (either because they
have already been visited or because their inclusion
would violate one or more resource constraints) and
V i

p ¼ 1 if node i is unreachable, 0 otherwise. The fol-
lowing dominance relation is then defined:

Dominance relation. If p and p 0 are two different
paths from origin o to node j with labels Rp and
Rp0 , respectively, then path p dominates p 0 if and
only if dp 6 dp0 , sp 6 sp0 , tk

p 6 tk
p0 , k = 1, . . . , l,

V i
p 6 V i

p0 , i = 1, . . . ,n.
That is, path p dominates p 0 if (1) it is not longer,

(2) it does not consume more resources for every
resource considered and (3) every unreachable node
is also unreachable for path p 0. Note that sp, the
number of unreachable nodes, is included in the
label only to speed up the computations. As stated
in [6], by eliminating paths through this dominance
relation, only labels corresponding to non-domi-
nated elementary paths are kept and a solution to
the problem is obtained at the end.

Our problem-solving approach, based on this
algorithm, is divided into two phases. In the first
phase, feasible routes are constructed. Then, some
of these routes are combined to form a workday
for the vehicle. Through this two-phase approach,
the routing issues are decoupled from the scheduling
issues related to the generation of a workday. That
is, when a route is known, the sum of the service
times and the setup time are known. With the setup
times, the coupling of different routes can then be
done with standard time window constraints. This
is explained in the following.

3.2. Phase 1

First, we want to generate a set of feasible routes
that will be used as ‘‘building blocks’’ in the second
phase. As the deadline constraint is quite restrictive
in practice, even the largest feasible routes will
contain only a few customers and a pure enumera-
tive approach is viable. Through a suitable adapta-
tion of the FDGG algorithm, however, it is
possible to discard partial routes that are of no
interest due to the availability of better alternative
routes.

758 N. Azi et al. / European Journal of Operational Research 178 (2007) 755–766
First, the distance dij on each arc is replaced by
dij � a, with a > max(i,j)2Adij. As it is always benefi-
cial to extend a path with a new arc, the correspond-
ing distance being negative, this modification allows
the FDGG algorithm to generate paths that start
and end at the depot (otherwise, it would be optimal
to stay at the depot). Second, as our goal is not to
find shortest routes, but rather to generate all feasi-
ble non-dominated routes, condition (3) in the
FDGG dominance relation is modified and now
states that the nodes visited in one path should be
the same as those visited in the other path. Using
the notation W i

p ¼ 1 if node i is in path p, 0 other-
wise, the dominance relation is now defined as
follows:

Dominance relation (modified). If p and p 0 are
two different paths from origin o to node j with
labels Rp and Rp0 , respectively, then path p domi-
nates p 0 if and only if dp 6 dp0 , tk

p 6 tk
p0 , k = 1, . . . , l,

W i
p ¼ W i

p0 , i = 1, . . . ,n.
A path p thus dominates another path p 0 if they

both lead to the same node, going through the same
intermediary nodes (although in a different order),
and p is not longer and does not consume more
resources than p 0, for every resource considered. In
this application, the resource constraints are the
time windows and route deadlines. Clearly, there
is no interest in extending dominated paths, because
we always want to visit a given subset of customers
in the most efficient way. All feasible non-domi-
nated closed routes obtained with this modified
FDGG algorithm are kept and used in Phase 2 to
generate a solution to our problem.

3.3. Phase 2

The FDGG algorithm is used again in Phase 2 to
create a workday for the vehicle. Here, the original
algorithm is applied on a transformed graph where
the nodes correspond to the routes generated in
Phase 1, plus two artificial nodes that correspond
to the start and end of the vehicle workday. In the
graph, there is an arc between nodes r and r 0 if (1)
the two subsets of customers in routes r and r 0 are
disjoint and (2) it is feasible to serve route r 0 after
route r, where feasibility is determined through
departure time windows (see Subsections 3.3.1 and
3.3.2). It should be noted that after applying this
graph reduction procedure, it is still possible to have
paths that connect routes with non-disjoint subsets
of customers (only consecutive routes with non-dis-
joint subsets of customers are eliminated at this
point). A single resource unit is thus associated with
each customer. When the FDGG algorithm is
applied on the transformed graph and some route
node r 0 is visited, the resource unit of every cus-
tomer in r 0 is automatically consumed.

The cost on arc (r, r 0) in the transformed graph
relates to the objective in Eq. (16) for route r 0 and
is set to the length of route r 0 minus the weighting
parameter a times the number of customers in route
r 0. That is,

X
ði;jÞ2A

dijxr0

ij � a
X
i2N

yr0

i ; ð17Þ

with a > 2maxi2N{max{d0i, di(n+1)}}. With this
requirement on parameter a, and assuming that
the triangular inequality holds, the costs are all neg-
ative. Namely,

X
ði;jÞ2A

dijxr0

ij 6

X
i2N

ðd0i þ diðnþ1ÞÞyr0

i ðtriangular inequalityÞ

6

X
i2N

2 maxfd0i;diðnþ1Þgyr0

i

6 2 max
i2N
fmaxfd0i;diðnþ1Þgg

X
i2N

yr0

i

< a
X
i2N

yr0

i :

Thus, it is always beneficial to serve an additional
customer if it is feasible to do so. In the transformed
graph, there is also an arc from the artificial start
node to every route node and from every route node
to the artificial end node (in the latter case, the costs
are set to 0).

As previously mentioned, time windows are asso-
ciated with route nodes. These are calculated as
follows.

3.3.1. Latest departure and arrival times

Let us assume that route r corresponds to the
sequence ð0 ¼ i0; i1; i2; . . . ; inr ; inrþ1 ¼ nþ 1Þ, where
nr is the number of customers in the route. We first
need to determine the latest feasible time tr

ij
to begin

service at each customer (where tr
i0
¼ tr

0 and
tr
inrþ1
¼ tr

nþ1 are the latest feasible departure and
arrival times at the depot, respectively). A back-
ward sweep of route r is applied from inrþ1 to i0 as
follows:

tr
inrþ1
 binrþ1

;

tr
ij
 minftr

ijþ1
� tijijþ1

� sij ; bijg; j ¼ inr ; . . . ; i0 ¼ 0:

Table 1
Customers with their time windows

Node x y Time window

0 40 50 [0,1]
1 25 85 [591,874]
2 22 75 [73,350]
3 22 85 [473,588]
4 20 80 [418,913]
5 20 85 [40,390]

Table 2
Time windows and cost of each route

Route Departure Arrival Cost

0, 3, 1, 6 [538.65,548.65] [639.07,649.07] �82.82
0, 4, 3, 6 [421.57,522.35] [536.57,637.35] �82.46
0, 4, 1, 6 [537.88,639.07] [820.88,922.07] �82.05
0, 2, 5, 6 [42.20,143.50] [319.20,420.50] �81.94
0, 2, 6 [42.20,113.80] [319.20,390.80] �20.02
0, 4, 6 [381.95,464.05] [876.95,959.05] �9.52
0, 1, 6 [552.93,639.07] [35.93,922.07] �5.48
0, 3, 6 [433.65,522.35] [548.65,637.35] �2.92
0, 5, 6 [0.00,90.62] [349.69,440.31] �1.00

N. Azi et al. / European Journal of Operational Research 178 (2007) 755–766 759
Once tr
i0

has been obtained, a forward sweep is ap-
plied to reset the tr

ij
values and get the latest feasible

schedule:

tr
ij
 maxftr

ij�1
þ sij�1

þ tij�1ij ; aijg;
j ¼ i1; . . . ; inrþ1 ¼ nþ 1:

The total route duration corresponds to dr
min ¼

tr
nþ1 � tr

0, which is also the minimum duration,
because the waiting time is minimized by serving
the route at the latest feasible time.

3.3.2. Earliest departure and arrival times

We now want to determine the earliest departure
and arrival times at the depot, tr

i0
¼ tr

0 and
tr
inrþ1
¼ tr

nþ1, while maintaining the minimum route
duration dr

min. Two cases should be considered:
Case 1. If there is no waiting time in the latest

feasible schedule, then the latter can be ‘‘shifted’’
by dr time units, where

dr ¼ min
j¼0;...;nrþ1

ðtr
ij
� aijÞ:

The time windows for arrival and departure at the
depot are thus ½tr

0; tr
0� and ½tr

nþ1; tr
nþ1�, where

tr
0 ¼ tr

0 � dr and tr
nþ1 ¼ tr

nþ1 � dr.
Case 2. If there is some waiting time in the latest

feasible schedule, it is not possible to depart earlier
from the depot without increasing the route dura-
tion. Consequently, we have tr

0 ¼ tr
0 and tr

nþ1 ¼ tr
nþ1.

In this case, the time windows for departure and
arrival at the depot reduce to a single point. It is
thus feasible to serve route r 0 after route r, and arc
(r, r 0) is in the route graph, if tr

nþ1 þ rr0
6 tr0

0 (assum-
ing that the two routes are disjoint).

The original FDGG algorithm is used to find an
elementary least cost path with time window con-
straints from the artificial start node to the artificial
end node in the route graph. The departure time
windows associated with each route are used for this
purpose. That is, the vehicle must be back at the
depot and ready to depart before the latest depar-
ture time of its next route. If the vehicle is ready
before the earliest departure time, then it must wait.
When arc (r, r 0) is added to the current path, route r 0

is included into the vehicle workday. In this case,
the cost of route r 0 in Eq. (17) is incurred and the
time consumed corresponds to the duration of route
r 0, plus the setup time of route r 0, plus any waiting
time before departure. The sequence of nodes in
the least cost path obtained at the end corresponds
to the sequence of routes in the vehicle workday. An
example is provided below.
3.4. An example

Let us assume that we have n = 5 customer nodes
indexed from 1 to 5 and a depot associated with
nodes 0 and 6. We also assume that the distances
and travel times are the same and correspond to
the Euclidean metric. Table 1 indicates the coordi-
nates and time windows for each node (taken from
Solomon’s test instances [13]).

Now, we want to calculate the departure and
arrival time windows for route r = 1, (0, 3,1,6),
where i0 = 0, i1 = 3, i2 = 1 and i3 = 6. With travel
times t03 = 39.35, t31 = 3.00 and t16 = 38.07 and a
service time of 10 at customers 3 and 1, the back-
ward sweep gives:

t1
6 ¼ 1,

t1
1 ¼ minf1� 38:07� 10; 874g ¼ 874,

t1
3 ¼ minf874� 3:00� 10; 588g ¼ 588,

t1
0 ¼ minf588� 39:35; 1g ¼ 548:65.

The forward sweep gives:

t1
0 ¼ 548:65,

t1
3 ¼ maxf548:65þ 39:35; 473g ¼ 588,

t1
1 ¼ maxf588þ 3:00þ 10; 591g ¼ 601,

t1
6 ¼ maxf601þ 38:07þ 10; 0g ¼ 649:07.

036

–82.46

0416

–2.92

0

0436

056

0316

026

016
–5.48

–5.48

–5.48
–5.48

–5.48

–5.48

–9.52

–2.92

–82.05

–82.05 –82.05

–20.02

–82.05

–82.46

–82.46

–9.52

–9.52
–82.82

–2.92

–2.92
–82.82

–82.82

–9.52
046

0256

END

–81.94
START

–1.00

–82.82

Fig. 1. Route graph.

760 N. Azi et al. / European Journal of Operational Research 178 (2007) 755–766
Thus, the minimum route duration is equal to
649.07 � 548.65 = 100.42. Since there is no waiting
time in this schedule, we have

d1 ¼minf548:65� 0;588� 473;601� 591;649:07� 0g
¼ 10:

Consequently, the time windows for departure and
arrival at the depot are ½t1

0; t
1
0� ¼ ½538:65; 548:65�

and ½t1
6; t

1
6� ¼ ½639:07; 649:07�, respectively. In Table

2, we show the time windows for all feasible routes
generated in Phase 1, plus the costs obtained by set-
ting a to 2maxi2N{max{d0i, di(n+1)}} + 1. With
these, we can construct the route graph illustrated
in Fig. 1 (where only one arc going out of the arti-
ficial start node and only one arc going into the arti-
ficial end node are shown, namely those that are
part of the shortest path). The elementary shortest
path obtained with FDGG is shown with a dotted
line. The workday of the vehicle is thus made of
route (0, 2,5,6) followed by routes (0, 4,6) and
(0,3,1,6).

4. Computational results

We have used the classical VRPTW instances of
Solomon [13] for this study. Those are 100-customer
Euclidean problems where distances and travel
times are the same. There are six different classes
of problems depending on the geographic location
of customers (R: random; C: clustered; RC: mixed)
and length of scheduling horizon (1: short horizon;
2: long horizon). In this study, problems of type 1
have been discarded because the short horizon does
not allow the vehicle to serve many routes during its
workday. We thus report results for problem classes
R2 (11 instances), C2 (8 instances) and RC2 (8
instances) only. All tests were run on a 900 MHz
Sun Ultra III with 8 GB of RAM.

Deadline constraints were added to Solomon’s
instances. Two different tmax values were tested for
each problem class to evaluate how this parameter
impact the algorithmic behavior. In the case of R2
and RC2, tmax was set to 75 and 90, while in the case
of C2, it was set to 220 and 240. Note that tmax

needs to be larger for class C2 because the service
time at each customer is 30, as opposed to 10 for
classes R2 and RC2. It should finally be noted that
parameter b for the route loading time in Eq. (12)
was set to 0.2 in all experiments.
4.1. Impact of dominance relation in phase 1

In this section, we first evaluate the impact of the
modified dominance relation when feasible routes
are generated with the elementary shortest path
algorithm with resource constraints. Basically, we
compare the number of routes produced with and
without the dominance relation. In the latter case,

N. Azi et al. / European Journal of Operational Research 178 (2007) 755–766 761
an exhaustive enumeration of all feasible routes is
obtained. Table 3 shows the average number of
routes obtained over all the experiments reported
in Subsection 4.2 on problem classes R2, RC2 and
C2, using tmax = 75, 75 and 220, respectively.

As we can see, by exploiting the dominance rela-
tion in the shortest path algorithm, the number of
feasible routes generated in Phase 1 is reduced by
approximately 20% (the routes that are eliminated
are feasible, but are of no interest, as they are dom-
Table 3
Number of routes generated in Phase 1

Problem
class

Without
dominance

With
dominance

Reduction in
percent (%)

R2 30695.8 21984.1 28.4
C2 2145.6 1732.3 19.3
RC2 4384.3 3450.5 21.3

Table 4
Results on class R2 with tmax = 75

Instance # Routes
Phase 1

Routes
Phase 2

Distance

R201.25 122 7 535.77
R201.50 550 10 599.12
R201.100 4279 12 589.54
R202.25 341 8 556.41
R202.50 2223 10 651.09
R202.100 32,495
R203.25 443 9 641.13
R203.50 3248
R203.100 62,685
R204.25 548 8 557.77
R204.50 4535
R204.100 87,542
R205.25 237 9 631.73
R205.50 1424 10 645.56
R205.100 16,399
R206.25 425 9 633.42
R206.50 3059 10 629.29
R206.100 50,575
R207.25 480 9 602.09
R207.50 3682
R207.100 73,008
R208.25 553 8 582.61
R208.50 4548
R208.100 93,918
R209.25 381 10 675.59
R209.50 2531 10 639.24
R209.100 42,731
R210.25 397 9 635.48
R210.50 3160
R210.100 51,537
R211.25 597 8 588.01
R211.50 5067
R211.100 124,008
inated by other routes). Clearly, this can only mar-
ginally impact the ‘‘combinatorial explosion’’
associated with increasing tmax values, but this is a
nice way to exploit the shortest path algorithm
already available to us. Note also that the number
of feasible routes is much smaller for classes C2
and RC2, when compared with class R2. This is
related to the presence of distant clusters in C2
and RC2 that prevent feasible routes to serve cus-
tomers in different clusters.
4.2. Results on Solomon’s instances

In Tables 4–9 the results obtained on Solomon’s
instances are reported. These results include smaller
instances obtained by taking only the first 25 or 50
customers. In these tables, a particular instance is
identified by its class, followed by its number (1–8,
Cust.
served

% Cust.
served

Cust.
per route

CPU time
(sec)

16 64 2.28 0
27 54 2.70 5
39 39 3.25 3579
22 88 2.75 9
32 32 3.20 7478

24 96 2.66 154

24 96 3.00 897

24 96 2.66 1
31 62 3.10 552

25 100 2.77 92
34 68 3.40 47,968

25 100 2.77 390

25 100 3.12 998

25 100 2.50 9
32 64 3.20 15,556

24 96 2.66 58

25 100 3.12 196

762 N. Azi et al. / European Journal of Operational Research 178 (2007) 755–766
or 1–11, depending on the class) and number of cus-
tomers. For example RC202.50 is the second
instance of class RC2, where only the first 50 cus-
tomers are considered. The other columns contain
the number of feasible routes generated in Phase 1
(#Routes Phase 1), number of routes in the vehicle
workday at the end of Phase 2 (#Routes Phase 2),
total distance traveled by the vehicle, number of
served customers, percentage of served customers,
average number of customers per route and CPU
time in seconds. When an entry is empty, the corre-
sponding instance could not be solved. In some
cases, we were able to generate feasible routes in
Phase 1, but the associated route graph was too
large to allow us to produce a solution.

We observed that the instances in class R2 are
particularly hard to solve, due to a large number
of feasible routes. In fact, only one solution was
Table 5
Results on class R2 with tmax = 90

Instance # Routes
Phase 1

Routes
Phase 2

Distance

R201.25 217 7 511.32
R201.50 1263 10 623.33
R201.100 13,729
R202.25 778 8 601.59
R202.50 6800
R202.100
R203.25 1097 8 598.1
R203.50 11,320
R203.100
R204.25 1435 6 506.55
R204.50 7209
R204.100
R205.25 527 8 608.01
R205.50 4003 9 644.24
R205.100
R206.25 1034 8 582.32
R206.50 10,491
R207.100
R207.25 1236 7 543.53
R207.50 13,539
R207.100
R208.25 1462 7 496.71
R208.50 17,930
R208.100
R209.25 902 8 648.57
R209.50 8245
R209.100 231,219
R210.25 986 7 521.17
R210.50 11,144
R210.100
R211.25 1649 8 526.71
R211.50 8123
R211.100
obtained on a 100-customer instance with tmax = 75
and none with tmax = 90. In the case of class RC2, 3
instances out of 8 with 100 customers were solved to
optimality with tmax = 75, but only one with
tmax = 90. In the case of class C2, 6 and 5 instances
out of 8 were solved to optimality with tmax = 220
and 240, respectively. By increasing the value of
tmax, solutions with fewer routes, more customers
per route and a larger number of served customers
are obtained. However, the number of feasible
routes increases sharply, thus leading to substantial
increases in computational requirements. Overall,
the CPU times vary widely and range from only a
few seconds to about one day, depending on prob-
lem size, problem class and tmax value.

It should be noted that, on the 100-customer
instances, approximately 30% of the customers are
served. This percentage increases to about 50–60%
Cust.
served

% Cust.
served

Cust.
per route

CPU time
(sec)

20 80 2.85 1
28 56 2.80 37

23 92 2.87 63

24 96 3.00 855

24 96 4.00 4258

24 96 3.00 9
33 66 3.66 7749

25 100 3.12 723

25 100 3.57 2898

25 100 3.57 6488

25 100 3.12 76

23 92 3.28 325

25 100 3.12 2015

Table 6
Results on class RC2 with tmax = 75

Instance # Routes
Phase 1

Routes
Phase 2

Distance # Cust.
served

% Cust.
served

Cust. per
route

CPU time
(sec)

RC201.25 74 9 707.01 17 68 1.88 0
RC201.50 174 8 660.68 21 42 2.62 0
RC201.100 1562 12 620.35 31 31 2.58 139
RC202.25 167 8 654.75 20 80 2.50 1
RC202.50 395 8 689.55 25 50 3.12 15
RC202.100 5210
RC203.25 252 8 673.2 23 92 2.87 9
RC203.50 587 8 668.27 27 54 3.37 708
RC203.100 9877
RC204.25 319 8 673.93 24 96 3.00 40
RC204.50 865 8 653.95 29 58 3.62 7800
RC204.100 9141
RC205.25 147 9 724.59 20 80 2.22 0
RC205.50 353 8 681.89 24 48 3.00 3
RC205.100 4037 11 591.77 34 34 3.09 13,511
RC206.25 138 7 610.81 21 84 3.00 0
RC206.50 334 8 664.86 25 50 3.12 3
RC206.100 4967 10 589.3 35 35 3.50 24,797
RC207.25 257 7 593.99 21 84 3.00 2
RC207.50 679 8 655.43 26 52 3.25 209
RC207.100 11,016
RC208.25 384 8 678.09 24 96 3.00 56
RC208.50 995 8 658.28 28 56 3.50 3072
RC208.100 10,640

Table 7
Results on class RC2 with tmax = 90

Instance # Routes
Phase 1

Routes
Phase 2

Distance # Cust.
served

% Cust.
served

Cust.
per route

CPU time
(sec)

RC201.25 132 7 659.15 18 72 2.57 0
RC201.50 312 7 610.17 22 44 3.14 0
RC201.100 4457 9 623.52 33 33 3.66 2389
RC202.25 323 6 540.1 20 80 3.33 4
RC202.50 911 7 626.36 28 56 4 112
RC202.100 20,000
RC203.25 493 7 604.73 23 92 3.28 69
RG203.50 1412 7 623.56 31 62 4.42 4112
RC203.100 45,811
RC204.25 708 7 645.19 25 100 3.57 282
RC204.50 2399 7 608.42 34 68 4.85 93,070
RC204.100 89,808
RC205.25 264 7 588.13 20 80 2.85 1
RC205.50 753 7 644.81 26 52 3.71 23
RC205.100 15,161
RC206.25 259 6 599.07 22 88 3.14 1
RC206.50 727 7 605.19 27 54 3.85 21
RC206.100 18,989
RC207.25 560 6 535.31 22 88 3.66 14
RC207.50 1793 7 595.21 28 56 4 2114
RC207.100 53,233
RC208.25 953 7 613.02 25 100 3.57 498
RG208.50 3110 7 617.92 31 62 4.42 47,057
RC208.100 115,098

N. Azi et al. / European Journal of Operational Research 178 (2007) 755–766 763

Table 8
Results on class C2 with tmax = 220

Instance # Routes
Phase 1

Routes
Phase 2

Distance # Cust.
served

% Cust.
served

Cust.
per route

CPU time
(sec)

C201.25 102 10 573.48 22 88 2.20 0
C201.50 340 11 581.56 28 56 2.54 0
C201.100 1204 12 548.1 31 31 2.58 23
C202.25 287 10 616.49 24 96 2.40 4
C202.50 1024 11 573.21 30 60 2.72 539
C202.100 3557 11 500.5 31 31 2.81 33,375
C203.25 410 10 647.93 25 100 2.50 133
C203.50 1668 11 596.25 31 62 2.81 66,527
C203.100 5701
C204.25 525 10 628.22 25 100 2.50 657
C204.50 2129
C204.100 7319
C205.25 140 10 584.47 24 96 2.40 0
C205.50 548 12 603.03 30 60 2.50 3
C205.100 2047 11 502.38 31 31 2.81 221
C206.25 166 11 648.92 25 100 2.27 0
C206.50 718 11 569.9 30 60 2.72 17
C206.100 2641 11 507.76 32 32 2.90 920
C207.25 282 10 607.29 25 100 2.50 6
C207.50 1066 11 591.45 31 62 2.81 360
C207.100 3078 11 495.47 32 32 2.90 3294
C208.25 210 10 613.2 25 100 2.50 1
C208.50 882 11 566.98 31 62 2.81 54
C208.100 3244 11 488.67 32 32 2.90 3002

Table 9
Results on class C2 with tmax = 240

Instance # Routes
Phase 1

Routes
Phase 2

Distance # Cust.
served

% Cust.
served

Cust.
per route

CPU time
(sec)

C201.25 139 9 515.67 23 92 2.55 0
C201.50 505 10 582.14 29 58 2.90 2
C201.100 1804 11 538.84 31 31 2.81 67
C202.25 634 9 574.14 25 100 2.77 21
C202.50 2461 11 548.39 30 60 2.72 4606
C202.100 9064
C203.25 1288 9 533.87 25 100 2.77 1159
C203.50 5171
C203.100
C204.25 1661 9 535.22 25 100 2.77 5687
C204.50 7405
C204.100
C205.25 269 9 538.87 25 100 2.77 0
C205.50 965 10 558.24 30 60 3.00 19
C205.100 3575 11 502.15 31 31 2.81 1025
C206.25 334 9 536.09 25 100 2.77 1
C206.50 1428 11 582.58 31 62 2.81 107
C206.100 5182 11 507.76 32 32 2.90 7774
C207.25 639 9 529.77 25 100 2.77 30
C207.50 2518 11 561.71 31 62 2.81 3800
C207.100 6421 11 495.47 32 32 2.90 21,084
C208.25 416 9 527.84 25 100 2.77 2
C208.50 1847 11 553.63 31 62 2.81 370
C208.100 6881 11 488.67 32 32 2.90 26,461

764 N. Azi et al. / European Journal of Operational Research 178 (2007) 755–766

Table 10
Results on class RC2 for individual routes

Instance # Routes
Phase 1

Routes
Phase 2

Distance # Cust.
served

% Cust.
served

Cust.
per route

CPU time
(sec)

rc201.21 241 6 475.25 19 90 3.16 0
rc201.27 384 7 626.14 22 82 3.14 0
rc201.26 225 8 728.52 23 88 2.87 1
rc201.26 464 6 468.81 22 84 3.66 1
rc202.38 2296 8 661.3 28 73 3.50 3151
rc202.30 873 7 591.42 25 83 3.57 43
rc202.32 1738 9 633.83 28 87 3.11 790
rc203.27 1908 7 522.76 25 92 3.57 831
rc203.29 4618 9 667.31 28 96 3.11 43,729
rc205.29 1269 8 541.54 26 89 3.25 118
rc205.22 348 7 646.45 20 90 2.85 1
rc205.28 751 8 680.06 24 85 3.00 22
rc205.21 886 6 444.7 20 95 3.33 12
rc206.32 2409 8 604.25 27 84 3.37 359
rc206.35 1820 8 652.39 27 77 3.37 297
rc206.33 1821 8 619.66 29 87 3.62 217
rc207.27 1869 7 590.36 26 96 3.71 939
rc207.35 5519 8 572.44 30 85 3.75 44,356
rc207.38 2610 7 656.41 28 73 4.00 2441

N. Azi et al. / European Journal of Operational Research 178 (2007) 755–766 765
on the 50-customer instances and to 70–100% on the
smallest instances with 25 customers. The small per-
centages observed in the case of the 100-customer
instances is not a surprise, given that the latter have
been designed for multiple vehicles. That is, when we
consider a relatively short time period within the
scheduling horizon and gather all customers with a
time window that falls into that period, there are
clearly too many for a single vehicle to serve them
all (while this could be possible with many vehicles).
4.3. Results on individual routes

In this subsection, we consider instances created
from individual routes in the best known solutions
for class RC2 (as reported in [1,4,12]). That is, our
algorithm was applied only to the subset of custom-
ers associated with a particular route. As a feasible
route in a VRPTW solution is made of customers
with time windows that are well distributed over
the time horizon, we expect our algorithm to include
a large fraction of these customers in the vehicle
workday. Overall, the new created instances contain
between 21 and 38 customers.

Results obtained with tmax = 90 are shown in
Table 10. In this table, an identifier like RC201.21
is the instance created with the 21 customers taken
from one of the routes in the best know solution
for RC201. As we can see, the number of customers
per route has increased, when compared with the 25-
customer instances in Table 7. Also, the percentages
of served customers on instances with 30 customers
or less are better than those of the 25-customer
instances in Table 7. In fact, we could not expect
much better, given the additional deadline constraint
that forces the vehicle to travel back to the depot and
reload, thus leading to a waste of time.
5. Conclusion

This paper has described an exact algorithm for
solving a routing problem where a vehicle performs
several routes over the scheduling horizon. The
results indicate that this algorithm is very sensitive
to the deadline constraint. When this constraint is
not tight enough, the number of feasible routes
‘‘explodes’’ and becomes too large to allow the algo-
rithm to produce a solution. Future developments
will now be aimed at considering problems that
are closer to real-world applications. First, a fleet
of many vehicles will be considered. Then, a
dynamic version of the problem will be tackled,
where new incoming customer requests have to be
integrated in real time into the current solution.
Acknowledgements

Financial support for this work was provided by
the Canadian Natural Sciences and Engineering Re-
search Council (NSERC) and by the Quebec Fonds

766 N. Azi et al. / European Journal of Operational Research 178 (2007) 755–766
pour la Formation de Chercheurs et l’Aide à la
Recherche (FCAR). This support is gratefully
acknowledged.

References

[1] R. Bent, P. van Hentenryck, A two-stage hybrid local search
for the vehicle routing problem with time windows, Trans-
portation Science 38 (2004) 515–530.

[2] A.M. Campbell, M. Savelsbergh, Decision support for
consumer direct grocery initiatives, Transportation Science
39 (2005) 313–327.

[3] A.M. Campbell, M. Savelsbergh, Efficient insertion heuris-
tics for vehicle routing and scheduling problems, Transpor-
tation Science 38 (2004) 369–378.

[4] Z.J. Czech, P. Czarnas, A parallel simulated annealing for
the vehicle routing problem with time windows, in: Proceed-
ings of the 10th Euromicro Workshop on Parallel, Distrib-
uted and Network-Based Processing, Canary Islands, Spain,
2002, pp. 376–383.

[5] J. Desrosiers, Y. Dumas, M.M. Solomon, F. Soumis, Time
constrained routing and scheduling, in: M.O. Ball, T.L.
Magnanti, C.L. Monma, G.L. Nemhauser (Eds.), Network
Routing, North Holland, 1995, pp. 35–139.

[6] D. Feillet, P. Dejax, M. Gendreau, C. Gueguen, An exact
algorithm for the elementary shortest path problem with
resource constraints: Application to some vehicle routing
problems, Networks 44 (2004) 216–229.
[7] B. Fleischmann, The vehicle routing problem with multiple
use of vehicles, Working Paper, Fachbereich Wirtschafts-
wissenschaften, Universität Hamburg, Germany, 1990.

[8] H.K. Kilpala, The impact of electronic commerce on
transport & logistics in the retail grocery industry, M.Sc.
Thesis, University of Oulu, Finland, 1999.

[9] I.L. Lin, H.S. Mahmassani, Can online grocers deliver?
Some logistics considerations, Transportation Research
Record 1817 (2002) 17–24.

[10] M. Punakivi, J. Saranen, Identifying the success factors in e-
grocery home delivery, International Journal of Retail and
Distribution Management 29 (2001) 156–163.

[11] M. Punakivi, Comparing alternative home delivery models
for e-grocery business, Doctoral Dissertation, Department of
Industrial Engineering and Management, Helsinki Univer-
sity of Technology, Finland, 2003.

[12] L.-M. Rousseau, M. Gendreau, G. Pesant, Using constraint-
based operators to solve the vehicle routing problem with
time windows, Journal of Heuristics 8 (2002) 43–58.

[13] M.M. Solomon, Algorithms for the vehicle routing and
scheduling problem with time window constraints, Opera-
tions Research 35 (1987) 254–265.

[14] É.D. Taillard, G. Laporte, M. Gendreau, Vehicle routing
with multiple use of vehicles, Journal of the Operational
Research Society 47 (1996) 1065–1070.

[15] H. Yrjölä, Physical distribution considerations for electronic
grocery shopping, International Journal of Physical Distri-
bution and Logistics Management 31 (2001) 746–761.

	An exact algorithm for a single-vehicle routing problem with time windows and multiple routes
	Introduction
	Problem formulation
	Problem-solving approach
	An elementary shortest path algorithm with resource constraints
	Phase 1
	Phase 2
	Latest departure and arrival times
	Earliest departure and arrival times

	An example

	Computational results
	Impact of dominance relation in phase 1
	Results on Solomon rsquo s instances
	Results on individual routes

	Conclusion
	Acknowledgements
	References

