
Journal of Heuristics, 6: 253–267 (2000)
c© 2000 Kluwer Academic Publishers

Tabu Search for a Network Loading Problem
with Multiple Facilities

DAVID BERGER
Centre Universitaire des Sciences et Techniques, Université Blaise Pascal, B.P. 206, 63174 Aubière Cedex, France
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Abstract

This paper examines a network design problem that arises in the telecommunications industry. In this problem,
communication between a gateway vertex and a number of demand vertices is achieved through a network of fiber
optic cables. Since each cable has an associated capacity (bandwidth), enough capacity must be installed on the
links of the network to satisfy the demand, using possibly different types of cables. Starting with a network with
no capacity or some capacity already installed, a tabu search heuristic is designed to find a solution that minimizes
the cost of installing any additional capacity on the network. This tabu search applies ak-shortest path algorithm
to find alternative paths from the gateway to the demand vertices. Numerical results are presented on different
types of networks with up to 200 vertices and 100 demand vertices.
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1. Introduction

Network design problems are pervasive in the real-world and find applications in computer
networks, transportation, manufacturing and telecommunications. The early literature in
this area has mostly focused on uncapacitated problems (Balakrishnan, Magnanti, and
Wong, 1989; Magnanti and Wong, 1984; Minoux, 1989). More recently, several authors
have tackled capacitated network design problems, with either a single or a very limi-
ted number of capacity options on each link (Balakrishnan, Magnanti, and Mirchandani,
1998; Barahona, 1996; Bienstock and G¨unlük, 1996; Crainic, Frangioni, and Gendron,
1998; Crainic, Gendreau, and Farvolden, 1996; Gavish and Neuman, 1989; Gavish and
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Altinkemer, 1990; Gendron, Crainic, and Frangioni, 1998; Gendron and Crainic, 1996;
Holmberg and Yuan, 1996; Magnanti and Mirchandani, 1993; Magnanti, Mirchandani,
and Vachani, 1993; Magnanti, Mirchandani, and Vachani, 1995; Ng and Hoang, 1987).
The capacitated problems are more difficult to solve and raise considerable algorithmic
challenges. Heuristic methods are thus particularly indicated to address instances of realistic
sizes.

This paper introduces a tabu search heuristic for a variant of the network loading problem
(Magnanti, Mirchandani, and Vachani, 1995) where facilities of fixed capacity can be
installed on the links of the network to carry the flow from a central vertex to a set of
demand vertices. No bifurcation of the flow is allowed: a single path must be used to
satisfy the demand at each vertex. The motivation for this study comes from an application
in the telecommunications area, where the central vertex is a gateway (or backbone vertex),
the demand vertices are customer sites and the facilities to be installed or loaded are fiber
optic cables. Since several types of cables are available, each with a corresponding capacity,
the problem is to determine the number and type of cables that should be installed on each
link of the network to satisfy the demand at minimum cost. The objective function to be
minimized is simply the cost of loading the network through the acquisition and installation
of cables, as no routing costs are present. The cost of a cable increases with its capacity
with, typically, substantial economies of scale.

The bifurcated version of the network loading problem has been studied in Bienstock and
Günlük (1996), Magnanti, Mirchandani, and Vachani (1995). The problem in Magnanti,
Mirchandani, and Vachani (1995) relates to the design of a private communication network
where only two types of facilities are offered. A Lagrangean relaxation strategy and a
cutting plane approach are developed for this particular case. A branch-and-cut algorithm
for a similar problem is also reported in Bienstock and G¨unlük, (1996). Due to the exact
methodologies adopted in these two papers, solutions have been found for relatively small
problem instances with at most 15 vertices.

The nonbifurcated version of the problem has been studied in Barahona (1996) for a
single type of facility. Here, subsets of vertices are aggregated into “supervertices” in order
to reduce the problem size. Once an exact solution is found for the aggregated network, a
heuristic solution for the original network is derived. Although solutions to problems with
up to 64 vertices have been obtained, the aggregated networks never contained more than
15 vertices. Other related problems, where both loading and routing costs are minimized
simultaneously, may also be found in Gavish and Neuman (1989), Gavish and Altinkemer
(1990) and Ng and Hoang (1987).

In the following, Section 2 first presents a formal definition of our problem. The tabu
search heuristic that addresses this problem is described in Section 3. Ak-shortest path
algorithm, used to generate the neighborhood structure of the tabu search, is then pre-
sented in Section 4. Finally, computational results are reported in Section 5 on typical
telecommunications data.

2. Problem definition

Let G = (V, E) be an undirected graph whereV is the vertex set of cardinalityn, E is the
edge set of cardinalitym andD ⊆ V is the subset of demand vertices of cardinalityr . The
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path-based formulation of our network loading problem is then:

Minimize
∑
e∈E

le

(∑
t∈T

ct yte

)

subject to
∑
i∈D

(∑
j∈Pi

xi j δej

)
di ≤ we+

∑
t∈T

wt yte, ∀e∈ E, (1)

∑
j∈Pi

xi j = 1, ∀i ∈ D, (2)

xi j ∈ {0, 1}, ∀i ∈ D, ∀ j ∈ Pi , (3)

yte integer, ∀t ∈ T, ∀e∈ E, (4)

whereT is the set of cable types,Pi is the set of paths from the central vertex to demand
vertexi , di is the demand at vertexi , ct is the cost of a cable of typet (per unit of length),
wt is the capacity of a cable of typet , le is the length of edgee,we is the initial capacity on
edgee, δej is equal to 1 if edgee is on pathj , 0 otherwise.

This formulation contains two sets of variables: the variablesxi j which are equal to 1 if
path j ∈ Pi is used to service demand vertexi , 0 otherwise; and the design variablesyte

which are equal to the number of cables of typet to be installed on edgee. In the model, the
first set of constraints specifies that the capacity installed on the network must be sufficient
to handle the flow on each edge. The second set of constraints requires nonbifurcating
flows, that is, the use of a single path from the central vertex to each demand vertex. The
objective is to minimize the acquisition and installation costs of any additional capacity on
the edges of the network to satisfy the demand at each vertex (in case of a tie between two
or more alternative solutions, the one that minimizes the number of edges carrying the flow
is chosen).

This problem is NP-hard, as it contains the fixed charge network design problem (and
thus, the Steiner tree problem) as a special case. It thus provides opportunities for the
application of heuristic methods. In the next section, a tabu search heuristic is proposed to
address this problem.

3. Solution procedure

In recent years, tabu search (TS) has been applied with a high degree of success to a variety of
NP-hard problems (Glover, 1997). It is basically an iterative neighborhood search strategy
that allows moves that degrade the objective function. Through such moves, the method can
escape from bad local optima (as opposed to a pure descent approach). To avoid cycling, a
short term memory, known as the tabu list, stores previously visited solutions or components
of previously visited solutions. It is then forbidden or tabu to come back to these solutions
for a certain number of iterations. Our tabu search heuristic follows the general guidelines
provided in Glover (1989, 1990). It also includes a long term adaptive memory (AM) aimed
at providing new starting points for the search (Rochat and Taillard, 1995).
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We first briefly sketch the general algorithmic structure of our tabu search heuristic. Each
component is then presented in greater detail in the following subsections.

1. whilestopping criterion of AM loopis not met do:

a. if the adaptive memory is empty (at the start of the algorithm) then generate initial
solutions through heuristic means;

sbest= s;

otherwise

generates by combining paths found in the adaptive memory;

b. s∗ = s;
c. whilestopping criterion of TS loopis not met do:

generate a neighborhood ofs through non tabu moves, or tabu moves that lead to
solutions that improves∗, and select the best solutions′;
stores′ in the adaptive memory, if indicated (see Subsection 3.2);
if s′ is better thans∗ thens∗ = s′;
s= s′;

d. if s∗ is better thansbest thensbest= s∗;

2. outputsbest

In this algorithm, the variabless∗ andsbest are used to store the best solution of the
current tabu search restart and best overall solution, respectively.

3.1. Initialization

At the outset, an initial solution is produced by individually computing the path of minimum
cost from the central vertex to each demand vertex. These paths are then combined to provide
a starting point for the tabu search. Although each path is by itself the best way to reach the
associated demand vertex, the initial solution is not globally optimal, because these paths
typically share common edges. In the remainder of the algorithm, the adaptive memory is
used to produce the starting solutions, as it is explained below.

3.2. Adaptive memory

The adaptive memory stores the paths associated with elite solutions in order to create good
starting points for the tabu search. This memory is divided intor fixed size “compartments”,
one for each demand vertex. A given compartment contains paths leading from the central
vertex to the associated demand vertex. A path has a score which corresponds to the objective
value of the best visited solution that used that path. The memory is managed as follows.

When a new current solutions is produced by the tabu search, the paths in this solution
are stored in their associated compartment if: (1) the compartment is not full or (2) the path
is better than the worst path in the compartment, in which case the new path takes its place.
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When a new starting solution is asked for by the tabu search, a path is selected from
each compartment (i.e., a path leading to each demand vertex is chosen). The selection
in each compartment is biased towards the paths with the best scores. To this end, the
paths are ranked from best to worst in each compartment. The path with the best score is
associated with someMaxvalue, while the path with the worst score is associated with some
Min value. The values for the other paths are equally spaced betweenMin andMax. More
precisely, assumingd paths in a compartment (withd > 1), the valuevi of a path of ranki
is computed according to the formula:

vi = Max− (Max−Min)× i − 1

d − 1
, 1≤ i ≤ d.

The selection probabilitypi of the path of ranki is then:

pi = vi∑d
j=1 v j

, 1≤ i ≤ d.

By imposing thatMin + Max = 2, the selection bias in favor of the best paths can be
increased by setting theMaxvalue closer to 2, or reduced by setting its value closer to 1. To
obtain a good compromise between exploitation of elite solutions and exploration of new
solutions, the valuesMin = 0.5 andMax= 1.5 are typically used (Baker, 1985; Whitley,
1989). Once the selection process is completed in each compartment, the selected paths are
simply put together to form the new starting solution. This strategy for creating solutions is
an instance of what is often referred to as “vocabulary building”: fragments of solutions are
assembled to create larger fragments, until ultimately producing complete solutions (see
chapter 7 in Glover and Laguna (1997)).

3.3. Neighborhood

The neighborhood structure is the most important issue in the development of a tabu search
heuristic. Here, a neighborhood of solutions is constructed by considering, for each demand
vertex, the best alternative path to reach that vertex, using thek-shortest path algorithm
presented in Section 4 withk = 2. Forr demand vertices,r new solutions can be produced,
where each solution differs from the original one by a single path. The cost of each alternative
path is computedusing the flow already present on the paths to the other r− 1 demand
vertices in the current solution. This can be done, as a single path is involved and the costs
incurred for any additional capacity are easily computed (see Subsection 5.1). By ajusting
the needed capacity to the flow, the solutions considered are always feasible.

Once the best solution in the neighborhood is chosen, the associated demand vertex is
“tabu” for a number of iterations randomly chosen in the interval [tabumin, tabumax]. That
is, the path leading to that vertex cannot be changed for that number of iterations. By
associating a tabu status to the vertices, rather than to the paths themselves, a conservative
approach is favored as many moves may be forbidden (and thus, many new solutions may
be overlooked) to reduce the risks of cycling. However, a tabu move may still be applied if
it leads to a solution that is better than the best solution visited thus far.
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3.4. Stopping criteria

At the upper level (AM loop) of the algorithm, the number of tabu search restarts from the
adaptive memoryrst is set to some a priori value. Within the tabu search (TS loop), the
followings are used: maximum number of consecutive iterationsiter∗ without improving
s∗ or maximum number of iterations per restartitermax.

In the next section, thek-shortest path algorithm used to generate the neighborhood
structure of the tabu search heuristic is presented.

4. k-shortest paths

At each iteration of the tabu search heuristic, the best alternative path leading to each demand
vertex must be computed. Ak-shortest path algorithm is used to this end (where “shortest”
refers to the path of minimum cost). Many methods for identifying thek shortest paths
are extensions of algorithms developed for the classical 1-shortest path problem (Ahuja,
Magnanti, and Orlin, 1993). The latter algorithms may be classified as label-setting or
label-correcting methods. In both cases, a label is associated with each vertex: this label
corresponds to an upper bound on the shortest distance to reach that vertex. In label-setting
methods, a vertex label is made permanent at each iteration of the algorithm, when a shortest
path to that vertex has been found. In label-correcting methods, the labels are temporary
until the final step, when they all become permanent. In this work, an adaptation of Dijkstra’s
label-setting algorithm (Dijkstra, 1959) is used to solve thek-shortest path problem. This
algorithm is indicated when (1) the edges of the network have non negative costs and (2)
the shortest paths from a central vertex to all other vertices must be computed. Furthermore,
networks found in telecommunications applications are sparse and label setting algorithms
are particularly efficient in this case (Shier, 1979).

In this adaptation, the scalar label associated with every vertexi is replaced by a vector
5i of sizek whosepth elementπ p

i is an upper bound on the length of thep-th shortest
path to vertexi (i.e., the labels are sorted in nondecreasing order) (Miaou and Chin, 1991).
Two pointers are also associated with every vertexi : pointer pi indicates the position of
the first temporary label in the vector5i andqi indicates the position of the last label with
finite value. When positionk is reached bypi , this pointer becomesk+1 whileqi remains
k. The status of each vertex is then determined as follows:

1. if pi = k + 1, the labels of vertexi are all permanently set, that is, itsk shortest paths
have been found;

2. if pi ≤ k and pi > qi , then vertexi has no finite temporary labels;
3. if pi ≤ k andqi ≥ pi , then vertexi has finite temporary labels from positionpi to qi in
5i .

The algorithm also maintains a priority queueQ that contains candidate vertices with a
finite minimum temporary label. The next permanent label is always chosen among them.

Assuming thatk shortest paths are to be found from a central vertex 0 to each vertex in
a graphG = (V, E), and denotingl i j the length of edge(i, j ) andSi the set of vertices
adjacent to vertexi , the algorithm can be summarized as follows:
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0. Initialization

50 = (0,∞,∞, . . . ,∞);
5i = (∞,∞,∞, . . . ,∞), ∀i ∈ V ;
pi = 1, ∀i ∈ V;q0 = 1;qi = 0, ∀i ∈ V − {0};
Q = {0};

1. Main procedure

a. find j such thatπ
pj

j = min{π pq
q ,q ∈ Q};

b. ∀ j ′ ∈ Sj such thatpj ′ ≤ k do

U = π pj

j + l j j ′ ;
if pj ′ > qj ′ then

π
pj ′
j ′ = U ; qj ′ = qj ′ + 1; insert j ′ into Q;

otherwise
p̂ = min{qj ′ + 1, k};
for p = pj to p̂ do

if U < π
p
j ′ then

if p < p̂ then push elements one position down in5 j ′ from p to p̂;
π

p
j ′ = U ;

if qj ′ < k thenqj ′ = qj ′ + 1;
exit the for loop;

c. pj = pj + 1;
d. if qj < pj then removej from Q;
e. if Q 6= ∅ then go to step a, otherwise stop.

Thek-shortest paths obtained with this algorithm may contain cycles (e.g., in our context,
it may well happen that the best alternative path to a demand vertex is the current one plus
a small cycle). Clearly, loopless paths are looked for. One way to deal with this problem
is to generate a reasonably large set of paths among which the desired, loopless, paths may
be found. Apart from the fact that “reasonably large” may be difficult to quantify and may
vary from one problem to another, this approach is too computationally expensive because
it is used at each iteration of our tabu search heuristic. Hence, the algorithm has been
modified in a simple way to forbid paths with cycles: once the minimum temporary label
π

pj

j is chosen in Step a, any vertexj ′ that is adjacent toj , but is already found on the path,
is excluded from further consideration in Step b. Clearly, this approach always produces
loopless paths. However, it does not necessarily produce the shortest ones, as some paths
may be overlooked. This modified version thus constitutes a heuristic approach to thek
shortest simple path problem.

5. Computational results

In order to evaluate our tabu search, we performed computational experiments on randomly
generated networks with characteristics frequently observed in practice. We first introduce
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the cost data and network topologies used for the experiments. Then, we present numerical
results obtained with the tabu search and two other neighborhood search heuristics.

5.1. Cost data

The acquisition and installation costs for different types of fiber optic cables come from a
real-world application. Since these costs are confidential, they are shown in generic form
in Table 1. As observed in this table, it is not always optimal to use the smallest single
cable that can accommodate the flow. For a flow of 100, for example, it is better to use
cables 7 and 1 with a total capacity of 102 and a total cost of 3.58, rather than cable 8 with
capacity 144 and a cost of 4.37. This additional complication can be alleviated through the
following observations:

• except for cable 9, it is never advantageous to use the same cable twice (for example,
installing cable 1 twice provides 12 fibers, while the same capacity is obtained at lower
cost using cable 2);
• cable 9 is mandatory for flows of 216 or more, as it is less expensive than any other

combination of smaller cables.

The special structure of these costs, typically found in practice, can thus be exploited to
a priori determine the cables to be installed for any flow between 0 and

∑r
i=1 di :

• for flows over 216, cable 9 is installed until a residual flow under 216 is obtained;
• for flows between 1 and 215, all possible combinations ofdifferentcables are considered

(except cable 9), and the combination of lowest cost is kept.

This preprocessing is done only once at the start of the algorithm. The results are then
used to associate the appropriate combination of cables with the required additional capacity.

Table 1. Cable types.

Cable type Capacity (number of fibers) Cost (per unit of length)

1 6 0.55

2 12 0.73

3 24 1.03

4 36 1.39

5 48 1.67

6 72 2.31

7 96 3.03

8 144 4.37

9 216 6.33
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5.2. Test problems

General undirected networks withn = 50, 100 and 200 vertices were randomly generated
to test our algorithms. These networks are sparse and quasi-planar, like those found in
practice, with edge densities (i.e., fraction of all possible edges) varying between .1 and .2.
More precisely, three different types of problems were considered in the computational
experiments, namely:

• networks with 50 vertices, 25 demand vertices and edge density of 0.2;
• networks with 100 vertices, 50 demand vertices and edge density of 0.15;
• networks with 200 vertices, 100 demand vertices and edge density of 0.1;

A demand is thus associated with 50% of the vertices. The demand vertices fall into
three categories: category 1 with 1 to 20 units of demand; category 2 with 40 to 60 units;
category 3 with 80 to 100 units. The demand vertices are evenly distributed among the
three categories. The problems come either with no equipment at all or some equipment
already installed. In the latter case, the total capacity of the network, which is the sum
of the capacities over all links of the network, is twice the total demand. This capac-
ity is then uniformly distributed over all links, with a random perturbation on each link
(i.e. ±0–20%).

5.3. Parameter settings

Preliminary experiments have been conducted to determine appropriate parameter values
for the tabu search heuristic. Extensive computations have been performed, in particular,
to fine tune the adaptive memory size, tabu tenure and stopping criterion. The values tested
in each case, are summarized below:

• adaptive memory:r compartments, each of size

– M1 = d
√

n
2e

– M2 = d
√

ne
– M3 = d2

√
ne

– M4 = d4√ne
• tabu tenure(tabumin, tabumax):

– T1 = (d0.25
√

ne, d0.5√ne)
– T2 = (d0.5

√
ne, d√ne)

– T3 = (d
√

ne, d1.5√ne)
– T4 = (d1.5√ne, d2√ne)
• stopping criterion (rst, iter∗, itermax):

– I1 = (1, 5n, 50n)
– I2 = (5, n, 10n)
– I3 = (10, dn/2e, 5n)
– I4 = (20, dn/4e, 2.5n)
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Table 2. Parameter calibration on problems with 200 vertices; no initial capacity.

Initial
solution M2, T2, I2 M2, T2, I3 M2, T3, I2 M2, T3, I3 M3, T2, I2 M3, T2, I3 M3, T3, I2 M3, T3, I3

12065.9 11418.6 11412.9 11414.0 11406.5 11417.3 11412.4 11415.8 11406.2

Table 3. Parameter calibration on problems with 200 vertices; with initial capacity.

Initial
solution M2, T2, I2 M2, T2, I3 M2, T3, I2 M2, T3, I3 M3, T2, I2 M3, T2, I3 M3, T3, I2 M3, T3, I3

11160.6 10658.3 10648.5 10653.7 10649.9 10658.9 10644.4 10649.1 10646.6

Table 4. Parameter calibration on problems with 200 vertices; no initial capacity.

Initial
solution M1, T1, I1 M1, T1, I4 M1, T4, I1 M1, T4, I4 M4, T1, I1 M4, T1, I4 M4, T4, I1 M4, T4, I4

12065.9 11457.9 11419.1 11433.9 11427.8 11457.7 11418.6 11432.7 11421.7

Table 5. Parameter calibration on problems with 200 vertices; with initial capacity.

Initial
solution M1, T1, I1 M1, T1, I4 M1, T4, I1 M1, T4, I4 M4, T1, I1 M4, T1, I4 M4, T4, I1 M4, T4, I4

11160.6 10685.0 10665.5 10668.8 10662.2 10686.2 10660.7 10662.1 10666.7

This leads to 64 different combination of values. We show here the results for only a few
selected combinations on the largest problems with 200 vertices. Tables 2 and 3 first show
the average solution value obtained with the “intermediate” valuesM2, M3, T2, T3, I2 andI3

on ten different problem instances (with and without initial capacity). These results indicate
that there is not much difference in solution quality from one setting to another. However,
slightly better solutions are obtained when more tabu search restarts are performed (c.f.,I3

versusI2).
When the “extreme” parameter valuesM1, M4, T1, T4, I1 andI4 are used, solution quality

deteriorates. This is illustrated in Tables 4 and 5. When intermediate values are combined
with extreme values, an improvement is obtained in a few cases, but solution quality never
reaches the numbers found in Tables 2 and 3.

The parameter settingM3, T3, I3 came out as one of the best in our calibration experiments
and was used in the following. Note also that the number of pathsk is always set to 2,
because we only need to find the best path, other than the one currently in use, that leads to
any given vertex.

5.4. Two alternative heuristics

Given that lower bounds for the network loading problem are not tight enough to provide
insights about the performance of our tabu search heuristic, comparisons are provided in
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the following with the 1-opt and 2-opt neighborhood search heuristics (Raghavan, 1995),
which both stop at the first local minimum. Using a pool of shortest paths (leading from
the central vertex to each demand vertex) these heuristics look for the best combination of
such paths. In contrast with the adaptive memory of the tabu search heuristic, the pool is
fixed and is not enriched with new paths as these algorithms unfold. The neighborhood
structure of the 1-opt heuristic is similar to the one used by tabu search. That is, a path
leading to a particular vertex in the current solution is replaced by an alternative path found
in the pool. The size of the neighborhood is thusO(rk), wherer is the number of demand
vertices andk is the number of paths associated with each demand vertex in the pool. The
2-opt heuristic explores a larger neighborhood: for each pair of paths leading to demand
vertices in the current solution, a new pair of paths is looked for in the pool. The complexity
of this neighborhood isO(k2r 2) and includes 1-opt as a special case, when one of the two
paths remains in place. To compare 1-opt and 2-opt with tabu search, the pool of paths was
produced with thek-shortest path algorithm presented in Section 4, usingk = d2√ne (i.e.,
the size of a compartment in the adaptive memory). Both methods also start with the same
initial solution as the tabu search, which consists in the best individual path leading to each
demand vertex. At each iteration, these methods select the best solution in the neighborhood
of the current solution; the procedure is then repeated with the new solution until a local
minimum is reached.

5.5. Experiments

This subsection compares the tabu search with the 1-opt and 2-opt heuristics. Tables 6 and 7
compare these methods on problems with 50, 100 and 200 vertices, with and without initial
capacity, respectively. The numbers found in each entry associated with “Tabu”, “1-opt”
and “2-opt” are average solution value and average computation time in seconds on a Sun
UltraSparc 1 workstation (140 MHz), over ten different instances.

These results indicate that Tabu outperforms 1-opt and 2-opt with respect to solution
quality. In particular, Tabu finds better solutions than the 2-opt heuristic, even though
it explores a more restricted 1-opt neighborhood. Based on these numbers, the average
percentage of improvement of Tabu over the initial solution, defined as

Initial Solution− Tabu

Initial Solution
× 100,

Table 6. Problems with no initial capacity.

Problem size Initial solution 1-opt 2-opt Tabu

50 3856.8 3756.6 3753.0 3744.5
0.3 (s) 2.8 (s) 25.2 (s)

100 6922.4 6725.2 6703.7 6694.9
2.5 (s) 95.9 (s) 275.5 (s)

200 11602.0 11106.4 11048.1 11034.8
33.2 (s) 4402.3 (s) 4099.6 (s)



264 BERGER ET AL.

Table 7. Problems with initial capacity.

Problem size Initial solution 1-opt 2-opt Tabu

50 3400.7 3307.9 3291.0 3274.2
0.3 (s) 3.3 (s) 24.8 (s)

100 6463.6 6228.2 6174.4 6134.6
2.5 (s) 110.9 (s) 260.9 (s)

200 11019.2 10593.1 10543.3 10504.9
32.4 (s) 4193.4 (s) 3830.1 (s)

is 3.3% on the problems of size 50, 4.2% on the problems of size 100 and 4.8% on the
problems of size 200. Over 1-opt, the percentages of improvement are 0.6% on the problems
of size 50, 1.0% on the problems of size 100 and 0.7% on the problems of size 200. Over
2-opt, these percentages drop to 0.4%, 0.4% and 0.3%, respectively. In all cases, the
percentages of improvement are lower when no initial capacity is present. That is, the
initial solution made of the best individual path leading to each vertex is closer to the optimal
solution in these cases. When some initial capacity is already installed, the solutions tend
to exploit as much as possible the available capacity, thus leading to paths that are often
quite different from the initial ones.

It is worth noting that a variant of the tabu search heuristic with continuous diversification,
obtained through the addition of a penalty term in the objective value for frequently used
paths, did not provide any further improvement, even for larger values ofk (note that
increasing the value ofk only makes sense for this variant, as the cost of a path is perturbed
with the frequency penalty after its computation; thus, the ranking of the paths with the
perturbed costs is likely to be different from the one with the original costs). The exploitation
of an adaptive memory within our tabu search heuristic, which is also aimed at favoring
the exploration of interesting new areas of the search space, explains the redundancy of the
continuous diversification approach.

Tables 8 and 9 show detailed results on five instances with 200 vertices, with and without
initial capacity, respectively. The tabu search was executed 3 times on each instance to
provide some insight on the stability of the final solution (note that the tabu search contains
stochastic features, as opposed to the 1-opt and 2-opt heuristics). The two numbers in each
entry under “Tabu” are the average solution value and best solution value over the three
runs, respectively. The average gap between the best and average solution is 0.05% when
no initial capacity is present and 0.1% otherwise. The gap never goes beyond 0.12%. These
percentages are even smaller for the problems with 100 and 50 vertices. This indicates that
the tabu search is quite robust and that its performance does not vary widely due to its
stochastic features.

Finally, although Tabu finds better solutions than the other two methods, it is more
computationally expensive forn = 50 and 100. Forn = 200, however, Tabu runs faster
than 2-opt, as the neighborhood of the latter grows quickly with problem size. In general,
any additional computation time leading to even small improvements can be easily justified
since the costs involved in telecommunications application are in the order of several million
dollars.
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Table 8. Problem instances with 200 vertices; no initial capacity.

Problem instance Initial solution 1-opt 2-opt Tabu

1 12870.7 12123.2 12064.6 12055.0
12049.7

2 12671.5 11979.8 11900.6 11902.8
11891.6

3 12389.8 11856.2 11820.5 11785.1
11774.1

4 12643.3 11932.0 11885.4 11865.0
11862.4

5 9754.2 9501.2 9470.9 9471.1
9467.4

Table 9. Problem instances with 200 vertices; with initial capacity.

Problem instance Initial solution 1-opt 2-opt Tabu

1 11993.5 11347.2 11243.7 11178.8
11167.6

2 11576.2 11144.9 11083.1 11081.2
11073.6

3 11162.9 10914.3 10891.1 10867.1
10855.4

4 11759.5 11259.5 11218.6 11202.9
11189.2

5 9310.9 8978.3 8955.2 8909.4
8905.0

6. Conclusion

A tabu search heuristic was developed and applied to network loading problems with up to
200 vertices and 100 demand vertices. Heuristics are particularly indicated in this case, since
exact methods cannot currently address instances of this size. Tabu search has produced
better results than a descent heuristic based on the same 1-opt neighborhood structure. This
result underlines the benefits associated with the mechanisms at the core of tabu search to
escape from local optima. Tabu search has also outperformed a descent heuristic based
on an extended 2-opt neighborhood structure that includes the former. To the best of our
knowledge, this is the first application of a tabu search heuristic to this type of problem.
Other types of telecommunications problems, however, could benefit as well from this
methodology (see, for example, chapter 8 in Glover and Laguna (1997)).
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