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Abstract

This paper presents a deterministic and a stochastic mathematical model for maximizing the
profits obtained by selling electricity produced through a cascade of dams and reservoirs in a spot
market. The first model is based on deterministic electricity prices while the other integrates stochas-
ticity through the management of a tree of potential price scenarios. Numerical results based on
historical data demonstrate the superiority of the stochastic model over the deterministic one. It is
also shown that price volatility impacts the profits obtained by the stochastic model.
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ical programming, stochastic programming.

1 Introduction
As more and more countries deregulate their electricity market, new challenges appear for hydroelectricity
producers. They now need to consider the sales prices of electricity when they design their production
plan if they want to maximize their profits. This is to be opposed to maximizing the total production
when prices are constant.

In this paper, production plans in a deregulated market are optimized for an hydroelectricity producer
with multiple power plants along a river. The problem under study thus involves both hydrological and
electricity market issues. Hydrological issues are related to the management of hydroelectric facilities,
in particular management of the water that must be released at each site. Energy market issues are
concerned with the setting of electricity prices based on demands from buyers and offers from producers.
This is explained in the following.

1.1 Problem setting
The problem can be best described by dividing it into four main parts: the hydrological model, the
operations of the units (turbines), the electricity market and the objective.

1.1.1 Hydrological model

There are four important sites on the river under study. The first site d1 is a dam that retains the water
of a large reservoir just behind it. The three other sites d2, d3 and d4, contain an hydroelectric power
plant, a dam and a reservoir. Each power plant has two turbines that run independently. The head
reservoir has a capacity of 400 hm3 while the reservoirs that follow have a capacity of 80, 100 and 40 hm3

respectively. The sites are organized in sequence, namely (d1, d2, d3, d4). Hence, the water released at
the upstream dam of site di goes into the reservoir of the downstream site di+1. This simple organization
is illustrated in Figure 1. In this figure, a triangle stands for a reservoir with a dam and a little square
represents a power plant.

The time taken by the water flow to go from one site to the next is referred to as the “river routing
effects”. This complex phenomenon can be approximated through river routing coefficients. The latter
correspond to the fraction of water released upstream that arrives at the downstream site every hour
after the release. In our case, it takes about three hours for all water to arrive at a downstream dam after
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Figure 1: Hydroelectric Plants Network

its release from an upstream reservoir. The river routing coefficients thus generalize upon a single water
flow time, as it is found in numerous applications (see, for example, [6, 7, 35]).

Natural inflows are also taken into account, like those coming from snow melting, rain, runoff water
and natural river flow (for the head reservoir). These inflows are stochastic, but are handled here in a de-
terministic way, by using hourly averages provided by a natural inflow forecast model. This deterministic
approximation is acceptable because deviations from natural inflow forecasts do not have a significant
impact on the reservoir levels under our short-term planning horizon of 24 hours (see below).

To satisfy operational constraints, the water level at each dam must also lie between a minimum and
a maximum value, which are the same all year round. Each dam possesses a mechanism to spill a large
quantity of water, if necessary. The spill flow is controlled quite precisely by adjusting gate openings.
However, spilling should be avoided as much as possible, given that no electricity is produced in this case.

1.1.2 Operations of units

The amount of electricity produced by each unit (turbine) is a function of the water head, unit flow and
unit type. These curves are determined empirically and have, in general, a polynomial form. The first
dam does not have any unit but the dams that follow (d2, d3 and d4) have two identical units, each of
capacity 95, 125 and 60 MW, respectively, for a total of 560 MW. When a unit is started, it suffers some
wear due to the huge water pressure applied to it. So, there is a cost associated with starting a unit, and
this cost is also taken into account. The latter aggregates the unit replacement cost, the maintenance
cost and the opportunity cost incurred by a loss of production during maintenance. A study dedicated
to start-up costs can be found in [34].

Besides producing electricity, a unit can also be “reserved”, which means that some of its power capacity
is put aside to provide electricity in case of a shortcoming somewhere over the network. A revenue is
earned through this practice depending on the type of reserve under consideration, which can be either “10
minutes spin” (10S), “10 minutes non spin” (10N) or “30 minutes non spin” (30N). These types are related
to the time required to bring the energy into use and the physical behavior of the facilities that provide
it. When 10S reserve is called for, the unit must increase its output immediately and reach full capacity
within 10 minutes. The 10N and 30N reserve only require that full power be reached within 10 and 30
minutes, respectively, without explicit conditions on the start of the power increase. When providing 10S
reserve, the unit needs to spin at the right speed to synchronize itself with the electric network. If the unit
is already producing electricity (using a fraction of its capacity), it is already synchronized. Otherwise,
a cost is incurred due to the electricity that is needed to spin the unit at the right speed. Note that
hydroelectric facilities are flexible enough to provide each type of reserve, which is not necessarily the
case for thermal units which need more time to increase their power.

As the reserves that are asked for by the market operator are rarely consumed, we will assume in the
following that no water is used for this purpose. More information on reserves can be found in [39].

1.1.3 Electricity market

In our application, the electricity prices come from a deregulated market. The latter widely differs from
traditional monopolistic markets where a single player controls the production and the electricity prices
are set through government regulations. It was previously believed that a monopolistic market was
natural in the case of electricity production due to the necessity to balance loads and supplies at all time,
but recent findings show that deregulation can be efficient and reduce electricity costs.

In a deregulated market, a central organization (market operator) dispatches electricity production
among different producers by considering offers and demands from the participants. Producers and buyers
submit selling and purchase bids, respectively, where the latter correspond to some quantity of energy
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and a price per MWh. Supply and demand curves are then created and the intersection of the two curves
determines the Market Clearing Price (MCP). All selling bids under the MCP and all purchase bids over
the MCP are accepted. Any producer with at least one accepted bid will receive the MCP for each MWh
that he produces. Any buyer with at least one accepted bid will pay the MCP for each MWh that he
uses.

In addition to the energy market, there are three other markets associated with the three reserve
types. However, the 30N reserve is not considered here because its price is always lower than or equal to
the 10N reserve price, and there is no cost for providing these two types of reserves. The price for each
reserve type is calculated by considering bids from producers and the amount of reserve required for the
electric network to be safe.

Since the bidding process introduces an additional level of complexity, it is not explicitly addressed
here. Rather, we assume that any quantity of electricity offered by a producer is sold at a price derived
from historical market data (averages for the deterministic model presented in section 2; distributions
that follow the evolution of prices over the day for the stochastic model in section 3). In this study,
prices from the Ontario electricity market in Canada have been used. In this market, any offer must
be submitted at least two hours in advance (it should be noted that the Ontario electricity market has
changed to a day-ahead commitment market in June 2006). In a two hour-ahead market, a producer
who wants to provide electricity at 4:00 PM, for example, must announce it at or before 2:00 PM. Also,
offers must be submitted independently for each unit (as opposed to the whole hydroelectric plant or all
facilities of a producer).

1.1.4 Objective

The objective is to find a 24-hour production plan, for each unit in the power plants along a river, that
maximizes the expected profits resulting from electricity and reserve sales, while satisfying the above-
mentioned physical and operational constraints. The final result is a table indicating, for each hour and
each unit, how the power should be distributed between electricity production and the reserves over a
24-hour planning horizon.

This paper distinguishes itself from others due to the complexity of deriving plans that account for
the electricity production and the reserves of each unit of a hydrological system with a series of facilities
along a river. In particular, the cascade effects along the river prevent the facilities to be considered in
isolation, as it is often done with thermal units.

1.2 Related work
An excellent survey on the various optimization techniques used in the field of energy can be found
in [57]. When considering more specifically the hydroelectric case, the literature can be divided into three
main problem classes: reservoir management problems, hydrothermal plant coordination problems and
hydroelectric production problems.

Reservoir management problems are concerned with the management of water levels in reservoirs.
The objective varies widely from one application to another and there are also different operational
constraints that must be satisfied. This is a rather mature field of research with a rich literature (a
state-of-the-art review can be found in [28]). These problems become very complex when a sequence
of reservoirs must be managed, because any water released at an upstream reservoir contributes to the
inflows of the downstream reservoirs. The scheduling of the water releases is thus an important issue, due
to the lag time between the release and the water arrival at downstream reservoirs. Another important
issue is the stochastic nature of the natural inflows. In this case, stochastic dynamic programming is a
natural problem-solving approach, but its computational burden is often excessive for realistic problems
with many reservoirs. Different aggregation techniques to reduce problem size have thus been proposed in
the literature [2, 49, 56]. Other methods, like stochastic programming [47, 58] have also been successfully
applied to these problems.

The goal of hydrothermal coordination problems is to improve the coordination between hydroelectric
and thermal plants. This is an important issue, because hydroelectric plants can be operated in a quite
flexible way, but are limited by the amount of water available. Conversely, thermal plants are less flexible
but can produce electricity on a more steady basis. A variety of optimization techniques have been
proposed to solve these problems. Examples for the deterministic case are mathematical programming
[52, 59], neural networks [31], Lagrangian relaxation [24, 30, 33, 37] and metaheuristics, in particular
genetic algorithms [20, 40]. When stochastic issues are considered, two main optimization techniques are
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reported, namely, stochastic programming [12] and stochastic dynamic programming [8, 22, 48].
The literature on hydroelectric production can be divided into two subclasses, depending if a single

reservoir or many reservoirs are considered. The latter problems are much more difficult to solve due
to the “cascade” effects from one reservoir to the next. For the single reservoir case, the authors in
[42] describe a problem-solving approach based on dynamic programming; stochastic inflows are then
integrated and handled through stochastic dynamic programming [29]. In the case of multiple reservoirs,
mixed integer programming [7, 54, 55], dynamic programming [25] and stochastic dynamic programming
(for stochastic variants) [1, 14, 18, 44, 45, 46, 50] have all been reported in the literature.

With regard to multiple reservoirs, the problem considered by Pritchard and Zakeri in [46] is the
most similar to ours. In their work, the authors develop a stochastic dynamic programming model to
maximize the profits resulting from electricity sales in a deregulated market, where electricity prices
are modeled through non homogeneous Markov chains. To solve their problem with stochastic dynamic
programming, the reservoir levels are first discretized. Then, the river routing effects are taken into
account by introducing artificial intermediate reservoirs for each time period that falls in the lag time
between the water release at an upstream reservoir and the water arrival at the next reservoir. The size
of the state space grows quickly with the number of reservoirs considered (including artificial ones). As a
consequence, only small problems with two reservoirs, plus two intermediate ones, are addressed in their
work. Another shortcoming is that their approach is quite restricted with regard to the type of price
generation processes that can be handled. Also, some practical issues are not addressed (but could be
integrated at the expense of an increase in complexity), like start-up costs and reserves.

The problem-solving approach proposed by Pritchard and Zakeri remains valuable, especially if one
considers that bidding issues are integrated into their model. However, it is not appropriate in our context
because nine intermediate reservoirs would have to be introduced in addition to the four real reservoirs
(i.e., three reservoirs between each consecutive pair of reservoirs). With only ten discretization levels per
reservoir, a state space with more than 1013 states per period would be obtained.

The alternative model proposed in this paper grows linearly with the number of reservoirs, through
the management of a tree of price scenarios (see section 3). A shortcoming of this approach is that
it prevents us from considering mid- or long-term time horizons. However, this is not required in our
application because only the next 24 hours are taken into account. As shown in section 5, this is easily
achieved. We also have some flexibility with regard to the stochastic process used to generate electricity
and reserve prices. This would allow our system to be fed, for example, with prices obtained from an
external forecast module.

In the following, the deterministic and stochastic models are described in sections 2 and 3. Then,
the electricity price model is presented in section 4. Production plan examples and numerical results are
reported in section 5. Finally, section 6 concludes.

2 Deterministic model
In the deterministic model, electricity and reserve prices are assumed to be known over all periods of the
production horizon. This model can also be used when one considers the stochastic case with a number
of independent price scenarios and a probability associated with each scenario, if it is assumed that all
decisions over the whole planning horizon are taken right at the start. In this case, we can use the
average price over all scenarios for each period, because the expectation of a linear function of a number
of random variables corresponds to the linear function of the expected values of the random variables
(i.e., E[

∑
ai · Xi] = ai ·

∑
E[Xi]). In the stochastic model presented in Section 3, however, the price

scenarios are not independent and not all production decisions are taken at the start.

2.1 Description
The mathematical model can be better understood by first describing it rather informally and by dividing
this description along the lines of section 1. It should be noted, however, that the following text often
refers to equations that are found in section 2.2, where the model is formally introduced.

2.1.1 Hydrological model

This subsection describes the basic components of the hydrological model such as the inflows, outflows
and water volumes at a dam.
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The outflow at a dam is calculated through equation (13). It is the spilling flow plus the sum of
flows going through each unit. For the model to be completely defined, historical outflows for period
−(N − 1), .., 0 are used, where N is the number of periods required for all water released at the upstream
dam to reach the downstream reservoir (N = 3 hours in our case). These values are needed in equation
(15) to calculate the inflows of the first periods of the planning horizon.

The inflows are calculated through equations (14) and (15). For a specific hour, the inflow of dam d is
equal to the natural inflows at this hour plus the flow coming from the upstream dam d− 1 (taking into
account the lag time between the water release at the upstream dam d − 1 and the water arrival at the
downstream dam d). The summation over t considers the fraction of water FR that arrives at the same
hour (t = 0), one hour later (t = 1), two hours later (t = 2) and three hours later (t = 3), for N = 3.

Natural inflows can be integrated into models that take into account weather forecasts [10, 11, 15, 16,
21, 32]. However, stochastic natural inflows are not considered here because their impact on a short-term
horizon is limited: over 24 hours, reservoir levels are not likely to be significantly modified by unexpected
natural inflows. Rather, these levels are mostly modified through plant operations (flows for producing
electricity and spilling flows). Also, natural inflow forecasts are generally reliable enough over a 24-hour
horizon to be considered deterministic, as opposed to long-term forecasts.

Finally, equations (16) and (17) calculate the water volume of a reservoir at the end of period p, which
is the volume at the end of period p−1 plus the water gain (inflows) and minus the water loss (outflows).

2.1.2 Operations of units

In our model, each unit (turbine) is considered independently. For a specific unit, the power generation
function depends on two variables: the water volume v at the dam and the flow f going through the unit.
More precisely, the power generation function MW (v, f) that we consider is:

MW (v, f) =
H(v)
Href

MW ref(f) (1)

where

• H(v) is the water head when volume at the dam is v (this function can generally be approximated
by a polynomial in v)

• MW ref (f) is the power generation function based on a reference head Href that gives the power
produced when flow f is going through the unit.

The mathematical model presented in section 2.2 assumes a constant reference water head. How-
ever, section 2.3 explains how non linear water head effects can be considered using a successive linear
programming method.

The power generation function at reference head MW ref(f) is typically not linear, since the marginal
power increase tends to diminish when the flow increases. We thus approximated it through a concave
piecewise linear function like the one found in reference [43]. An example is presented in Figure 2. We
note that there is no power until a flow Fmin is reached. At this flow value, the power produced is
MWmin. At the maximal flow value Fmax, the power is MWmax.

The general idea to approximate MW ref(f) is to divide the function into I intervals with bounds
Fmin = UB0, UBi, i = 1, .., I − 1 and Fmax = UBI . With each interval is also associated a slope
Ri, i = 1, .., I. We then define I variables fi, i = 1, .., I, and we set f = yE · Fmin +

∑
i=1,..,I

fi, which

corresponds to equation (3) for a given unit u and period p at a dam d. Thus, if some electricity E is
produced (yE = 1) the flow f must be at least Fmin. The bounds on the fi values are found in equations
(5) to (7).

The value of MW ref(f) is then approximated as follows:

yE ·MWmin +
∑

i=1,..,I

fi · Ri. (2)

That is, we sum up the contribution of each interval, which corresponds to the flow associated with the
interval times the slope and, if some electricity is produced (yE = 1), we add MWmin. This calculation
is done in equation (8).

Equation (10) ensures that the whole capacity of a unit (MWmax) is allocated between electricity
production and the reserves. The relation between producing electricity and spinning is found in equations
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Figure 2: Example of a power generation function at reference head

(11) and (12). Recall that a unit must produce some electricity (yE = 1) or must spin, by applying a
current on it (yspin = 1), to provide 10S reserve. This is because the unit needs to be synchronized with
the network to quickly respond to a call from the network operator.

2.1.3 Objective function

The goal of this model is to maximize the profit of a single production day for a hydroelectricity producer.
This profit is the production revenues minus the production costs and minus the net value of any water
used during that day. The objective function is presented in equation (20).

The revenue obtained from electricity and reserve sales, as shown in equation (21), is simply the
power used for electricity production and for the reserves multiplied by their corresponding prices. In
the deterministic case, average electricity and reserve prices are directly fed into the model. In equation
(22), a cost for spinning is incurred when a unit offers 10S reserve without producing electricity at the
same time. Furthermore, equations (23) to (26) state that a cost is incurred when the unit needs a
start-up. Thus, this cost is added when there is some production at the current period p (yE

d,u,p = 1)
but no production at the previous period p − 1 (yE

d,u,p−1 = 0). Note that equation (23) assumes that
there is no production before period 1 (i.e., at period 0). Note also that equations (25) and (26) are not
mandatory as the optimization process minimizes the start-up costs. However, intensive computational
tests have shown that their inclusion reduces the computation time.

It is important to consider the value of the water used for production. Otherwise, the model will tend
to use all water available and empty the reservoirs at the end of the day, because it will not consider
the adverse impact of this strategy on future revenues. The future water value of a reservoir (FVR)
is a function that estimates the profit that can be made with this water in the future. This function
is normally concave as the marginal value of the water decreases when its availability increases. For
example, it is not possible to exceed the capacity of the turbines when the prices are high, even if a lot of
water is available. Thus, spilling would be unavoidable. More importantly, the average electricity sales
prices tend to decrease when a lot of water is available. The FVR is thus approximated with a concave
piecewise linear function.

We assume that the FVR function is the same at the beginning and at the end of the day, due to
our short-term horizon. With this assumption, the net value of the water used for production during
the day is expressed as FV R(initial volume)− FV R(final volume). The initial FVR can be calculated
exactly with the true function before the optimization, based on the initial volume. In the optimization
model, the final FVR is approximated with the piecewise linear function represented in equation (27).
Each variable vfin

k represents one of the K parts of the piecewise approximation, in a way similar to
the production function approximation of section 2.1.2. The bounds on vfin

k are found in equations (29)
to (31). Finally, the sum of all vfin

k variables must be equal to the final volume, adjusted to take into
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account the river routing effects, as shown in equation (28). That is, the final volume of dam d is equal to
the volume vd,P at the end of the last period P plus the inflows released at dam d− 1 before or at period
P that arrive at dam d at periods P + 1, P + 2, .., P + N . These delayed inflows should be considered,
otherwise they will be forgotten in the objective.

In practice, the FVR should be evaluated with a long-term model that would integrate the stochastic
nature of natural inflows and prices. This could be done with stochastic dynamic programming over an
horizon of several months. To obtain a tractable problem, however, some aggregation of the reservoirs
should be performed to reduce problem size [2, 49, 56].

2.2 Mathematical model
This section describes the deterministic model in details. The parameters are in capital letters while
the variables are in lower case letters. Note that some constraints are redundant but are presented here
because they reduce the computation time of the solver.

2.2.1 Parameters

• P : number of periods for production planning.
• D : number of dams.
• Ud : number of units at dam d, d = 1, .., D.
• PE

p : price for each MWh of electricity produced in period p ($/MWh), p = 1, .., P .
• P 10S

p : price for each MWh of electricity offered for 10S reserve in period p ($/MWh), p = 1, .., P .
• P 10N

p : price for each MWh of electricity offered for 10N reserve in period p ($/MWh), p = 1, .., P .
• MWd,u(v, f) : power of unit u of dam d as a function of flow f and volume v at dam d (MW),
d = 1, .., D; u = 1, .., Ud.
• Href

d : reference water head of dam d (m), d = 1, .., D; u = 1, .., Ud.
• Hmin

d : minimum water head of dam d (m), d = 1, .., D; u = 1, .., Ud

• Hmax
d : maximum water head of dam d (m), d = 1, .., D; u = 1, .., Ud

• Hd(v) : water head of dam d as a function of volume v (m), d = 1, .., D; u = 1, .., Ud.
• H ′

d(v) : derivative of the function Hd(v), d = 1, .., D; u = 1, .., Ud.
• MW ref

d,u (f) : power of unit u of dam d as a function of flow f when the water head is at reference
value (MW), d = 1, .., D; u = 1, .., Ud.

• (MW ref
d,u )

′
(f) : derivative of the function MW ref

d,u (f), d = 1, .., D; u = 1, .., Ud.

• Id,u : number of piecewise parts in the linear approximation of MW ref
d,u (f), d = 1, .., D; u = 1, .., Ud.

• Rd,u,i : rate (slope) of part i in the linear approximation ofMW ref
d,u (f), d = 1, .., D; u = 1, .., Ud; i =

1, .., Id,u.
• UBd,u,i : upper bound or limit of part i in the linear approximation of MW ref

d,u (f), d = 1, .., D; u =
1, .., Ud; i = 1, .., Id,u − 1.
• V min

d,p : minimum volume of dam d at the end of period p (m3), d = 1, .., D; p = 1, .., P .
• V max

d,p : maximum volume of dam d at the end of period p (m3), d = 1, .., D; p = 1, .., P .
• V init

d : initial volume of dam d (m3), d = 1, .., D.
• Fmin

d,u : minimum flow that can be processed by unit u of dam d (m3/s), d = 1, .., D; u = 1, .., Ud.
• Fmax

d,u : maximum flow that can be processed by unit u of dam d (m3/s), d = 1, .., D; u = 1, .., Ud.

• F spillmax

d : maximum spill flow of dam d (m3/s), d = 1, .., D.
• F outmax

d : minimum outflow of dam d (m3/s), d = 1, .., D.
• F outmax

d : maximum outflow of dam d (m3/s), d = 1, .., D.
• MWmin

d,u : minimum power of unit u of dam d at reference head (when flow is Fmin
d,u ) (MW),

d = 1, .., D; u = 1, .., Ud.
• MWmax

d,u : maximum power of unit u of dam d at reference head (when flow is Fmax
d,u ) (MW),

d = 1, .., D; u = 1, .., Ud.
• NId,p : mean natural inflow forecast at dam d for period p (m3/s), d = 1, .., D; p = 1, .., P .
• N : number of periods that are considered when calculating the river routing effects.
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• FRd,t : fraction (∈ [0, 1]) of water, released in period p− t at dam d − 1, that arrives at dam d in
period p (same value for all p), d = 1, .., D; t = 0, .., N .
• MW spin

d,u : power needed by unit u of dam d to spin when 10S reserve is offered without producing
electricity (MW), d = 1, .., D; u = 1, .., Ud.
• SCd,u : start-up cost of unit u of dam d ($), d = 1, .., D; u = 1, .., Ud.
• FV Rd(v) : future value of water in the reservoir of dam d as a function of volume v ($), d = 1, .., D.
• Kd : number of piecewise parts in the linear approximation of FV Rd(v), d = 1, .., D.
• Rfvr

d,k : rate (slope) of part k in the linear approximation of FV Rd(v), d = 1, .., D; k = 1, ..,Kd.

• UBfvr
d,k : upper bound of part k in the linear approximation of FV Rd(v), d = 1, .., D; k = 1, ..,Kd−1.

• Ed : estimate of the energy that can be produced with each m3 of water at dam d (MWh/m3),
d = 1, .., D. This value gets larger as we move upstream (upward) because more electricity can be
produced with the same amount of water, due to the cascade effect.
• FP : estimate of the average price at which electricity can be sold in the future ($/MWh), k =

1, ..,K.
• FV Rinit

d : future value of water in the reservoir of dam d, initially (i.e., FV Rinit
d = FV Rd(V init

d )),
d = 1, .., D.

2.2.2 Decision variables

• fspill
d,p ≥ 0 : flow spilled at dam d in period p (m3/s), d = 1, .., D; p = 1, .., P .

• fE
d,u,p ≥ 0 : flow going through unit u of dam d in period p to produce electricity (m3/s), d =

1, .., D; u = 1, .., Ud; p = 1, .., P .
• fE

d,u,p,i ≥ 0 : contribution of piecewise part i, in the linear approximation of MW ref
d,u (f), to the

flow going through unit u of dam d in period p to produce electricity (m3/s), d = 1, .., D; u =
1, .., Ud; p = 1, .., P ; i = 1, .., Id,u. (see section 2.1.2).
• yE

d,u,p ∈ {0, 1} : 1 if electricity is produced by unit u of dam d in period p, 0 otherwise, d =
1, .., D; u = 1, .., Ud; p = 0, 1, .., P .
• yspin

d,u,p ∈ {0, 1} : 1 if unit u of dam d spins by supplying electricity to it in period p, 0 otherwise,
d = 1, .., D; u = 1, .., Ud; p = 1, .., P .
• mwE

d,u,p ≥ 0 : power produced by unit u of dam d in period p (MW), d = 1, .., D; u = 1, .., Ud; p =
1, .., P .
• mw10S

d,u,p ≥ 0 : power reserved for 10S for unit u of dam d in period p (MW), d = 1, .., D; u =
1, .., Ud; p = 1, .., P .
• mw10N

d,u,p ≥ 0 : power reserved for 10N for unit u of dam d in period p (MW), d = 1, .., D; u =
1, .., Ud; p = 1, .., P .

2.2.3 Constraints

• fE
d,u,p is the sum of all piecewise parts, plus Fmin

d,u if electricity is produced (yE
d,u,p = 1), d =

1, .., D; u = 1, .., Ud; p = 1, .., P .

fE
d,u,p = yE

d,u,p · Fmin
d,u +

∑
i=1,..,Id,u

fE
d,u,p,i (3)

• fE
d,u,p equals 0 if yE

d,u,p equals 0 and is between 0 and Fmax
d,u otherwise, d = 1, .., D; u = 1, .., Ud; p =

1, .., P .

0 ≤ fE
d,u,p ≤ Fmax

d,u · yE
d,u,p (4)

• Bounds on fE
d,u,p,i, d = 1, .., D; u = 1, .., Ud; p = 1, .., P ; i = 1, .., Id,u.

i = 1 : 0 ≤ fE
d,u,p,i ≤ UBd,u,1 − Fmin

d,u (5)

i = 2, .., Id,u − 1 : 0 ≤ fE
d,u,p,i ≤ UBd,u,i − UBd,u,i−1 (6)

i = Id,u : 0 ≤ fE
d,u,p,i ≤ Fmax

d,u − UBd,u,Id,u−1 (7)
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• Evaluation of mwE
d,u,p = MW ref

d,u (fE
d,u,p) through its linear approximation, d = 1, .., D; u =

1, .., Ud; p = 1, .., P .

mwE
d,u,p = yE

d,u,p ·MWmin
d,u +

∑
i=1,..,Id,u

fE
d,u,p,i · Rd,u,i (8)

• Spill flow of dam d in period p is between 0 and a maximum value, d = 1, .., D; p = 1, .., P .

0 ≤ fspill
d,p ≤ F spillmax

d (9)

• All power of unit u of dam d is used or reserved at period p, d = 1, .., D; u = 1, .., Ud; p = 1, .., P .

mwE
d,u,p +mw10S

d,u,p +mw10N
d,u,p = MWmax

d,u (10)

• Power for 10S can only be reserved if unit u of dam d spins or produces electricity, d = 1, .., D; u =
1, .., Ud; p = 1, .., P .

mw10S
d,u,p ≤MWmax

d,u · (yE
d,u,p + yspin

d,u,p) (11)

• Unit u of dam d cannot produce electricity and spin at the same time, d = 1, .., D; u = 1, .., Ud; p =
1, .., P .

yE
d,u,p + yspin

d,u,p ≤ 1 (12)

2.2.4 Intermediate variables

The values of the following intermediate variables depend on the parameters and the original decision
variables. They are used here to simplify the formulation of the constraints that follow. These variables
and their constraints represent the hydrologic laws governing the system.

• outd,p : flow that leaves the reservoir of dam d in period p (m3/s), d = 1, .., D; p = 1, .., P . It is
also assumed that a number of "historical" outflow values are available for periods −(N − 1), .., 0.

outd,p = fspill
d,p +

∑
u=1,..,Ud

fE
d,u,p (13)

• ind,p : flow that enters the reservoir of dam d in period p (m3/s), d = 1, .., D; p = 1, .., P .

d = 1 : ind,p = NId,p (14)

d = 2, .., D : ind,p = NId,p +
∑

t=0,..,N

outd−1,p−t · FRd,t (15)

• vd,p : water volume of dam d at the end of period p (m3), d = 1, .., D; p = 1, .., P .

p = 1 : vd,p = V init
d + (ind,p − outd,p) · 3600 (16)

p = 2, .., P : vd,p = vd,p−1 + (ind,p − outd,p) · 3600 (17)

2.2.5 Constraints on intermediate variables

• Water volume of dam d at the end of period p is between a minimum and a maximum value,
d = 1, .., D; p = 1, .., P .

Vmin
d,p ≤ vd,p ≤ V max

d,p (18)

• Outflow of dam d in period p is between a minimum and a maximum value, d = 1, .., D; p = 1, .., P .

F outmin

d ≤ outd,p ≤ F outmax

d (19)
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2.2.6 Objective

• Objective function ($)

Maximize
∑

d=1,..,D
u=1,..,Ud
p=1,..,P

{revd,u,p − cspin
d,u,p − cstart

d,u,p} −
∑

d=1,..,D

vald (20)

• revd,u,p : revenue from selling electricity and reserve for unit u of dam d in period p ($), d =
1, .., D; u = 1, .., Ud; p = 1, .., P .

revd,u,p = (mwE
d,u,p · PE

p +mw10S
d,u,p · P 10S

p +mw10N
d,u,p · P 10N

p ) (21)

• cspin
d,u,p : cost of providing electricity to unit u of dam d to make it spin in period p ($), d = 1, .., D; u =

1, .., Ud; p = 1, .., P .

cspin
d,u,p = yspin

d,u,p ·MW spin
d,u · PE

p (22)

• cstart
d,u,p ≥ 0 : start-up cost of unit u of dam d at period p ($), d = 1, .., D; u = 1, .., Ud; p = 2, .., P .

p = 1 : cstart
d,u,p = SCd,u · yE

d,u,p, (23)

p = 2, .., P : cstart
d,u,p ≥ SCd,u · (yE

d,u,p − yE
d,u,p−1), (24)

cstart
d,u,p ≤ SCd,u · yE

d,u,p, (25)

cstart
d,u,p ≤ SCd,u · (1− yE

d,u,p−1) (26)
• vald : net value of water used for production at dam d during planning horizon (equal to the value

at the start of the planning horizon minus the value at the end) ($), d = 1, .., D.

vald = FV Rinit
d −

∑
k=1,..,Kd

Rfvr
d,k · vfin

d,k (27)

• vfin
d,k ≥ 0 : contribution of piecewise part k to the final volume of dam d, in the linear approximation

of FV Rd(final_volume) (m3), d = 1, .., D; k = 1, ..,Kd.

The sum of the vfin
d,k values is equal to the final volume, which is then adjusted to account for the

river routing effects at the end of the horizon, d = 1, .., D. The summation after vd,P corresponds
to inflows that arrive at dam d at periods P + 1, P + 2, .., P +N .∑

k=1,..,Kd

vfin
d,k = vd,P + 3600

∑
r=1,..,N
t=r,..,N

outd−1,P+r−t · FRd,t (28)

• Bounds on vfin
d,k , d = 1, .., D; k = 1, ..,Kd.

k = 1 : 0 ≤ vfin
d,k ≤ UBfvr

d,k (29)

k = 2, ..,Kd − 1 : 0 ≤ vfin
d,k ≤ UBfvr

d,k − UBfvr
d,k−1 (30)

k = Kd : 0 ≤ vfin
d,k ≤ V max

d,1 − UBfvr
d,Kd−1 (31)

2.3 Water head effects
This section describes how non linear water head effects can be evaluated using a successive linear pro-
gramming method that is often reported in the literature on water management [3, 18, 23, 51]. The
method starts from the initial solution obtained by solving the original model. Then, a new model is
created with the same variables and constraints except that the electricity production equation (8) is
replaced by

mwE
d,u,p = MWd,u(v̂avg

d,p , f̂
E
d,u,p)+

H ′
d(v̂

avg
d,p )

Href
d

MW ref
d,u (f̂E

d,u,p) · (vavg
d,p − v̂avg

d,p )+

Hd(v̂
avg
d,p )

Href
d

(MW ref
d,u )

′
(f̂E

d,u,p) · (fE
d,u,p − f̂E

d,u,p) (32)
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where f̂E
d,u,p is the value of fE

d,u,p in the initial solution, vavg
d,p is the average volume of period p given by :

p = 1 : vavg
d,p =

V init
d + vd,p

2
(33)

p = 2, .., P : vavg
d,p =

vd,p−1 + vd,p

2
(34)

and v̂avg
d,p is the value of vavg

d,p in the initial solution.
Formula (32) is in fact the order 1 Taylor’s polynomial approximation of function MWd,u(v, f) eval-

uated at v̂avg
d,p , f̂E

d,u,p. This approximation is only valid when vavg
d,p and fE

d,u,p are close enough to v̂avg
d,p and

f̂E
d,u,p, respectively. We thus impose the following additional constraints for d = 1, .., D; u = 1, .., Ud; p =

1, .., P :

v̂avg
d,p − λ · (V max

d,p − V min
d,p ) ≤ vavg

d,p ≤ v̂avg
d,p + λ · (V max

d,p − V min
d,p ) (35)

f̂E
d,u,p − λ · (Fmax

d,u − Fmin
d,u ) ≤ fE

d,u,p ≤ f̂E
d,u,p + λ · (Fmax

d,u − Fmin
d,u ) (36)

where λ ∈ [0, 1] is a parameter that defines how close vavg
d,p and fE

d,u,p are from v̂avg
d,p and f̂E

d,u,p, respectively.
Furthermore, as the capacity of a unit now depends on the water head, equation (10) is replaced by

mwE
d,u,p +mw10S

d,u,p +mw10N
d,u,p =

Hd(v̂
avg
d,p )

Href
d

MWmax
d,u +

H ′
d(v̂

avg
d,p )

Href
d

MWmax
d,u · (vavg

d,p − v̂avg
d,p ) (37)

where the right side of the equation is the order 1 Taylor’s polynomial approximation of function
MWd,u(v, Fmax

d,u ) = Hd(v)

Href
d

MWmax
d,u . We also replace equation (11) by

mw10S
d,u,p ≤

Hmax
d

Href
d

MWmax
d,u · (yE

d,u,p + yspin
d,u,p) (38)

because mw10S
d,u,p can take values up to Hmax

d

Href
d

MWmax
d,u when the water head is at its maximum value. To

speed-up the computations, we also add constraints to eliminate binary variables that have already been
optimized (for d = 1, .., D; u = 1, .., Ud; p = 1, .., P ):

yE
d,u,p = ŷE

d,u,p (39)

yspin
d,u,p = ŷspin

d,u,p (40)

The overall optimization process is the following:
1. Find an initial solution s to the original model
2. λ← λ0

3. iter← 1
4. While iter ≤ Niter and λ > λmin

(a) Find a solution s′ with the modified water head model
(b) If F (s′) > F (s) then

s← s′

Else if F (s′) < F (s)
λ← λ · λmult (with λmult ∈ (0, 1))

Else if F (s′) = F (s)
Exit while loop (the solution is optimal)

(c) iter← iter + 1

This procedure optimizes the profit while taking into account water head by first allowing large
changes in volume and flow (λ large) and smaller changes later. The function F corresponds to the
objective function in the linear model, except that it is calculated with the true function MWd,u(v, f),
instead of the piecewise linear approximation or the Taylor’s approximation. In the procedure, the
parameter λ keeps its value while the new solution improves upon the current one (i.e. F (s′) > F (s)).
When F (s′) < F (s), the value of λ is reduced according to λ · λmult, with λmult < 1. The procedure is
repeated until either Niter iterations have been performed, λ is small enough or convergence is observed
(i.e., F (s′) = F (s)). Section 5.2 analyzes the impact of water head on solution quality.
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2.4 Deterministic model in practice
This section explains how the deterministic model can be applied in practice. First, note that it is always
possible to design a bidding strategy that complies with the optimized production plan (i.e., bid low when
electricity should be produced, and bid high otherwise). Note also that the bids must be submitted at
least two hours ahead to meet the market requirements. A long-term model to calculate the future value
of water in the reservoirs and a short-term natural inflow forecast model would also be required to feed
our model. For example, the price model presented in section 4 could be extended to include weather
forecasts for the next day.

The main steps are the following:

1. Define the initial state of the hydrological system from the data server (initial volumes, historical
outflows, etc).

2. Forecast natural inflows for each reservoir for the next 24 hours.
3. Initialize the price model with the last known electricity prices and calculate the average price for

each period.
4. Evaluate the water value in each reservoir with the long-term model.
5. Find a solution to the original model (with reference water head).
6. Apply the successive linear method described in section 2.3 to evaluate the water head effects. The

result at the end of this step is a complete production plan.
7. For each unit apply the following strategy:

• Bid low when the production plan states that electricity should be produced. Offer a quantity
equal to the one found in the plan (mwE).
• Bid high when the production plan states that electricity should not be produced.
• Bid low for 10S and 10N reserves and offer the quantities found in the plan (mw10S andmw10N ,

respectively).

2.5 Parameter values
The numerical results are based on a real hydrological network, but some data have been modified for
confidentiality reasons. As already mentioned, we consider a large reservoir at the head of the river,
followed by three smaller reservoirs each with an associated hydroelectric power plant. Each power plant
has two similar units (turbines). The parameter values used for the experiments are the followings:

• Number of periods (hours): P = 24.
• Number of dams: D = 4.
• Number of units (turbines) at each dam: U1 = 0, U2 = 2, U3 = 2, U4 = 2.
• Prices for electricity and reserves at period p (historical averages):
PE

p = P
E

p , P 10S
p = P

10S

p , P 10N
p = P

10N

p , p = 1, .., 24.

• Reference water head of dam d = 2, 3, 4: Href
2,u = 45.5, Href

3,u = 49, Href
4,u = 35, u = 1, 2.

• Minimum water head of dam d = 2, 3, 4: Hmin
2,u = 44.25, Hmin

3,u = 47.5, Hmin
4,u = 33.9, u = 1, 2.

• Maximum water head of dam d = 2, 3, 4: Hmax
2,u = 46.75, Hmax

3,u = 50.5, Hmax
4,u = 36.1, u = 1, 2.

• Water head of dam d = 2, 3, 4 as a function of volume v:
H2(v) = −0.0002179v2 + 0.0486781v+ 44.25
H3(v) = −0.0001823v2 + 0.0482292v+ 47.5
H4(v) = −0.0009066v2 + 0.0912637v+ 33.9
• Derivative of function H :
H ′

d(v) = d(Hd(v))
dv , d = 1, .., 4.

• Power function of unit u of dam d = 2, 3, 4 (where MW ref is the power at the reference head value):
MWd,u(v, f) = Hd(v)

Href
d

MW ref
d,u (f)

MW ref
2,u (f) = −0.0021491f2+ 1.0198214f − 25.6604314, u = 1, 2.

MW ref
3,u (f) = −0.0015629f2+ 1.0412698f − 43.1562882, u = 1, 2.

MW ref
4,u (f) = −0.0018621f2+ 0.8344132f − 27.3971054, u = 1, 2.

• Derivative of MW ref :
(MW ref

d,u )
′
(f) =

d(MW ref
d,u

(f))

df , d = 1, .., 4.
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• Number of piecewise parts in the linear approximation of MW ref : Id,u = 4 , d = 1, .., 4; u = 1, 2
• Slopes in the linear approximation of MW ref for dam d = 2, 3, 4
R2,u = {0.761929, 0.525528, 0.321364, 0.138690}, u = 1, 2.
R3,u = {0.791206, 0.611472, 0.431739, 0.259820}, u = 1, 2.
R4,u = {0.610961, 0.461993, 0.313025, 0.164057}, u = 1, 2.
• Bounds in the linear approximation of MW ref for dam d = 2, 3, 4
UB2,u = {90, 140, 185}, u = 1, 2.
UB3,u = {110, 165, 225}, u = 1, 2.
UB4,u = {80, 120, 160}, u = 1, 2.
• Minimum volume of dam d at the end of period p: V min

d,p = 0, d = 1, .., 4, p = 1, .., P .
• Maximum volume of dam d = 1, 2, 3, 4 at the end of period p: Vmax

1,p = 400 hm3, V max
2,p =

80 hm3, V max
3,p = 100 hm3, V max

4,p = 40 hm3, p = 1, .., P .
• Initial volume of dam d = 1, 2, 3, 4: V init

1 = 200 hm3, V init
2 = 40 hm3, V init

3 = 50 hm3, V init
4 =

20 hm3.
• Minimum flow that can be processed by unit u of dam d = 2, 3, 4: Fmin

2,u = 30, Fmin
3,u = 50, Fmin

4,u = 40,
u = 1, 2.
• Maximum flow that can be processed by unit u of dam d = 2, 3, 4: Fmax

2,u = 225, Fmax
3,u = 275, Fmax

4,u =
200, u = 1, 2.
• Maximum spill flow of dam d: F spillmax

d = 1000, d = 1, .., 4.
• Minimum outflow of dam d: F outmin

d = 0, d = 1, .., 4.
• Maximum outflow of dam d: F outmax

d = 1000, d = 1, .., 4.
• Minimum power of unit u of dam d = 2, 3, 4: MWmin

2,u = 3,MWmin
3,u = 5,MWmin

4,u = 3, d =
2, .., 4; u = 1, 2.
• Maximum power of unit u of dam d = 2, 3, 4: MWmax

2,u = 95,MWmax
3,u = 125,MWmax

4,u = 65,
u = 1, 2.
• Mean natural inflow forecast at dam d = 1, 2, 3, 4 for period p (historical averages): NI1,p =

40, NI2,p = 16, NI3,p = 12, NI4,p = 10, p = 1, .., P .
• Number of periods (hours) for calculating the river routing effects: N = 3
• Fraction of water, released in period p− t at dam d− 1 that arrives at dam d = 2, 3, 4 in period p,
t = 0, 1, 2, 3:
FR2,0 = 0, FR2,1 = 0.3, FR2,2 = 0.4, FR2,3 = 0.2.
FR3,0 = 0.1, FR3,1 = 0.5, FR3,2 = 0.3, FR3,3 = 0.1.
FR4,0 = 0, FR4,1 = 0.4, FR4,2 = 0.4, FR4,3 = 0.2.
• Power needed by unit u of dam d = 2, 3, 4 to make it spin to offer 10S reserve: MW spin

2,u =
1.9,MW spin

3,u = 2.5,MW spin
4,u = 1.3, u = 1, .., 2.

• Start-up cost of unit u = 2, 3, 4: SC2,u = 285, SC3,u = 375, SC4,u = 195, u = 1, 2 (see below).
• Number of piecewise parts in the approximation of future water value function FV Rd at dam d:
Kd = 1, d = 1, .., 4 (see below).
• Estimate of electricity that can be produced for each m3 of water at dam d = 1, 2, 3, 4: E1 =

0.000364, E2 = 0.000363, E3 = 0.000227, E4 = 0.000096 (see below).
• Slope of the linear approximation of future water value function at dam d: Rfvr

d,1 = Ed · FP ,
d = 1, .., 4 (see below).
• Estimate of the average price at which electricity can be sold in the future: FP = 64$/MWh,

unless specified otherwise (see below).
• Initial water value at dam d: FV Rinit

d = FV Rd(V init
d ) (calculated with the linear approximation

obtained with Rfvr
d,1 ), d = 1, .., 4.

The future value of water is obtained here by considering that each m3 of water at a given dam has a
fixed value. This value is Ed · FP , where Ed is an estimate of the electricity that can be produced with
each m3 of water at dam d and FP is an estimate of the average electricity sales price in the future. This
value gets larger as we move upstream (upward) because more electricity can be produced with the same
amount of water, due to the cascade effects (i.e., Ed is larger for upstream reservoirs). The value of FP
is evaluated approximately at 64 $/MWh from historical production and price data. In section 5.4, the
sensitivity of this value on solution quality is analyzed for the two models.
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Figure 3: Tree of price scenarios

The start-up cost has been set to 3$ per nominal MW of output according to the study in [34]. For
example, for a 95MW unit, the cost is 285$ per start-up. For all units, it is always better to stop a unit
than let it run at minimum flow for an hour because the start-up cost (285$, 375$, 195$ for units of dam
2, 3 and 4, respectively) is lower than the opportunity cost of running at minimum flow. The latter can
be approximated by the amount of additional electricity that could have been produced in the future
multiplied by the average electricity price in the future: (Fmin

d,u · 3600 · (Ed − Ed+1) −MWmin
d,u ) · FP ,

which is 748.03$, 1189.12$, 692.74$ for units of dam 2, 3 and 4 respectively. However, if one chooses to
produce at MWmax

d,u for periods p and p+ 2 instead of consecutive periods p and p+ 1, the difference in
electricity prices between periods p + 1 and p + 2 must be at least SCd,u/MWmax

d,u (about 3.10$ for all
units) to justify the additional start-up cost.

3 Stochastic model
The stochastic model exhibits many similarities with the deterministic model. Its main components are
the same: hydrological model, operations of units and objective. Decision and intermediate variables are
also the same, but an additional index is added to take into account different price scenarios (see below).
Thus, the major difference is in the price structure and how production decisions are taken.

3.1 Description
Our stochastic model is based on stochastic programming (SP). The fundamental idea behind SP is the
ability to take recourse actions once a realization of random variables is observed (in our case, electricity
prices). Stochastic programming is one of the main optimization methods, with stochastic dynamic
programming, that takes into account random variables. It has often been applied in the electricity
domain [12, 47, 53, 58]. In particular, the authors in [53] apply stochastic programming to optimize the
profits of a hydrothermal unit in a deregulated market. To the best of our knowledge, however, it is a the
first time that SP is used to optimize the profits for a cascade of hydroelectric power plants. A complete
reference on SP can be found in [4], while a survey on applications in energy can be found in [57].

In the stochastic model, different scenarios or realizations for the electricity prices are considered.
The scenarios are organized into a tree structure where each node, at a given level, contains a particular
realization of prices for the set of periods associated with that level (note that the prices for each period
in the set of periods associated with a given node are different). From each node, the children nodes at
the next level can be reached with a certain (conditional) probability. The root node corresponds to the
“empty scenario”, at the start of the planning horizon, where no prices have yet realized. Figure 3 shows
a tree of price scenarios over an horizon of 24 periods, where the price scenarios at the first level are
associated with the set of periods {1,...,8}, those at the second level with set {9,...,16} and those at the
third level with set {17,...,24}.
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Figure 4: Tree of decisions

The tree structure chosen here is only relevant when the price distribution for a given period depends
on prices from previous periods. Otherwise, no additional information can be extracted from the tree and
the deterministic model based on averages will be as good as the stochastic model. Note, however, that
the stochastic process used for modeling electricity prices is not restricted to be Markovian, like the one
proposed in section 4 (where the price at the current period depends on the price observed in the previous
period). As opposed to stochastic dynamic programming, where a Markovian process is required, a tree
structure can be used to model more general dependencies.

At each level, including the root but excluding the leaves, commitments (production decisions) are
made for the set of periods associated with the next level, without knowing with certainty the electricity
and reserve prices for these periods. In figure 4, production decisions are first taken at the root for periods
1 to 8, without knowing exactly the prices for these periods. Then, based on the particular realization
observed for these prices, another node is reached at the next level and new commitments are made for
periods 9 to 16, etc. Although the prices are not known exactly when the production decisions are taken,
the conditional probability of observing a particular realization of prices over the next set of periods, given
the prices observed up to now, is assumed to be known. It is thus possible to compute the conditional
expected profit associated with the production decisions for the next set of periods.

The overall expected profit is then the summation over all internal nodes in the tree of the probability
of being in that node (as obtained by multiplying the conditional probabilities on the path leading from
the root to the node) times the conditional expectation of the profit from that node over the next set
of periods. For example, the probability of being in the node associated with scenario s = 7 is equal to
0.4 ∗ 0.5 = 0.2. Note that the leaves are left apart, given that no decision is taken there.

The model presented in section 3.3 does not explicitly consider these conditional probabilities but
rather the (unconditional or absolute) probability of being at node s when a decision for period p is taken,
noted by PRp,s. In the previous example, PRp,7 = 0.2 for periods p = 17, .., 24. These probabilities are
found in the objective (58), which is similar to the deterministic objective (20). A large part of the model
is also similar, except for the addition of an additional index s that denotes a particular price scenario.

To simplify the formulation, the model does not handle sets of periods explicitly, but rather handles
each period individually. The scenario node (or set of periods) that contains period p is then obtained
via set Sp. More precisely, Sp contains all scenario nodes where a decision is taken for period p. In our
example, Sp = {1} for p = 1, .., 8, Sp = {2, 3} for p = 9, .., 16 and Sp = {4, 5, 6, 7} for p = 17, .., 24.
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Parameter S is the number of scenario nodes where decisions are taken, that is all nodes in the tree
apart from the leaves (in our example, S = 7). The topology of the tree is contained in ANs,p,t which
corresponds to the ancestor of node s, where a decision for period p−t is taken. For example, AN2,9,1 = 1
and AN4,17,2 = 2. Note that the ancestor node of s can be node s if p and p − t are in the same set of
periods (e.g., AN2,10,1 = 2 and AN4,20,2 = 4). For consistency, ANs,p,0 = s for s = 1, .., S.

3.2 Scenario tree construction
The shape of the tree depends on the sets of periods that are associated with each level. For example, a
much deeper tree is obtained by associating a single period with each level. Also, the branching factor in
the tree corresponds to the number of different realizations of prices that are considered for each set of
periods. Thus, the following parameters determine the shape of the scenario tree:

• Nb: number of branches at each level (branching factor);
• Ns: number of sets of periods (number of levels), with pj the last period in period set j = 1, .., Ns;

The periods pj−2 (for j = 1, .., Ns−1) are those where decisions for the next set of periods are taken
according to the market rules. Thus, the prices at these periods are used to determine the child node
that will be reached at the next level in the tree and the decisions that will be taken in this child node.
Let assume, for example, that nodes b, c and d are associated with period set j ∈ Ns (from smallest to
largest prices at period pj − 2) and are the three children nodes of a given node a. We denote the price
associated with node s = b, c, d by P ′

s and the price of period pj − 2 in some newly generated price vector
by Pnew. Then, from node a, we go to:

• node b if Pnew ≤ P ′
b

• node c if P ′
b < Pnew ≤ P ′

c

• node d otherwise.

To associate average prices with the nodes in the tree of scenarios, a Monte Carlo simulation is
performed. We first generate Nv vectors of prices of cardinality P , based on some underlying stochastic
process (see section 4). Given a branching factor Nb and a partition of the P periods into Ns sets of
periods, we first sort these vectors based on the price at period p1− 2 (two periods before the last period
in the first set), starting with the smallest price. Recall that decisions must be taken at least two hours
before their actual implementation according to the market rules; that is, the next child node is chosen
at period p1 − 2. We then take the price average for each period from 1 to p1 based on the first �Nv/Nb�
vectors, which are those with the smallest prices, and we associate these averages and the corresponding
subset of price vectors with the first child node. We do the same for the next child node by averaging
over the next �Nv/Nb� vectors. This is repeated until every child node of the root is done. Then, we go
to the next level and repeat the whole procedure again for every node at that level: we sort the subset of
vectors associated with the current node based on the price of period p2 − 2 (two periods before the last
period in the second set of periods) and associate a (sub)subset of vectors and its corresponding averages
with every child. The procedure stops at the leaves of the scenario tree. The tree is created in a such way
that the average price associated with each period corresponds to the expected value of the stochastic
process that is used to generate the prices. Note also that the price P ′

s mentioned above (where node s
is associated with the set of periods j), is obtained by taking the maximum price value at period pj − 2
over the set of price vectors associated with node s.

Figure 5 illustrates the procedure with an example. Here, we have six periods (P = 6), two sets of
periods (Ns = 2) and a branching factor of 2 (Nb = 2), with p1 = 3, p2 = 6. Eight vectors of prices are
generated (Nv = 8), where each vector corresponds to a single line in part (a). In part (b), the price
vectors are sorted based on their value at period 1 (p1−2). Then, the first four price vectors are averaged
over periods 1 to 3 and are associated with scenario node s = 2. The same is done with the four last
price vectors to obtain scenario node s = 3. Note that the price P ′

2 for s = 2 is 4. Thus, if the actual
price at period 1 is less than or equal to 4, node s = 2 is reached, otherwise node s = 3 is reached. In
part (c), the price vectors 1 to 4 are sorted according to their values at period 4 (p2 − 2). The same is
done for vectors 5 to 8. The averages are then computed and associated with scenarios s = 4, .., 7 over
the four pairs of vector prices. The prices P ′

4 and P ′
6 for nodes s = 4 and 6 are 2 and 5, respectively. The

resulting scenario tree is presented in part (d).
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(P4 > 2)

(P4  2)

(P4 > 5)

(P4  5)

½

½
(P1 > 4)

(P1  4)

  p=1  p=2  p=3  p=4  p=5  p=6  p=1  p=2  p=3  p=4  p=5  p=6 

Prices for p = 1,2,3 Prices for p = 4,5,6

p=1  p=2  p=3  p=4  p=5  p=6 (c)

2    1    2    1    2    1 
1    2    1    2    2    3 
3    4    3    3    4    4 
4    5    4    3    4    3 
6    6    5    5    5    6 
5    5    6    5    6    7 
7    6    7    6    7    7 
8    7    8    7    8    7 

(b)

1    2    1    2    2    3 
2    2    2    1    1    1 
3    4    3    3    4    4 
4    5    4    3    4    3 
5    5    6    5    6    7 
6    6    5    5    5    6 
7    6    7    6    7    7 
8    7    8    7    8    7 

s = 2 
2.5  2.75  2.5 

s = 3 
6.5    6    6.5 

s = 4 
1.5    2       2 

s = 5 
3       4     3.5 

s = 6 
5      5.5   6.5 

s = 7 
6.5   7.5     7 

s = 1 
no price 

(d)

(a)

1    2    1    2    2    3 
3    4    3    3    4    4 
7    6    7    6    7    7 
4    5    4    3    4    3 
5    5    6    5    6    7 
2    1    2    1    2    1 
6    6    5    5    5    6 
8    7    8    7    8    7 

½

½

½

½

Figure 5: Scenario tree construction example

3.3 Mathematical model
The mathematical model will now be formally introduced. It is based on a tree of scenarios, where each
node is associated with a set of periods, a price scenario (realization of prices up to this set of periods),
conditional expected prices and production decisions for the next set of periods. As mentioned previously,
the formulation of the model is simplified by handling individual periods rather than sets of periods.

3.3.1 Parameters

Here are the new parameters for the stochastic model (see section 2.2.1 for the other ones).

• S: number of internal nodes in the scenario tree.
• Sp : set of nodes where a decision is taken for period p, p = 1, .., P .
• ANs,p,t : ancestor of node s, where a decision is taken for period p − t, p = 1, .., P ; s ∈ Sp; t =

0, .., p− 1. Note that the ancestor node can be the same as node s if p and p− t are in the same set
of periods.
• PRp,s : absolute probability to be in node s when a decision is taken for period p, p = 1, .., P ; s ∈ Sp.

This probability is obtained by multiplying the conditional probabilities on the path from the root
to the corresponding scenario node in the tree of scenarios. These probabilities are the same for all
periods in the same set of periods.
• PE

p,s : conditional expectation of price for each MWh of energy produced at period p when a decision
for period p is taken in node s ($/MWh), p = 1, .., P ; s ∈ Sp.
• P 10S

p,s : conditional expectation of price for each MWh offered of 10S reserve when a decision for
period p is taken in node s ($/MWh), p = 1, .., P ; s ∈ Sp.
• P 10N

p,s : conditional expectation of price for each MWh offered of 10N reserve when a decision for
period p is taken in node s ($/MWh), p = 1, .., P ; s ∈ Sp.

3.3.2 Decision variables

• fspill
d,p,s ≥ 0 : flow spilled at dam d in period p when a decision for period p is taken in node s (m3/s),
d = 1, .., D; p = 1, .., P ; s ∈ Sp.
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• fE
d,u,p,s ≥ 0 : flow going through unit u of dam d to produce electricity in period p, when a decision

for period p is taken in node s (m3/s), d = 1, .., D; u = 1, .., Ud; p = 1, .., P ; s ∈ Sp.
• fE

d,u,p,i,s ≥ 0 : contribution of piecewise part i, in the linear approximation of MW ref
d,u (f), to the

flow going through unit u of dam d in period p to produce electricity, when a decision for period p
is taken in node s (m3/s), d = 1, .., D; u = 1, .., Ud; p = 1, .., P ; i = 1, .., Id,u; s ∈ Sp.
• yE

d,u,p,s ∈ {0, 1} : 1 if electricity is produced by unit u of dam d in period p when a decision for
period p is taken in node s, 0 otherwise, d = 1, .., D; u = 1, .., Ud; p = 1, .., P ; s ∈ Sp.
• yspin

d,u,p,s ∈ {0, 1} : 1 if unit u of dam d spins by supplying electricity to it in period p when a decision
for period p is taken in node s, 0 otherwise, d = 1, .., D; u = 1, .., Ud; p = 1, .., P ; s ∈ Sp.
• mwE

d,u,p,s ≥ 0 : power produced by unit u of dam d in period p when a decision for period p is taken
in node s (MW), d = 1, .., D; u = 1, .., Ud; p = 1, .., P ; s ∈ Sp.
• mw10S

d,u,p,s ≥ 0 : power reserved for “10 minutes spin” reserve for unit u of dam d in period p when a
decision for period p is taken in node s (MW), d = 1, .., D; u = 1, .., Ud; p = 1, .., P ; s ∈ Sp.
• mw10N

d,u,p,s ≥ 0 : power reserved for “10 minutes non spin” reserve for unit u of dam d in period p
when a decision for period p is taken in node s (MW), d = 1, .., D; u = 1, .., Ud; p = 1, .., P ; s ∈ Sp.

3.3.3 Constraints on decision variables

• fE
d,u,p,s is the sum of all piecewise parts plus Fmin

d,u if electricity is produced (yE
d,u,p,s = 1), d =

1, .., D; u = 1, .., Ud; p = 1, .., P ; s ∈ Sp.

fE
d,u,p,s = yE

d,u,p,s · Fmin
d,u +

∑
i=1,..,Id,u

fE
d,u,p,i,s (41)

• fE
d,u,p,s equals 0 if yE

d,u,p,s equals 0 and is between 0 and a maximum value otherwise, d = 1, .., D; u =
1, .., Ud; p = 1, .., P ; s ∈ Sp.

0 ≤ fE
d,u,p,s ≤ Fmax

d,u · yE
d,u,p,s (42)

• Bounds on fE
d,u,p,i,s, d = 1, .., D; u = 1, .., Ud; p = 1, .., P ; i = 1, .., Id,u; s ∈ Sp.

i = 1 : 0 ≤ fE
d,u,p,i,s ≤ UBd,u,1 − Fmin

d,u (43)

i = 2, .., Id,u − 1 : 0 ≤ fE
d,u,p,i,s ≤ UBd,u,i − UBd,u,i−1 (44)

i = Id,u : 0 ≤ fE
d,u,p,i,s ≤ Fmax

d,u − UBd,u,Id,u−1 (45)

• Calculation of mwE
d,u,p,s = MW ref

d,u (fE
d,u,p,s) through the linear approximation, d = 1, .., D; u =

1, .., Ud; p = 1, .., P ; s ∈ Sp.

mwE
d,u,p,s = yE

d,u,p,s ·MWmin
d,u +

∑
i=1,..,Id,u

fE
d,u,p,i,s ·Rd,u,i (46)

• Spill flow of dam d in period p is between 0 and a maximum value, d = 1, .., D; u = 1, .., Ud; p =
1, .., P ; s ∈ Sp.

0 ≤ fspill
d,p,s ≤ F spillmax

d (47)

• Maximum power of unit u of dam d is used or reserved in period p, d = 1, .., D; p = 1, .., P ; s ∈ Sp.

mwE
d,u,p,s +mw10S

d,u,p,s +mw10N
d,u,p,s = MWmax

d,u (48)

• Power for 10S reserve can only be reserved if unit u of dam d produces electricity or spins, d =
1, .., D; u = 1, .., Ud; p = 1, .., P ; s ∈ Sp.

mw10S
d,u,p,s ≤MWmax

d,u · (yE
d,u,p,s + yspin

d,u,p,s) (49)

• Unit u of dam d cannot produce electricity and spin at the same time, d = 1, .., D; u = 1, .., Ud; p =
1, .., P ; s ∈ Sp.

yE
d,u,p,s + yspin

d,u,p,s ≤ 1 (50)
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3.3.4 Intermediate variables

• outd,p,s : flow that leaves the reservoir of dam d in period p, when a decision for period p is taken in
node s (m3/s), d = 1, .., D; p = 1, .., P ; s ∈ Sp. It is assumed that a number of "historical" outflow
values are available for periods −(N − 1), .., 0.

outd,p,s = fspill
d,p,s +

∑
u=1,..,Ud

fE
d,u,p,s (51)

• ind,p,s : flow that enters the reservoir of dam d in period p when a decision for period p is taken in
node s (m3/s), d = 1, .., D; p = 1, .., P ; s ∈ Sp.

d = 1 : ind,p,s = NId,p (52)

d = 2, .., D : ind,p,s = NId,p +
∑

t=0,..,N

outd−1,p−t,ANs,p,t · FRd,t (53)

• vd,p,s : volume of dam d at the end of period p, when a decision for period p is taken in node s
(m3), d = 1, .., D; p = 1, .., P ; s ∈ Sp.

p = 1 : vd,p,s = V init
d + (ind,p,s − outd,p,s) · 3600 (54)

p = 2, .., P : vd,p,s = vd,p−1,ANs,p,1 + (ind,p,s − outd,p,s) · 3600 (55)

3.3.5 Constraints on intermediate variables

• Volume of dam d at the end of period p is between a minimum and maximum value, when a decision
for period p is taken in node s, d = 1, .., D; p = 1, .., P ; s ∈ Sp.

V min
d ≤ vd,p,s ≤ V max

d (56)

• Outflow of dam d in period p is between a minimum and maximum value, when a decision for period
p is taken in node s, d = 1, .., D; p = 1, .., P ; s ∈ Sp.

F outmin

d ≤ outd,p,s ≤ F outmax

d (57)

3.3.6 Objective

• Objective function ($)

Maximize
∑

d=1,..,D
u=1,..,Ud
p=1,..,P

s∈Sp

PRp,s · (revd,u,p,s − cspin
d,u,p,s − cstart

d,u,p,s)−
∑

d=1,..,D
s∈SP

PRP,s · vald,s (58)

• revd,u,p,s : conditional expectation of revenue from selling electricity and reserve for unit u of dam
d in period p, when a decision for period p is taken in node s ($), d = 1, .., D; u = 1, .., Ud; p =
1, .., P ; s ∈ Sp.

revd,u,p,s = (mwE
d,u,p,s · PE

p,s +mw10S
d,u,p,s · P 10S

p,s +mw10N
d,u,p,s · P 10N

p,s ) (59)

• cspin
d,u,p,s : conditional expectation of cost for providing electricity to unit u of dam d to make it spin

in period p, when a decision for period p is taken in node s ($), d = 1, .., D; u = 1, .., Ud; p =
1, .., P ; s ∈ Sp.

cspin
d,u,p,s = yspin

d,u,p,s ·MW spin
d,u · PE

p,s (60)

• cstart
d,u,p,s ≥ 0 : starting cost of unit u of dam d in period p, when a decision for period p is taken in

node s ($), d = 1, .., D; u = 1, .., Ud; p = 1, .., P ; s ∈ Sp.

p = 1 : cstart
d,u,p,s = SCd,u · yE

d,u,p,s, (61)

p = 2, .., P : cstart
d,u,p,s ≥ SCd,u · (yE

d,u,p,s − yE
d,u,p−1,ANs,p,1

), (62)

cstart
d,u,p,s ≤ SCd,u · yE

d,u,p,s, (63)

cstart
d,u,p,s ≤ SCd,u · (1− yE

d,u,p−1,ANs,p,1
) (64)

19



• vald,s : value of net water used for production at dam d during planning horizon when a decision for
period P is taken in node s (egual to FV Rd(V init

d )− FV Rd(final_volume)) ($), d = 1, .., D; s ∈
SP .

vald,s = FV Rinit
d −

∑
k=1,..,Kd

Rfvr
d,k · vfin

d,k,s (65)

• vfin
d,k,s ≥ 0 : contribution of piecewise part k, in the linear approximation of FV Rd(final_volume),

to the final volume of dam d when a decision for period P is taken in node s (m3),
d = 1, .., D; k = 1, ..,Kd; s ∈ SP .

The summation of vfin
d,k,s over k is equal to the final volume adjusted for the river routing effects at

the end of horizon, d = 1, .., D; s ∈ SP . The summation after vd,P,s corresponds to the inflows that
arrive at dam d in periods P + 1, P + 2, .., P +N

∑
k=1,..,Kd

vfin
d,k,s = vd,P,s + 3600

∑
r=1,..,N
t=r,..,N

outd−1,P+r−t,ANs,P,r−1 · FRd,t (66)

• Bounds on vfin
d,k,s, d = 1, .., D; k = 1, ..,Kd; s ∈ SP .

k = 1 : 0 ≤ vfin
d,k,s ≤ UBfvr

d,k (67)

k = 2, ..,Kd − 1 : 0 ≤ vfin
d,k,s ≤ UBfvr

d,k − UBfvr
d,k−1 (68)

k = Kd : 0 ≤ vfin
d,k,s ≤ V max

d,1 − UBfvr
d,Kd−1 (69)

3.4 Water head effects
Water head effects for the stochastic model are evaluated in the same way as the deterministic model.
That is, the initial solution is obtained from solving the original model. Then a new model is created
with the same variables and constraints except that the electricity production equation (46) is replaced
by

mwE
d,u,p,s = MWd,u(v̂avg

d,p,s, f̂
E
d,u,p,s)+

H ′
d(v̂

avg
d,p,s)

Href
d

MW ref
d,u (f̂E

d,u,p,s) · (vavg
d,p,s − v̂avg

d,p,s)+

Hd(v̂
avg
d,p,s)

Href
d

(MW ref
d,u )

′
(f̂E

d,u,p,s) · (fE
d,u,p,s − f̂E

d,u,p,s) (70)

where f̂E
d,u,p,s is the value of fE

d,u,p,s in the initial solution, vavg
d,p,s is the average volume in period p when

a decision for period p is taken in scenario node s, as given by:

p = 1 : vavg
d,p,s =

V init
d + vd,p,s

2
(71)

p = 2, .., P : vavg
d,p,s =

vd,p−1,ANs,p,1 + vd,p,s

2
(72)

and v̂avg
d,p is the value of vavg

d,p in the initial solution. Furthermore, equation (48) is replaced by

mwE
d,u,p,s +mw10S

d,u,p,s +mw10N
d,u,p,s =

Hd(v̂
avg
d,p,s)

Href
d

MWmax
d,u +

H ′
d(v̂

avg
d,p,s)

Href
d

MWmax
d,u · (vavg

d,p,s − v̂avg
d,p,s) (73)

and equation (49) by

mw10S
d,u,p,s ≤

Hmax
d

Href
d

MWmax
d,u · (yE

d,u,p,s + yspin
d,u,p,s) (74)
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We also impose the following additional constraints for d = 1, .., D; u = 1, .., Ud; p = 1, .., P ; s ∈ Sp:

v̂avg
d,p,s − λ · (V max

d,p − V min
d,p ) ≤ vavg

d,p,s ≤ v̂avg
d,p,s + λ · (V max

d,p,s − V min
d,p,s) (75)

f̂E
d,u,p,s − λ · (Fmax

d,u − Fmin
d,u ) ≤ fE

d,u,p,s ≤ f̂E
d,u,p,s + λ · (Fmax

d,u − Fmin
d,u ) (76)

yE
d,u,p,s = ŷE

d,u,p,s (77)

yspin
d,u,p,s = ŷspin

d,u,p,s (78)

The overall optimization process is the same as the one used for the deterministic model (see section
2.3).

3.5 Stochastic model in practice
Applying this model in practice is very similar to the deterministic model (see section 2.4). The main
steps are the following:

1. Define the initial state of the hydrological system from the data server (initial volumes, historical
outflows, etc).

2. Forecast natural inflows for each reservoir for the next 24 hours.
3. Initialize the price model with the last known electricity prices.
4. Create a scenario tree with the Monte Carlo method.
5. Evaluate the function for the future value of the reservoir content for each reservoir using a long-term

model.
6. Find a solution to the original model (with reference water head).
7. Apply the successive linear method described in section 2.3 to evaluate the water head effects.
8. Two hours before the beginning of a set of periods j, submit bids for each unit and period in the

set by applying the following strategy from the scenario nodes associated with period pj−1 − 2
• Bid low when the production plan states that electricity should be produced. Offer a quantity

equal to the one found in the plan (mwE).
• Bid high when the production plan states that electricity should not be produced.
• Bid low for 10S and 10N reserves and offer the quantities found in the plan (mw10S andmw10N ,

respectively).

3.6 Parameter values
This section describes the parameter values that are found only in the stochastic model (see section 2.5
for the other parameter values). To create a scenario tree, the branching factor Nb and the number of
sets of periods (or levels) Ns must first be specified. Then, the pj ’s (last period in each set) are chosen
to get, as much as possible, the same number of periods at each level. That is:

j = 1, .., Ns − 1 : pj = �P · j/Ns�, (79)
j = Ns : pj = P. (80)

For the exact meaning of Nb, Ns and pj , see section 3.1. The value of S, the number of internal nodes in
the scenario tree, is then:

S = Nb
Ns − 1 (81)

To associate average prices with the nodes in the tree of scenarios, the number of price vectors Nv

generated with the Monte Carlo simulation was set to 100 000 (see section 3.2).
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4 Electricity price model
Electricity is quite different from other commodities because it cannot be efficiently stored and thus
requires a balance between supplies and demands. That is why electricity prices exhibit spikes and
seasonal behaviors. There are two main classes of electricity price models: continuous and discrete
time models. Continuous time models are particularly useful for pricing financial derivatives related to
electricity prices [5] or to model long-term price behaviors [13]. Discrete time models are mostly used for
hourly electricity price forecasts over short-term horizons [9].

Let X(t) = P (t + Δ) − P (t) be the difference in electricity prices between time t and time t + Δ,
where Δ is a fixed value. A continuous time model expresses X(t) as a function of some underlying
continuous time stochastic process. In [13], for example, X(t) = X1(t)+X2(t) where X1(t) and X2(t) are
two independent Ornstein-Uhlenbeck processes. In these models, the parameter values of the continuous
process must first be estimated based on historical data. Then, the resulting model is discretized in
some way to fit an appropriate optimization model. Due to the rather intricate problem-solving approach
associated with continuous models and our short-term focus, a discrete time model is chosen here.

In discrete time models, the price at period p is function of the prices from previous periods p − 1,
p− 2, etc. We chose a periodic autoregressive process (PAR), because the latter allows this function to
depend on p (in our case, the function changes according to the time of the day). PAR models have
been successfully applied to economic time series with a periodic behavior [36, 41]. They have also been
applied for electricity load forecasts [17] and electricity price modeling [26]. An important reference on
periodic autoregressive processes can be found in [19].

In the equation that follows, the logarithm of the electricity price for the current period (hour) φE
p

depends on the logarithm of the price of the previous hour through the following PAR model:

φE
p = a(p mod 24)+1 + b(p mod 24)+1 · φE

p−1 + εp, p = 1, ..., P, (82)

where P=24 (there are 24 hours in a day) and εp is a random variable that follows a normal distribution
with zero mean and a standard deviation of σ(p mod 24)+1.

As suggested in [19], the parameters ai and bi, i = 1, .., 24 (one for each hour) are obtained through
linear regression. Basically, the price logarithm of the previous hour is the independent variable while
the price logarithm of the current hour is the dependent one. Prices from IESO (Ontario Independent
Electricity System Operation), available on their website [38] from May 2002 to June 2006, were used
in this study. To eliminate price spikes and focus on normal price behaviors, we did not consider cases
where the prices radically changed from one hour to the next (i.e., if the current price is less than half
that or more than twice that of the previous hour). Although we eliminated only 3.3% of the data, this
rule eliminated outliers and helped improve the linear relationship.

The results are presented in Table 1 where avgdep
i is the dependent variable average (price logarithm

of the current hour) for hour i, avgind
i is the independent variable average (price logarithm of the previous

hour) for hour i, ai and bi are the estimated parameters of the model, R2i is the determination coefficient
for hour i and σi is the standard deviation of the estimation error (standard deviation of the normal
random variable εp) when (p mod 24) + 1 = i.

The determination coefficients R2i are high considering that the electricity prices are rather volatile.
Even in the worst case (i = 18), the estimation is good at R218 = 0.685. The average is 0.796 which
means that almost 80% of the variation in the current price, on average, can be explained by the price
of the previous hour. Figure 6 shows the relationship observed in the worst case (i = 18, R218 = 0.685)
and in the best case (i = 4, R24 = 0.879).

It is possible to show by induction (see annex I) that:

φE
p =

∑
i=1,..,p

ai

∏
j=i+1,..,p

bj + φE
0

∏
k=1,..,p

bk +
∑

i=1,..,p

εi
∏

j=i+1,..,p

bj (83)

which means that φE
p follows a normal distribution with an expected value and a variance given by

E[φE
p ] =

∑
i=1,..,p

ai

∏
j=i+1,..,p

bj + φE
0

∏
k=1,..,p

bk (84)

V ar[φE
p ] =

∑
i=1,..,p

σi2
∏

j=i+1,..,p

bj2 (85)
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hour i avgdep
i avgind

i ai bi R2i σi

1 3.59 3.62 0.455 0.867 0.761 0.187
2 3.51 3.58 0.212 0.921 0.856 0.148
3 3.47 3.51 0.181 0.938 0.870 0.141
4 3.46 3.47 0.280 0.916 0.879 0.134
5 3.47 3.45 0.369 0.898 0.840 0.151
6 3.54 3.47 0.303 0.933 0.774 0.182
7 3.71 3.55 0.335 0.950 0.751 0.210
8 3.90 3.74 0.419 0.931 0.792 0.208
9 3.99 3.91 0.626 0.860 0.791 0.201
10 4.07 4.00 0.625 0.861 0.775 0.202
11 4.12 4.07 0.396 0.913 0.789 0.199
12 4.13 4.12 0.425 0.899 0.790 0.198
13 4.12 4.13 0.379 0.906 0.789 0.199
14 4.09 4.12 0.333 0.913 0.807 0.190
15 4.04 4.09 0.274 0.923 0.830 0.187
16 4.03 4.04 0.369 0.906 0.843 0.178
17 4.06 4.03 0.663 0.844 0.794 0.191
18 4.07 4.06 0.544 0.869 0.685 0.251
19 4.10 4.10 0.317 0.923 0.804 0.207
20 4.13 4.11 0.756 0.821 0.783 0.203
21 4.10 4.13 0.588 0.849 0.786 0.195
22 3.91 4.07 0.491 0.839 0.775 0.183
23 3.74 3.89 0.552 0.819 0.761 0.177
24 3.62 3.73 0.217 0.913 0.788 0.179

Average 3.87 3.87 0.421 0.892 0.796 0.188
Minimum 3.46 3.45 0.181 0.819 0.685 0.134
Maximum 4.13 4.13 0.756 0.950 0.879 0.251

Table 1: Regression results for each hour
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Figure 6: Linear relationship observed in the worst case (i = 18, R218 = 0.685) and in the best case
(i = 4, R24 = 0.879)
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p P
E

p P
10S

p P
10N

p σE
p

1 37.00 4.52 0.25 6.98
2 34.72 4.54 0.24 7.99
3 33.68 4.46 0.23 8.75
4 33.38 4.41 0.25 9.17
5 34.03 4.23 0.27 9.91
6 36.89 4.11 0.45 12.21
7 43.91 4.53 1.01 16.89
8 52.32 4.28 2.29 22.00
9 56.81 5.54 3.81 23.73
10 61.19 5.58 4.38 25.49
11 64.42 6.40 5.05 28.00
12 65.47 5.68 4.28 28.99
13 65.34 7.50 5.98 29.59
14 64.05 4.59 3.24 29.43
15 61.81 4.58 3.35 28.94
16 61.12 4.36 3.53 28.31
17 62.78 5.07 4.35 27.45
18 64.26 7.26 6.57 29.83
19 64.96 9.50 8.78 31.33
20 65.89 7.40 6.71 29.45
21 63.49 5.95 4.89 27.27
22 53.46 2.28 1.17 21.71
23 45.38 2.56 0.58 17.17
24 40.89 3.58 0.30 16.06

Average 52.80 5.12 3.00 21.53
Minimum 33.38 2.28 0.23 6.98
Maximum 65.89 9.50 8.78 31.33

Table 2: Average electricity and reserve prices

The true electricity price process ψE
p is the exponentiation of φE

p , that is:

ψE
p = eφE

p . (86)

This process follows a lognormal distribution with an expected value and a variance given by

E[ψE
p ] =E[φE

p ] + V ar[φE
p ]/2, (87)

V ar[ψE
p ] =(eV ar[φE

p ] − 1)e2 E[φE
p ]+V ar[φE

p ]. (88)

In the experiments of section 5, the process is started by setting φE
0 to the historical average of hour

24, which is the hour just before hour 1. Formulas (82) and (86) are then used recursively to generate
prices for the following periods. The expected electricity prices P

E

p = E[ψE
p ] are calculated for each

period with equations (84), (85) and (87). For the two reserve types 10S and 10N, deterministic prices
obtained from historical averages are used (P 10S

p for 10S and P
10N

p for 10N, p = 1, ..., P ). Table 2 and
Figure 7 show the average electricity and reserve prices in $/MWh used in our experiments. Table 2 also
presents the standard deviation σE

p of the electricity prices, which is the square root of (88).

5 Numerical results
This section first presents two production plan examples. Then, the results of four different experiments
are summarized: we study the impact of the water head effects on solution quality; we compare the
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Figure 7: Average electricity and reserve prices

deterministic and stochastic models and empirically demonstrate the superiority of the former model
with regard to solution quality; we perform a sensitivity analysis with regard to the future value of water;
finally, we examine the impact of price volatility.

Both the deterministic and stochastic models were solved with CPLEX [27]. The maximal size of the
CPLEX search tree was limited to 1024 MB. All numerical tests were executed on a 3 GHz Pentium 4,
with 1 GB of memory.

5.1 Production plan examples
This section presents a production plan obtained with the deterministic model and another one with the
stochastic model. Figure 8 shows the deterministic production plan. For each hour, the figure gives the
average electricity price forecast (elec) and the quantity of electricity offered by each unit (ud,j is the
jth unit of dam d). We observe that the quantity offered depends heavily on the electricity price, as
the two curves have a similar shape. Note also that the start-up costs tend to create contiguous blocks
of production. Indeed, without start-up costs, it would be better to produce at hour 10 (P

E

10 = 61.19)
instead of hour 16 (P

E

16 = 61.12). But with two start-up costs, this strategy becomes too expensive. It
would even be more profitable to produce electricity at hour 16 and sell reserve at hour 10, because the
reserve prices are higher at hour 10 (P

10S

10 = 5.58, P
10N

10 = 4.38 and P
10S

16 = 4.36, P
10N

16 = 3.53).
Figure 9 presents the production plan generated by the stochastic model with a branching factor of

2 (Nb = 2) and two sets of periods (Ns = 2). In the graphics, the quantity of electricity offered and the
conditional expected price (elec) are shown. Part (a) of the figure shows the decisions that are taken in
the first 12 hours. Note that these decisions are the same as those taken with the deterministic model.
Then, different decisions are taken at hour 10 for hours 13 to 24, depending on the electricity price at
hour 10 (P10). If the price is low (P10 ≤ 56.40), the decisions shown in part (b) are taken (node s = 2).
On the other hand, if the price is high (P10 > 56.40), decisions shown in part (c) are taken (node s = 3).
The boundary price 56.40 was calculated during the creation of the scenario tree (see section 3.2). As
in the deterministic case, the quantity offered depends heavily on the electricity price. In the low price
scenario, it is better to keep the water for future periods, while in the high price scenario, is it better
to produce more. The expected profit in the stochastic case is 213 100 $ as opposed to 197 230$ in the
deterministic case. Thus, even in this simple case, the expected profit is 8.0% higher when the stochastic
model is used.
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Figure 8: Deterministic model production example

Niter Deterministic Stochastic
5 0.00% 0.00%
10 0.51% 0.29%
15 0.63% 0.42%
20 0.67% 0.46%
25 0.68% 0.47%
30 0.68% 0.48%
40 0.68% 0.48%
50 0.68% 0.48%
100 0.68% 0.48%

Table 3: Impact of iteration number

5.2 Water head effects
This experiment analyzes the impact of water head on solution quality. The parameters of the successive
linear programming method have been set to λ0 = 0.5, λmult = 0.75, λmin = 0.00001 (see section
2.3). Furthermore, in the case of the stochastic model, we have Nb = 3 and Ns = 7, as these values
provided the best results (see section 5.3). Table 3 presents the improvement with regard to the solution
value obtained after Niter iterations with each model, when compared to the solution value obtained
only with the reference head. In all cases, the production plans are evaluated with the exact production
function MWd,u(v, f) (in fact, all numerical comparisons reported here are based on the exact production
function).

We first observe that the improvements obtained with the deterministic and stochastic models are
0.68% and 0.48%, respectively. The improvement over the initial solution is higher in the case of the
deterministic model, simply because there is more room for improvement. It should be noted that more
electricity is produced on average with the deterministic plan, while a larger part of the profits comes
from reserve sales in the stochastic plan. The improvement reaches a plateau after 30 iterations, as only
a fraction of a dollar is gained in the following iterations. Note that no improvement is observed in the
first five iterations. It means that the value of λ0 is too large and that the approximation is not valid.
Improvements are only observed when λ is less than 0.1. In what follows, we thus use λ0 = 0.1 and
Niter = 30. As the models that are solved from one iteration to the next do not contain any binary

26



(a) Hour 1 to 12, s = 1
u2,1 u2,2 u3,1 u3,2
u4,1 u4,2 elec

Hour
1 2 3 4 5 6 7 8 9 10 11 12

500
480
460
440
420
400
380
360
340
320
300
280
260
240
220
200
180
160
140
120
100

80
60
40
20

0

85

80

75

70

65

60

55

50

45

40

35

30

25

20

15

10

5

0

(b) Hour 13 to 24, s = 2
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(c) Hour 13 to 24, s = 3
u2,1 u2,2 u3,1 u3,2
u4,1 u4,2 elec

Hour
13 14 15 16 17 18 19 20 21 22 23 24

500
480
460
440
420
400
380
360
340
320
300
280
260
240
220
200
180
160
140
120
100

80
60
40
20

0

85

80

75

70

65

60

55

50

45

40

35

30

25

20

15

10

5

0

Figure 9: Stochastic model production example
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Ns � Nb 1 2 3 4 5 6 7 8
1 0% 0% 0% 0% 0% 0% 0% 0%
2 0% 8.0% 7.4% 8.3% 8.1% 8.4% 8.3% 8.4%
3 0% 11.2% 11.5% 11.8% 11.9% 12.0% 12.1% 12.0%
4 0% 11.8% 12.8% 13.2% 13.2% 13.3% 13.4% 13.5%
5 0% 12.9% 14.2% 14.6% 14.8%
6 0% 13.7% 15.2% 15.6%
7 0% 14.6% 15.9%
8 0% 15.0%

Table 4: Improvement of the stochastic model over the deterministic model

variables (see sections 2.3 and 3.4), they can be solved quickly. Indeed, it takes 0.06 and 86 seconds
to solve the initial deterministic and stochastic models, respectively, while only 0.005 and 6 seconds
are required on average to perform one iteration of the successive linear programming approach in the
deterministic and stochastic cases, respectively.

5.3 Branching factor and number of levels
This experiment studies the impact of the branching factor and number of levels in the tree of scenarios
on solution quality. The latter was evaluated through a Monte Carlo approach. That is, we first generated
optimal production plans with CPLEX for trees of scenarios of different shapes by using different values
for parameters Nb and Ns. Then, each production plan obtained was evaluated on 1 000 000 new price
vectors generated with our stochastic price generation scheme (see section 4) by following the path of
production decisions in the tree of scenarios based on the prices at periods pj − 2, for j = 1, .., Ns − 1, as
explained in section 3.2.

Table 4 reports the results for different values ofNb andNs. The numbers in the table correspond to the
percentage of improvement over the deterministic model (which corresponds to Nb = 1 and Ns = 1). The
computation was stopped as soon as the relative gap dropped below 0.01%. The relative gap corresponds
to the difference between the upper bound obtained by relaxing the integrality constraints and the best
integer solution found, divided by the upper bound. A gap of zero indicates an optimal solution. The
time limit was set to 2 hours, but the relative gap dropped below 0.01% in less than 10 minutes even on
the largest instances (see below).

The empty entries in the table correspond to models that were too large to be created and solved
with 1 GB of memory. Given that the stochastic model with Nb = 1 or Ns = 1 is, in fact, a deterministic
model, the improvement is equal to 0 % in these cases. Otherwise, a significant difference is observed in
the performance of the deterministic and stochastic models. Furthermore, this difference increases when
the stochastic model is more refined (i.e., when the values of parameters Nb and Ns increase). In fact,
the improvement over the deterministic model reaches 15.9% with Nb=3 and Ns=7.

Table 5 reports the computation times in seconds on each instance and table 6 indicates the problem
size for some instances in terms of the number of binary variables, continuous variables and constraints. It
should be noted that the complexity of the problem is directly related to the presence of binary variables
(i.e., without them, the problem would be easy). To solve mixed integer linear problems, CPLEX branches
on binary variables. This procedure can require a computation time that grows exponentially with the
number of binary variables, in the worst case.

5.4 Future value of water
This subsection analyzes the sensitivity of the models to the future value of water. Figure 10 reports the
improvement obtained with the stochastic model over the deterministic one for different future average
electricity sales prices (FP ). The parameters for the stochastic model were set to Nb = 3, Ns = 7. A
stopping criterion based on a relative gap of 0.01% was also used here. With this stopping criterion, all
problems were solved in less than half an hour of computation time.

We can see that the improvement first increases with the value of FP and then decreases. When the
future value of water is low (FP ≤ 20$), it is better to produce at full capacity with both models. That
is why the improvement is null. However, as the future value of water increases, a more clever production
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Ns � Nb 1 2 3 4 5 6 7 8
1 1 1 1 1 1 1 1 1
2 1 2 1 2 2 3 3 4
3 1 3 4 6 11 15 21 30
4 1 4 10 26 58 112 204 326
5 1 5 49 215 557
6 1 11 111 532
7 1 31 461
8 1 44

Table 5: Computation time of the stochastic model (in seconds)

Ns Nb binary real constraints
1 1 288 2264 2924
2 2 432 3400 4396
3 3 1248 9848 12748
4 4 6120 48452 62720
5 5 67488 533656 691116
6 4 65520 521432 674300
7 3 65592 519636 672672

Table 6: Problem size of some instances
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Figure 10: Improvement as a function of the future value of water (FP )
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Figure 11: Improvement as a function of price volatility

strategy must be developed to efficiently distribute the water between current production and future
production. In these cases, the stochastic model performs better than the deterministic one. Then, when
the future value of water becomes really high (i.e., FP ≥ 120$), there is no difference again between the
two models, because it is better to keep all water for the future. The stochastic model is thus useful
for FP values between 20$ and 120$, with a peak at about 65 $. Analysis of historical production data
shows that FP is about 64$. This is the reference value that we used in the other experiments, but this
analysis shows that good results would have also be obtained for values that are not too far from 64$.

5.5 Price volatility
The last experiment evaluates the impact of price volatility (or variance) on the performance of the
stochastic model. In this regard, the variance of the normal random variable εp (see section 4) is multiplied
by parameter Ω. The results are shown in figure 11 where the improvement of the stochastic model over
the deterministic model is reported for different Ω values.

In these experiments, the parameters for the stochastic model were set to Nb = 3 and Ns = 7. With
a stopping criterion based on a relative gap of 0.01%, all problems were solved in less than 20 minutes
of computation time. The results clearly show that the improvement of the stochastic model over the
deterministic one increases with price volatility, until a critical point is reached where the improvement
starts to decrease (Ω = 2.5). Of course, the variance in a real market will never be as high as what is
obtained with the largest Ω values tested. In fact, values between 0.75 and 1.25 better represent what is
observed in the Ontario’s electricity market.

6 Conclusion
This paper has introduced two mathematical models to maximize the profits obtained from hydroelec-
tricity sales. The first model is based on deterministic prices while the second one integrates stochastic
prices by considering a number of different price realizations that are organized into a tree structure.
The numerical results shows that the stochastic model is superior to the deterministic one with regard to
solution quality. Also, the performance of the stochastic model improves when prices are more volatile
(higher variance).

Future developments will now be aimed at integrating the bidding process observed in deregulated
markets within the stochastic model. By considering these bids, price volatility could be better exploited.
Indeed, with a clever bidding strategy, electricity can be sold when prices are unexpectedly high, even if
that was not planned in the original plan. The same thing is true for prices that happen to be unexpectedly
low. Thus, additional profits can be expected from this integration.
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Annex I : Proof of formula 83
Theorem 1. Let φE

p = ap + bp · φE
p−1 + εp. Then φE

p =
∑

i=1,..,p

ai

∏
j=i+1,..,p

bj + φE
0

∏
i=1,..,p

bk +
∑

i=1,..,p

εi
∏

j=i+1,..,p

bj.

Proof. For p = 1, the formula is obvious. Suppose it is true for p− 1 and let us show it is also true for p.

φE
p = ap + bp · φE

p−1 + εp

= ap + bp · (
∑

i=1,..,p−1

ai

∏
j=i+1,..,p−1

bj + φE
0

∏
i=1,..,p−1

bk +
∑

i=1,..,p−1

εi
∏

j=i+1,..,p−1

bj) + εp

=
∑

i=1,..,p

ai

∏
j=i+1,..,p

bj + φE
0

∏
i=1,..,p

bk +
∑

i=1,..,p

εi
∏

j=i+1,..,p

bj (89)
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