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Abstract. In this paper, a tabu search heuristic is combined with slope scaling to solve a discrete depot
location problem, known as the multicommodity location problem with balancing requirements. Although
the uncapacitated version of this problem has already been addressed in the literature, this is not the case for
the more challenging capacitated version, where each depot has a fixed and finite capacity. The slope scaling
approach is used during the initialization phase to provide the tabu search with good starting solutions.
Numerical results are reported on various types of large-scale randomly generated instances. The quality
of the heuristic is assessed by comparing the solutions obtained with those of a commercial mixed-integer
programming code.
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1. Introduction

This paper describes a heuristic approach for solving a discrete location problem known
as the multicommodity location problem with balancing requirements (Crainic, Dejax
and Delorme, 1989). This problem comes from an industrial application related to the
management of a heterogeneous fleet of containers for an international maritime ship-
ping company. Once a ship arrives at the port, the company has to deliver the loaded
containers, which may come in several types and sizes, to designated in-land destina-
tions. Following their unloading by the importing customer, empty containers are moved
to a depot. Later on, they might be delivered to customers requesting containers for sub-
sequent shipping of their own products. Due to regional imbalances in empty container
availabilities and needs throughout the network, balancing movements of empty con-
tainers among the depots are required. The problem is thus to locate the depots that will
collect the supply of empty containers to satisfy the demand for empty containers, while
minimizing the total operating costs. These include the cost of opening and operating
the depots, and the cost generated by customer–depot and interdepot movements.
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It is noteworthy that, in practice, this strategic/tactical problem has to be solved
repeatedly since container shipping companies generally do not build their own depots,
but rather use existing facilities from ports and rail yards. The problem is thus to de-
cide which depots to use on an operational basis according to the demand and the cost
structure determined for a specific time horizon. Within each such planning period, it is
also possible to solve the problem repeatedly with different scenarios to account for the
uncertainty of the data. This approach would allow to generate multiple solutions from
which the planner can derive more robust location decisions.

The presence of balancing movements differentiates this problem from classical
discrete location applications. Different exact and heuristic approaches have been pro-
posed for the uncapacitated version of the problem (Crainic and Delorme, 1993; Crainic,
Delorme and Dejax, 1993; Crainic, Gendreau and Soriano, 1993; Gendron and Crainic,
1995, 1997; Gendron, Potvin and Soriano, 1999). However, a more challenging capac-
itated version, where each depot has a fixed and finite capacity, has not been addressed
yet to the best of our knowledge (see (Sridharan, 1995) for a review on the related ca-
pacitated plant location problem). Introducing capacities at the depots presents a con-
siderable interest (Crainic, Dejax and Delorme, 1989) and is especially realistic in the
context of existing facilities at ports and rail yards, which are to be shared among mul-
tiple shipping firms. In this context, the depot capacity represents an estimate of the
total volume of empty containers that the company can ship through the corresponding
location for the specific planning horizon. At this strategic/tactical level, depot capac-
ities are not meant to be hard constraints, but are rather used to produce more realistic
location decisions. In particular, taking capacities into account can translate into sub-
stantial economies at the operational level, where “hard” capacity constraints need to be
considered.

Although the multicommodity capacitated location problem with balancing re-
quirements (MCLB) can be formulated as a mixed-integer programming (MIP) model,
the experimental results reported in section 5 show that large-scale instances with up
to 200 depot locations, 500 customers and 20 commodities, cannot be solved optimally
by state-of-the-art MIP solvers within reasonable time and memory limits. Note that
problems of that size are encountered in practice. For example, a problem with 130 de-
pot locations scattered over five European countries is reported in (Crainic, Dejax and
Delorme, 1989). In this problem, containers come in two sizes with about ten major
types for each size (translating into about 20 commodities), and customers are aggre-
gated into 300 zones. In this paper, we combine tabu search with slope scaling to find
good solutions to such large-scale instances of the MCLB.

Tabu search is a well-known metaheuristic designed to explore large combinatorial
solution spaces. It exploits both short and long-term memories about the search process
to escape from local minima and identify new promising search paths (in the remainder,
we assume a knowledge of the basic principles of tabu search; see (Glover and Laguna,
1997) for details). The main contribution of our tabu search is a neighborhood reduction
procedure based on effective approximations of the impact of each move on the current
solution. These approximations are then used to sample a subset of the entire neighbor-
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hood for exact evaluation by a linear programming (LP) solver. Although neighborhood
reduction techniques have been used in tabu search methods for the uncapacitated ver-
sion of the problem (Crainic, Gendreau and Soriano, 1993; Gendron, Potvin and Soriano,
1999), our approach differs significantly because it takes into account the capacities and
their impact on each move (see (Glover and Laguna, 1997) for other examples of neigh-
borhood reduction techniques in the tabu search literature). The starting solutions for
the tabu search are provided by a slope scaling method. The latter has recently been pro-
posed for addressing non-convex piecewise-linear cost network flow problems (Kim and
Pardalos, 1999, 2000a, b). The proposed adaptation consists of an iterative procedure,
where a multicommodity minimum cost network flow problem (MMCF) with modified
linear costs is solved at each iteration. This iterative scheme quickly converges to a good
initial solution, which is then improved by the tabu search.

The organization of the paper is the following. In section 2, a mathematical for-
mulation of the MCLB is proposed. This formulation is exploited to isolate the MMCF,
which is used at each iteration of the slope scaling procedure, as well as for the eval-
uation of neighboring solutions in the tabu search. Descriptions of the tabu search and
slope scaling procedures are found in sections 3 and 4, respectively. In section 5, compu-
tational experiments are reported and analyzed for various types of large-scale randomly
generated test problems, as obtained with the generator described in the appendix. The
quality of the heuristic is assessed by comparing the solutions obtained with those found
by a state-of-the-art commercial MIP code. Finally, concluding remarks are made in
section 6.

2. Problem formulation

To formulate the problem, we consider a directed network G = (N,A), where N is the
set of nodes and A is the set of arcs. There are several commodities (types of containers)
moving through the network which are represented by set K. The set of nodes can
be partitioned into the set of customer nodes C and the set of depots D. For each depot
j ∈ D, we define its possible supply and demand customers as Cs

j = {i ∈ C: (i, j) ∈ A}
and Cd

j = {i ∈ C: (j, i) ∈ A}, respectively. We also assume that there is at least one
supply or demand customer adjacent to each depot, that is, Cs

j ∪ Cd
j �= ∅, ∀j ∈ D.

The sets of all supply and demand customers thus correspond to Cs = ⋃
j∈D Cs

j and
Cd = ⋃j∈D Cd

j , respectively. For each node i ∈ N (depot or customer), we also define
the set of depots adjacent to this node in both directions D−i = {j ∈ D: (j, i) ∈ A} and
D+i = {j ∈ D: (i, j) ∈ A}.

Since there are no arcs between pairs of customers, the set of arcs can be partitioned
into three subsets:

• customer-to-depot arcs ACD = {(i, j) ∈ A: i ∈ C, j ∈ D};
• depot-to-customer arcs ADC = {(j, i) ∈ A: j ∈ D, i ∈ C};
• depot-to-depot arcs ADD = {(l, j) ∈ A: l ∈ D, j ∈ D}.
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The problem consists of minimizing the costs incurred by moving flows of com-
modities through the network to satisfy the supplies at origins and the demands at desti-
nations. For each customer i ∈ Cs, the supply of commodity k is noted ski , while for each
customer i ∈ Cd, the demand for commodity k is noted dki . All supplies and demands
are assumed to be non-negative and deterministic. A non-negative transportation cost ckij
is incurred for each unit of flow of commodity k moving on arc (i, j). In addition, for
each depot j ∈ D, a non-negative fixed cost fj is incurred if the depot is opened. The
problem is further complicated by the presence of a fixed capacity qj on the volume of
all commodities which can transit through depot j ∈ D, where the volume of one unit
of commodity k is noted vk .

Let xkij represent the flow of commodity k moving on arc (i, j), and yj be the binary
location variable with value 1 if depot j is opened, and value 0, otherwise. The problem
is then formulated as:

Z = min
∑
j∈D

fjyj +
∑
k∈K

( ∑
(i,j)∈ACD

ckij x
k
ij +

∑
(j,i)∈ADC

ckjix
k
ji +

∑
(l,j)∈ADD

cklj x
k
lj

)
, (1)

subject to∑
j∈D+i

xkij = ski , ∀i ∈ Cs, k ∈ K, (2)

∑
j∈D−i

xkji = dki , ∀i ∈ Cd, k ∈ K, (3)

∑
i∈Cd

j

xkji +
∑
l∈D+j

xkjl −
∑
i∈Cs

j

xkij −
∑
l∈D−j

xklj = 0, ∀j ∈ D, k ∈ K, (4)

∑
k∈K

vk

(∑
i∈Cs

j

xkij +
∑
l∈D−j

xklj

)
� qjyj , ∀j ∈ D, (5)

xkij � ski yj , ∀j ∈ D, i ∈ Cs
j , k ∈ K, (6)

xkji � dki yj , ∀j ∈ D, i ∈ Cd
j , k ∈ K, (7)

xkij � 0, ∀(i, j) ∈ A, k ∈ K, (8)

yj ∈ {0, 1}, ∀j ∈ D. (9)

Constraints (2) and (3) ensure that supply and demand requirements are met. Con-
straints (4) and (5) are the flow conservation constraints and capacity constraints for
each depot, respectively; constraints (5) also forbid customer-related movements through
closed depots. The same is achieved by relations (6) and (7), which are consequently
redundant. These constraints are added to the formulation because they significantly im-
prove the quality of the lower bounds obtained through the LP relaxation. They are used
when solving large-scale instances of the MCLB with a state-of-the-art MIP code (see
section 5).
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Upper bounds on the optimal value of this problem can be derived by fixing the
vector of location variables y to some value y and by solving an associated MMCF,
where the closed depots (yj = 0) and their incident arcs cannot be used. A feasible
solution x̃ to the latter problem would thus satisfy constraints (2)–(4), (8) and∑

k∈K
vk

(∑
i∈Cs

j

xkij +
∑
l∈D−j

xklj

)
� qjyj , ∀j ∈ D. (10)

This solution would provide an upper bound on the optimal value of the MCLB, given
by:

Z(̃x, ỹ ) =
∑
j∈D

fj ỹj +
∑
k∈K

( ∑
(i,j)∈ACD

ckij x̃
k
ij +

∑
(j,i)∈ADC

ckji x̃
k
ji +

∑
(l,j)∈ADD

cklj x̃
k
j l

)
, (11)

where

ỹj =


1, if

(∑
i∈Cs

j

x̃kij +
∑
l∈D−j

x̃klj

)
> 0,

0, otherwise,

∀j ∈ D. (12)

The feasible flow x̃ can be obtained by solving an MMCF with the original linear trans-
portation costs, c, but also, more generally, by solving an MMCF with c replaced by
modified costs, c:

min
∑
k∈K

( ∑
(i,j)∈ACD

ckij x
k
ij +

∑
(j,i)∈ADC

ckjix
k
ji +

∑
(l,j)∈ADD

cklj x
k
lj

)
, (13)

subject to constraints (2)–(4), (8) and (10).
The tabu search heuristic, which is described in the next section, solves a series of

MMCFs with c = c (i.e., the linear costs are not modified), but with y fixed to different
y values, as determined by the search procedure. The slope scaling approach presented
in section 4 considers MMCFs with all depots open (i.e., yj = 1, ∀j ∈ D), but modifies
the linear transportation costs c at each iteration.

3. Tabu search

The tabu search procedure searches the space of configurations of open/closed de-
pots, by fixing the y variables to 1 or 0 (see (Crainic, Gendreau and Soriano, 1993;
Gendron, Potvin and Soriano, 1999), for other approaches of this type for the uncapaci-
tated version of the problem). For each configuration, the flows on the customer–depot,
depot–customer and depot–depot arcs are obtained by solving the associated MMCF.
A particular configuration of open/closed depots with the corresponding flows repre-
sents a solution to the problem.
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Since the customers are only linked to a subset of potential depot sites, some cus-
tomers may not be connected to any open depot for a given configuration of depots,
leading to infeasibility. Likewise, the total capacity of the open depots may be insuffi-
cient to carry the total flow. An artificial depot of infinite capacity is thus added to the
network and linked to all customers with high arc costs, which ensure that no flow will
go through these arcs, unless there is no feasible alternative. A solution to the associated
MMCF is thus always obtained, although it might not correspond to a feasible solution
of the MCLB (however, the tabu search always keeps track of the best feasible solution).

In the following, we first describe in details the neighborhood structure and the
global search strategy. Then, in the next subsection, we present the techniques used to
reduce the neighborhood size and to evaluate exactly only a small subset of neighboring
solutions at each iteration.

3.1. Neighborhood structure and search strategy

Two different neighborhoods are explored. The first neighborhood consists of moves
where a single y variable is modified by opening a closed depot (ADD) or by closing
an open depot (DROP). Its complexity is O(m), where m is the number of depots. The
second neighborhood is based on SWAP moves where two variables are modified by
simultaneously closing a depot and opening another one. This neighborhood is of com-
plexity O(m2).

For most problems, good solutions have approximately the same number of open
depots, as observed in (Crainic, Gendreau and Soriano, 1993). The ADD/DROP neigh-
borhood is thus a good medium to find an appropriate number of open depots and get
close to high quality solutions. However, it is not indicated to search the space of config-
urations once a certain quality level has been reached, since the objective tends to vary
widely when a depot is opened or closed. The SWAP neighborhood is better suited for
this task, once the “right” number of open depots has been determined.

The global search strategy alternates between the two neighborhoods. For the
ADD/DROP neighborhood, a tabu search is performed. In the case of the SWAP neigh-
borhood, which is more computationally expensive than the ADD/DROP neighborhood,
a pure descent is performed (i.e., the search stops at the first local minimum). Prelim-
inary experiments have shown that performing a tabu search with SWAP moves does
not bring much improvement and consumes a lot of computation time. A descent with
SWAP is, however, essential to the good performance of the algorithm. It allows the
method to find a good configuration, for a given number of open depots, and to “set the
stage” for a new round of ADD/DROP moves.

In the description below, s is the current solution, s∗ is the best solution found from
the start, and s∗l is the best solution found during each execution of the ADD/DROP tabu
search. In steps 2.2 and 2.3, both s and s∗ are appropriately updated by the ADD/DROP
and SWAP operators after each move. Also, s∗l is updated after each move in step 2.2.

1. Find an initial solution using the slope scaling procedure (presented in section 4) and
set it as the current solution s; s∗ ← s.
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2. Repeat until at least I moves (ADD/DROP and SWAP) are performed or until a CPU
time limit is achieved:

2.1. s∗l ←+∞.

2.2. Perform ADD/DROP tabu search until IA/D consecutive iterations are performed
without any improvement to s∗l .

2.3. Perform a SWAP descent until a local minimum is reached.

The tabu list T records the |T | last depots added or dropped from the solution.
This prevents the reversal of their status as long as they remain in the list. Since a SWAP
move might be seen as a combination of one ADD move and one DROP move, the depots
involved in any SWAP move are also recorded in the tabu list. Thus, at every call to the
ADD/DROP tabu search, the tabu list is kept in its current state and is not reinitialized.
The length of the tabu tenure is a random value chosen within a user-supplied interval.

In principle, the evaluation of each move, either ADD/DROP or SWAP, involves
the solution of the associated MMCF, which is computationally heavy. In the following,
we describe neighborhood reduction techniques aimed at focusing only on a small subset
of moves at each iteration, while retaining the effectiveness of the solution strategy.

3.2. Neighborhood reduction

Since exact evaluations of all neighboring solutions are computationally expensive, ap-
proximation techniques are used to quickly filter out the possible moves at each iteration
of the tabu search. Basically, the moves are ranked according to these approximations,
and only some moves selected among the best ones are evaluated exactly, by solving an
MMCF for each one. These approximations are based on estimating the costs incurred
by moving flows to account for opening (ADD move) or closing (DROP move) a depot.
Thus, in the case of an ADD move, we attempt to move customer–depot and depot–
customer flows to the newly opened depot in order to save as much as possible on the
total cost. Conversely, in the case of a DROP move, the approximation procedure moves
customer–depot and depot–customer flows out of the newly closed depot, and reassigns
these flows to other depots. Since a SWAP move is basically a DROP move followed by
an ADD move, the same approximations are also used for the SWAP moves.

When reassigning the flows, the approximation procedure makes use of the resid-
ual capacity qj at each depot j , which is defined for the current solution x (feasible for
MMCF) as

qj = qj −
∑
k∈K

vk

(∑
i∈Cs

j

xkij +
∑
l∈D−j

xklj

)
, ∀j ∈ D. (14)

The procedure adjusts the residual capacity of any depot j whenever some flow is
reassigned to depot j , and always maintains qj � 0. Because the approximation proce-
dure considers the reassignment of customer–depot and depot–customer flows indepen-
dently, and does not maintain flow conservation at the depots, two residual capacities are
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associated with each depot j , one for the inflow and one for the outflow, which are noted
q−j and q+j , respectively.

Because the residual capacities are taken into account, the order in which the depots
are considered for a potential flow reassignment is of prime importance. Hence, for each
type of move, an “a priori” ordering of the depots adjacent to each customer i ∈ C is
used, based on the following proximity measures:

p+i (j) =
∑
k∈K

ckij , ∀j ∈ D+i ,

p−i (j) =
∑
k∈K

ckji , ∀j ∈ D−i .
(15)

Let us assume that for each customer i, the |D+i | and |D−i | adjacent depots are
ordered in non-increasing values of p+i (j) and p−i (j) (with ties broken arbitrarily). Let
also {1, . . . , |D+i |} and {1, . . . , |D−i |} be the index sets associated with this ordering.
When evaluating an ADD move, the approximation procedure then attempts to move the
flow from the farthest depots to the newly opened depot. Similarly, when evaluating a
DROP move, the procedure attempts to move the flow from the newly closed depot to
the closest open depots.

The flow reassignment also takes into account the flow transiting through the arti-
ficial depot (denoted with index 0). For example, when an ADD move is evaluated, the
approximation procedure first attempts to move the flow from the artificial depot to the
newly opened depot before taking care of the flow from the other depots. Conversely,
for a DROP move, the flow from the newly closed depot is reassigned to the artificial
depot when all other possible reassignments have already been considered.

We now describe the approximation procedure for each type of move, ADD, DROP,
and SWAP. To this end, we use the following notation: a+ = max{0, a}; ZA(j1), ZD(j0)

and ZS(j0,j1) are the values associated with an ADD, DROP or SWAP move, where j 0 is
the depot to be closed and j 1 is the depot to be opened.

3.2.1. Approximation for the ADD move
When a depot j 1 is to be opened, new saving opportunities are offered to all customers
adjacent to that depot. We compute these potential savings for each customer i adjacent
to j 1 using the formulas:

u+i =
∑
k∈K

∑
j∈D+i

(
ckij − ck

ij1

)+
xkij , ∀i ∈ Cs

j1,

u−i =
∑
k∈K

∑
j∈D−i

(
ckji − ck

j1i

)+
xkji , ∀i ∈ Cd

j1 .
(16)

We then attempt to reassign the customer–depot and depot–customer flows by scanning
the customers in non-increasing order of their savings (with ties broken arbitrarily).

Thus, given a current solution (x, y), we can summarize the approximation proce-
dure for an ADD move as follows:
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1. ZA(j1) = fj1 .

2. q−
j1 = qj1 .

3. For each i ∈ Cs
j1 , compute the saving u+i .

4. Sort the customers i ∈ Cs
j1 in non-increasing order of their savings u+i ; let

{1, . . . , |Cs
j1 |} be the index set associated with this ordering.

5. For each i = 1, . . . , |Cs
j1 | do:

5.1. First for the artificial depot (j = 0), then for each j = |D+i |, . . . , 1 such that
yj = 1, do:

5.1.1. For each k ∈ K such that xkij > 0 do:

5.1.1.1. If ckij > ck
ij1 , reassign x̃ = max{q−

j1/v
k, xkij } units of flow from

j to j 1: q−
j1 = q−

j1 − vkx̃; ZA(j1) = ZA(j1) − (ckij − ck
ij1 )̃x.

6. q+
j1 = qj1 .

7. For each i ∈ Cd
j1 , compute the saving u−i .

8. Sort the customers i ∈ Cd
j1 in non-increasing order of their savings u−i ; let {1, . . . ,

|Cd
j1 |} be the index set corresponding to this ordering.

9. For each i = 1, . . . , |Cd
j1 | do:

9.1. First for the artificial depot (j = 0), then for each j = |D−i |, . . . , 1 such that
yj = 1, do:

9.1.1. For each k ∈ K such that xkji > 0 do:

9.1.1.1. If ckji > ck
j1i

, reassign x̃ = max{q+
j1/v

k, xkji} units of flow from

j to j 1: q+
j1 = q+

j1 − vkx̃; ZA(j1) = ZA(j1) − (ckji − ck
j1i
)̃x.

Remarks.

• In steps 2 and 6, we initialize the residual capacities of depot j 1 only, since j 1 is the
only depot which receives additional flow, as a result of the procedure. Initially, the
residual capacities of j 1 are set to its full capacity, since there is no flow in-transit
through j 1. Note that steps 2–5 and steps 6–9 are interchangeable since customer–
depot and depot–customer flows are reassigned independently.

• In steps 5.1.1 and 9.1.1, the order in which we consider the commodities is of lit-
tle importance, as we observed that there is typically only a few (between 1 and 4)
commodities used on every arc for our test instances. If necessary, we could have
scanned the commodities in non-increasing order of vkxkij (vkxkji), but this would
have increased the computational time, without improving significantly the overall
performance.
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• In steps 5.1.1.1 and 9.1.1.1, it is not necessary to actually reassign the flow (i.e., to
compute new values for x) because the only values that need to be updated are the
residual capacities of j 1.

3.2.2. Approximation for the DROP move
When a depot j 0 is to be closed, every customer with some flow in-transit through de-
pot j 0 must reassign that flow to some other open depots. To this end, the customers
are handled one by one, using an order determined by regret measures. A large regret
measure for a customer i indicates that its flow must be reassigned as soon as possible
to the closest alternative open depots (as measured by their proximity), otherwise large
additional costs are incurred. For each customer i adjacent to j 0, let D

+
i and D

−
i repre-

sent the sets of open depots adjacent to i, excluding j0, and assume that these sets are
ordered in non-increasing values of p+i (j) and p−i (j), respectively. According to this

ordering, we use the index sets {1, . . . ,D+i } and {1, . . . ,D−i }. The regret measures are
then computed as follows:

r+i =
∑
k∈K

r+∑
j=2

(
ckij − cki1

)+
xk
ij0 , ∀i ∈ Cs

j0,

r−i =
∑
k∈K

r−∑
j=2

(
ckji − ck1i

)+
xk
j0i
, ∀i ∈ Cd

j0,

(17)

where r+ = min(rmax, |D+i |), r− = min(rmax, |D−i |) and rmax is a parameter usually set
to a small value (i.e., if rmax = 2, only the difference in cost between the two closest
depots is considered). In our experiments, rmax was set to 5.

The approximation procedure for the DROP move can be summarized as follows:

1. ZD(j0) = −fj0 .

2. For each j ∈ D such that yj = 1, except j 0, do: q−j = qj .

3. For each i ∈ Cs
j0 , compute the regret r+i .

4. Sort the customers i ∈ Cs
j0 in non-increasing order of their regrets r+i ; let

{1, . . . , |Cs
j0 |} be the index set corresponding to this ordering.

5. For each i = 1, . . . , |Cs
j0 | do:

5.1. For each k ∈ K such that xk
ij0 > 0 do:

5.1.1. While xk
ij0 > 0, do the following, first for each j = 1, . . . , |D+i |, then

for the artificial depot (j = 0):

5.1.1.1. Reassign x̃ = max{q−j /vk, xkij0 } units of flow from j 0 to j :

q−j = q−j −vkx̃; ZD(j0) = ZD(j0)+(ckij0−ckij )̃x; xk
ij0 = xk

ij0− x̃;

xkij = xkij + x̃.
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6. For each j ∈ D such that yj = 1, except j 0, do: q+j = qj .

7. For each i ∈ Cd
j0 , compute the regret r−i .

8. Sort the customers i ∈ Cd
j0 in non-increasing order of their regrets r−i ; let {1, . . . ,

|Cd
j0 |} be the index set corresponding to this ordering.

9. For each i = 1, . . . , |Cd
j0 | do:

9.1. For each k ∈ K such that xk
j0i

> 0 do:

9.1.1. While xk
j0i

> 0, do the following, first for each j = 1, . . . , |D−i |, then
for the artificial depot (j = 0):

9.1.1.1. Reassign x̃ = max{q+j /vk, xkj0i
} units of flow from j 0 to j :

q+j = q+j −vkx̃; ZD(j0) = ZD(j0)+(ckj0i
−ckji )̃x; xk

j0i
= xk

j0i
−x̃;

xkji = xkji + x̃.

Remarks.

• In steps 2 and 6, we initialize the residual capacities of all open depots except j 0,
since all might receive additional flow.

• In steps 5.1 and 9.1, the order in which the commodities are considered is of little
importance for the same reasons mentioned in the case of an ADD move.

• In steps 5.1.1.1 and 9.1.1.1, it is now necessary to compute new values for x. First,
we note that the value of the flow through j 0 must be updated, as it is used to stop
the reassignment. Second, it is true that the flow through any open depot j is never
used by the procedure, but it will be used by the approximation procedure for the
SWAP move (see below). This approximation assumes that a SWAP move is made
of a DROP, followed by an ADD. Therefore, the information gathered by the DROP
approximation (i.e., the flows through the open depots) is transferred to the ADD
approximation procedure, which makes use of it.

3.2.3. Approximation for the SWAP move
In the case of a SWAP move, we first rank the depots j 0 to be closed, using the approx-
imation described for the DROP move. Then, for each closed depot j 0, we rank the
depots j 1 to be opened, using the approximation described for the ADD move. Thus, all
possible SWAP moves are ranked according to the value ZS(j0,j1) = ZD(j0) + ZA(j1).

3.2.4. Exact evaluation
In the case of the ADD/DROP neighborhood, we evaluate exactly nADD moves produced
by ADD and nDROP moves produced by DROP. In the case of the SWAP neighborhood,
nSWAP moves are evaluated exactly. However, we do not necessarily select the moves
associated with the best approximation values for this purpose. We rather use a prob-
abilistic perturbation scheme, biased towards the best approximations. It proves to be
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useful by allowing the algorithm to perform, from time to time, a move that is not nec-
essarily among the best ones.

Assuming r different moves, either of the ADD, DROP or SWAP types, the move
with the best approximation value (rank 1) is associated with some Zmax value, while the
worst one (rank r) is associated with some Zmin value. The values of the other moves
are then equally spaced between Zmin and Zmax. The value Zi for the move of rank i is
computed as:

Zi = Zmax − (Zmax − Zmin)
i − 1

r − 1
, 1 � i � r.

The probability pi of selecting the move of rank i is then:

pi = Zi∑r
j=1 Zj

, 1 � i � r.

Assuming that Zmin + Zmax = 2, the selection bias in favor of the best approximations
can be increased by setting the Zmax value closer to 2, or reduced by setting its value
closer to 1 (Whitley, 1989). In our computational results, we used Zmin = 0.5 and
Zmax = 1.5.

A total of nADD+ nDROP or nSWAP selection trials (depending on the neighborhood,
ADD/DROP or SWAP) are performed, based on this probability distribution. The se-
lected moves are then evaluated exactly, by solving an MMCF for each of them. Among
all moves evaluated exactly, the best one is chosen at the end.

4. Slope scaling

A slope scaling procedure is used to produce an initial solution for the tabu search
(see (Kim and Pardalos, 1999, 2000a, b) for recent successful applications of this type
of heuristic for solving non-convex piecewise linear network flow problems). This is
an iterative procedure, where successive MMCFs are solved, based on modified linear
costs. In our context, all depots are implicitly open in the formulation of the MMCF
(i.e., yj = 1, ∀j ∈ D), but the linear costs, c, are modified to reflect the contribution of
the fixed costs.

More specifically, given a solution x̃ to some MMCF formulation, and assuming
that ỹ is computed according to (12), the linear costs are modified so that

∑
k∈K

( ∑
(i,j)∈ACD

ckij x̃
k
ij +

∑
(j,i)∈ADC

ckji x̃
k
ji +

∑
(l.j)∈ADD

cklj x̃
k
lj

)
= Z(̃x, ỹ), (18)

where Z(̃x, ỹ) is the total cost of the feasible solution (̃x, ỹ) given by equation (11). In
other words, the goal of the approach is to solve an MMCF with modified costs c so that,
if the solution remains the same, the costs c reflect exactly the total cost, both linear and
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fixed, incurred by this solution. To compute the modified costs, we use the total volume
in-transit through each depot j , defined for any feasible flow x̃, as:

X̃j =
∑
k∈K

vk

(∑
i∈Cs

j

x̃kij +
∑
l∈D−j

x̃klj

)
. (19)

The modification to the linear costs proceeds as follows. We denote the modified
cost associated with arc (i, j) and commodity k at iteration t � 0 as ck(t)ij . Similarly, we
denote by X̃t

j the total volume in-transit through depot j at iteration t � 0. Initially, at
iteration 0, we set the modified costs as follows:

c
k(0)
ij = ckij + vkαj

fj

qj
, ∀(i, j) ∈ ACD, k ∈ K, (20)

c
k(0)
j i = ckji + vk(1− αj)

fj

qj
, ∀(j, i) ∈ ADC, k ∈ K, (21)

c
k(0)
lj = cklj + vk

(
αj

fj

qj
+ (1− αl)

fl

ql

)
, ∀(l, j) ∈ ADD, k ∈ K, (22)

where αj = ξj/(ξj + (j) with ξj = ∑k∈K vk
∑

i∈Cs
j
ski and (j = ∑k∈K vk

∑
i∈Cd

j
dki ,

for each j ∈ D. Here, ξj ((j ) is the maximum volume that might transit through
depot j from all supply (demand) customers adjacent to it. Parameter αj (1 − αj ) thus
approximates the fraction of the total volume in-transit at depot j which can be imputed
to supply (demand) customers, and is used to calibrate the cost on the corresponding
arcs.

Note that these initial modified costs are derived from the LP relaxation of the
MCLB formulation with the redundant constraints (6) and (7) removed. It is easy to
show that any optimal solution to this LP must satisfy, for each depot j ,

yj = 1

qj

∑
k∈K

vk

(∑
i∈Cs

j

xkij +
∑
l∈D+j

xklj

)
(23)

= 1

qj

∑
k∈K

vk

(
αj

(∑
i∈Cs

j

xkij +
∑
l∈D+j

xklj

)
+ (1− αj)

(∑
i∈Cd

j

xkji +
∑
l∈D−j

xkjl

))
. (24)

By replacing the y variables in the objective with this last expression, we obtain the
MMCF with costs given by formulas (20)–(22).

Based on the optimal solution to the MMCF with modified costs obtained at the
previous iteration, the linear costs are updated as follows at every iteration t > 0. First,
we consider the arcs for which all incident depots are used for in-transit flows (i.e.,
X̃t−1

j > 0 for all incident depots j ):

c
k(t)
ij = ckij + vkαj

fj

X̃t−1
j

, ∀(i, j) ∈ ACD, k ∈ K, (25)
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c
k(t)
j i = ckji + vk(1− αj)

fj

X̃t−1
j

, ∀(j, i) ∈ ADC, k ∈ K, (26)

c
k(t)
lj = cklj + vk

(
αj

fj

X̃t−1
j

+ (1− αl)
fl

X̃t−1
l

)
, ∀(l, j) ∈ ADD, k ∈ K. (27)

It is easy to verify that this cost update satisfies (18). For arcs with at least one
unused incident depot, we cannot apply formulas (25)–(27), since X̃t−1

j = 0 for at least
one incident depot j . In this case, the costs of the corresponding arcs are updated as
follows at iteration t > 0:

c
k(t)
ij = β max

{̃
c (0), max

0<τ<t

{
c
k(τ)
ij | X̃τ

j > 0
}}
, ∀(i, j) ∈ ACD, k ∈ K, (28)

c
k(t)
j i = β max

{̃
c (0), max

0<τ<t

{
c
k(τ)
ji | X̃τ

j > 0
}}
, ∀(j, i) ∈ ADC, k ∈ K, (29)

c
k(t)
lj = β max

{̃
c (0), max

0<τ<t

{
c
k(τ)
lj | X̃τ

j , X̃
τ
l > 0

}}
, ∀(l, j) ∈ ADD, k ∈ K, (30)

where c̃ (0) = max(i,j)∈A,k∈K c
k(0)
ij , and β > 0 is a parameter. When β = 1, this formula

sets the arc cost either to the largest cost at iteration 0, or to the largest arc cost value
from the previous iterations which led to the use of all incident depots for in-transit
flows (a similar rule is used in (Kim and Pardalos, 1999)). Setting β to a large value
virtually closes the corresponding arc, while this decision can possibly be reverted in the
following iterations when β is relatively small. In our implementation, β was set to a
large value, as we were mostly interested to quickly identify a “good” feasible solution.
Typically, setting β to a small value consumes significantly more time. Preliminary
experiments revealed that the value β = 1000 produces the best results when the slope
scaling procedure is used during the initialization phase of the tabu search.

The slope scaling procedure is stopped when there are no modifications in the
costs from one iteration to the next. At each iteration, a feasible solution x̃ is obtained,
and an upper bound is computed according to equation (11). The best upper bound
found so far is kept in variable Z∗. If we denote by x̃ the final solution of the slope
scaling procedure, the corresponding depot configuration, ỹ, is then computed with (12).
Recall that this solution and hence the resulting depot configuration are derived from a
linear approximation of the fixed and transportation costs. The resulting flow structure
is therefore optimal with respect to this approximation, but generally not with respect
to the original transportation costs. Thus, before starting the tabu search, one needs to
optimize the flow structure given the depot configuration ỹ. To do so, we solve another
MMCF using the original costs (i.e., c = c) and the depot configuration ỹ (i.e., y = ỹ),
thus obtaining a new feasible solution x̃. The initial solution provided to the tabu search
is then derived from (12), with its value Z(̃x, ỹ) provided by (11). If Z(̃x, ỹ) improves
upon Z∗, which is often the case, it replaces it.
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5. Computational results

In this section, we report computational results on problem instances obtained with the
generator described in the appendix. The solutions produced by the heuristic are com-
pared with optimal solutions obtained with the MIP solver CPLEX, version 6.6 (ILOG,
1999). All tests were run on 400 MHz UltraSparc2 processors.

In the following, the problem instances are first described. Then, section 5.2 pro-
vides some insights about the quality of the approximation procedures for the ADD and
DROP moves (see section 3.2). Then, we analyze the performance of the heuristic and
compare it to CPLEX.

5.1. Problem instances

The heuristic was evaluated on different types of problems produced with our gener-
ator. A problem type is defined through the following parameter values (for detailed
explanations about parameters nh, nv, sf, d and γ , the reader is referred to the appendix):

• Number of customers n: 500.

• Number of depots m: 200.

• Number of commodities p: 20.

• Number of customer zones nh×nv: two types of instances are generated, using either
a 3×2 grid (dense) or a 4×3 grid (sparse).

• Fixed cost multiplier sf: two values are used to multiply the original fixed costs, 1000
and 5000.

• Mean demand value for each commodity d: 100.

• Capacity tightness parameter γ : all instances are capacitated, using γ = 0.3.

Thus, four different types of problems are considered, depending on the number
of customer zones and the fixed cost multipliers. Preliminary experiments have shown
that the performance of the heuristic is particularly sensitive to these characteristics. By
reporting results obtained with different values for these two critical parameters, some
interesting trends can be revealed. For each type of problems, five different instances
were generated.

5.2. Quality of the approximation procedures

We have examined how well the approximation procedures developed for the ADD and
DROP moves (see section 3.2) are consistent with the exact evaluations obtained with
CPLEX. In a typical run, we observed that the best ADD move was found in the 2–3%
top ranked ADD approximations, while the best DROP move was found in the 15–20%
top ranked DROP approximations. Thus, the ADD approximation is much more accurate
than the DROP approximation. This is not a surprise, given the difficulty of heuristically
reassigning the flow to the remaining open depots when a DROP move is applied. This
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observation is used in the next section for selecting the parameter values of the tabu
search.

5.3. Performance analysis and comparison with CPLEX

Computational results are reported on the four types of problems introduced in sec-
tion 5.1. The parameter settings for the tabu search are as follows.

Number of iterations: I , IA/D. Preliminary experiments have shown that I =
300 iterations provide a good trade-off between solution quality and computation time.
In fact, most of the optimization occurs during those first 300 iterations, as it will be
illustrated with results obtained when the tabu search runs much longer. Parameter IA/D
was set to 10. We observed that smaller values are costly, in the sense that they often
prevent the search to identify high quality solutions in the current region of the search
space. Conversely, larger values tend to be unproductive.

Neighborhood size: nADD, nDROP, nSWAP. The number of exact evaluations for
ADD should be small, given the quality of the approximation (see section 5.2). Thus, we
used the value nADD = 3. We also used nDROP = 40, i.e., the number of exact evaluations
for DROP is an order of magnitude larger than in the case of ADD. This is supported
by two facts: (1) the DROP approximation is less reliable than the ADD approximation
and (2) every opportunity to close a depot must be exploited to generate a good solution.
This situation is similar to some vehicle routing applications, where saving a vehicle is of
paramount importance due to important acquisition costs. Finally, the number of exact
evaluation of SWAP moves must remain small, due to its computational requirements:
we chose nSWAP = 9.

Tabu tenure. The tabu tenure for the ADD and DROP moves is randomly selected
in the interval [3, 7]. Note that the types of moves considered here significantly impact
the solution structure. This justifies the use of relatively small tabu tenure values.

Tables 1 and 2 report optimal solutions obtained with CPLEX (with the default
parameter values) on each problem instance a_b_c, where a corresponds to the nh × nv

customer zones, b to the scaling factor sf for the fixed cost, and c to the instance number
(1–5). In these tables, the solution value and CPU time associated with the LP relaxation,
first integer solution (FI) and optimum (OPT) are shown. The LP relaxation is solved
with the combined network/dual simplex method implemented in CPLEX, using the
so-called steepest-edge pricing rule (see the CPLEX documentation (ILOG, 1999) for
more details). Note that on instances 3x2_5000_1 and 3x2_5000_2, a parallel version
of CPLEX running on 16 processors was stopped after 10 000 000 seconds of CPU time
without a proof of optimality. A large variance in computation times is thus observed
from one instance to another, which is typical of exact methods. Clearly, CPLEX has a
harder time when the fixed costs are high and when the number of zones is small.

In tables 3 and 4, the results produced by our tabu search with slope scaling are
reported. All solution values are divided by the corresponding optimum, so that an
optimal solution now reads 1.0000. Through this normalization process, the gap with the
optimum is also readily available. For each problem instance, we show the solution value
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Table 1
CPLEX runs on instances with 3× 2 customer zones.

Problem Linear relaxation First integer (FI) Optimum (OPT)

Solution CPU Solution CPU Solution CPU
(·103) (sec) (·103) (sec) (·103) (sec)

3x2_1000_1 65 252 40 724 66 102 64 149 65 606 1 077 564
3x2_1000_2 87 220 24 893 87 727 41 145 87 711 262 574
3x2_1000_3 79 368 37 626 79 571 50 867 79 496 171 790
3x2_1000_4 43 594 59 191 44 053 99 926 43 686 579 249
3x2_1000_5 52 487 49 084 53 302 85 605 52 718 3 450 811

3x2_5000_1 183 473 70 928 187 641 84 639 ∗186 527 10 000 000
3x2_5000_2 210 472 63 162 213 333 74 079 ∗211 299 10 000 000
3x2_5000_3 202 632 61 957 206 648 78 139 203 306 680 446
3x2_5000_4 151 940 110 385 154 909 125 326 152 714 2 431 508
3x2_5000_5 171 925 124 897 179 928 152 320 172 557 1 191 996

Table 2
CPLEX runs on instances with 4× 3 customer zones.

Problem Linear relaxation First integer (FI) Optimum (OPT)

Solution CPU Solution CPU Solution CPU
(·103) (sec) (·103) (sec) (·103) (sec)

4x3_1000_1 101 359 27 813 101 776 47 505 101 621 626 412
4x3_1000_2 143 632 4 709 144 344 12 486 144 004 133 238
4x3_1000_3 172 158 3 651 174 053 6 599 173 399 120 784
4x3_1000_4 76 212 31 028 76 741 39 609 76 544 435 680
4x3_1000_5 156 859 3 953 157 674 12 524 157 399 205 873

4x3_5000_1 210 370 23 037 212 189 28 203 211 299 186 004
4x3_5000_2 274 092 48 805 276 263 77 436 275 036 1 739 470
4x3_5000_3 298 729 24 221 302 943 30 718 299 775 173 359
4x3_5000_4 180 721 40 076 184 181 52 201 181 911 882 657
4x3_5000_5 271 451 18 624 275 785 24 651 272 483 236 901

and CPU time for the first integer solution found by CPLEX (CPLEX(FI)), based on the
results of tables 1 and 2; the initial solution produced by the slope scaling procedure
(SS); and the solution value, CPU time to best solution (CPU∗), and total CPU time
for the tabu search (TS) after I = 300 iterations. For each type of problem, averages
and standard deviations taken over the five instances are also reported. Since CPLEX(FI)
might be seen as a heuristic competitor of TS, the values obtained when the tabu search is
run as long as CPLEX(FI) are shown on the second line for each problem instance. Note
that a star is found besides the solution values of instances 3x2_5000_1 and 3x2_5000_2
to indicate that they have been normalized with the best known solution (given that the
optimum is not known).

We observe that the dense 3× 2 instances are much harder to solve than the sparse
4× 3 instances, as revealed by the CPU times. In particular, the time consumed in solv-
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Table 3
Tabu runs on instances with 3× 2 customer zones.

Problem CPLEX(FI) SS TS

Solution CPU Solution CPU Solution CPU∗ CPU
(sec) (sec) (sec) (sec)

3x2_1000_1 1.0076 64 149 1.0091 173 1.0061 9 966 17 477
1.0016 45 744 64 285

3x2_1000_2 1.0002 41 145 1.0002 184 1.0001 2 324 18 669
1.0000 27 538 41 219

3x2_1000_3 1.0009 50 867 1.0020 182 1.0007 23 776 28 720
1.0007 23 776 50 964

3x2_1000_4 1.0084 99 926 1.0089 163 1.0064 5 849 19 950
1.0060 30 923 99 940

3x2_1000_5 1.0111 85 605 1.0192 205 1.0138 18 612 25 714
1.0076 40 546 85 753

Average 1.0056 68 338 1.0079 181 1.0054 12 105 22 106
1.0031 33 705 68 432

Std. deviation 0.0048 24 281 0.0075 16 0.0055 8 915 4 864
0.0034 9 166 24 268

3x2_5000_1 ∗1.0060 84 639 ∗1.0083 185 ∗1.0015 19 509 28 027
∗1.0015 19 509 84 733

3x2_5000_2 ∗1.0096 74 079 ∗1.0096 210 ∗1.0096 210 16 727
∗1.0030 52 651 74 226

3x2_5000_3 1.0164 78 139 1.0099 147 1.0099 147 16 126
1.0047 38 092 78 190

3x2_5000_4 1.0144 125 326 1.0144 270 1.0000 14 934 20 742
1.0000 14 934 125 328

3x2_5000_5 1.0427 152 320 1.0363 223 1.0000 366 26 534
1.0000 366 152 377

Average 1.0178 102 901 1.0157 207 1.0042 7 033 21 631
1.0018 25 110 102 970

Std. deviation 0.0145 34 360 0.0117 46 0.0051 9 441 5 479
0.0020 20 458 34 329

ing the MMCFs within the tabu search is significantly larger for dense instances (for the
same number of iterations, 300, the 3 × 2 instances require more computational effort
than the 4×3 instances). We note, however, that the heuristic is equally effective on both
types of instances. In particular, the slope scaling procedure displays an average opti-
mality gap of 1.15% on the 3× 2 instances, compared to 1.21% on the 4 × 3 instances.
Similarly, the tabu search identifies solutions of similar quality after 300 iterations, irre-
spective of the number of customer zones: the average optimality gap is 0.48% for the
3× 2 instances, and 0.43% for the 4× 3 instances.

To confirm these tendencies with regard to the number of customer zones, we have
performed experiments on a limited number of 6 × 4 and 8 × 6 instances (two for each
class, one with sf = 1000 and one with sf = 5000). The results support our previous



A TABU SEARCH 211

Table 4
Tabu runs on instances with 4× 3 customer zones.

Problem CPLEX(FI) SS TS

Solution CPU Solution CPU Solution CPU∗ CPU
(sec) (sec) (sec) (sec)

4x3_1000_1 1.0015 47 505 1.0246 82 1.0045 5 319 8 901
1.0045 5 319 47 513

4x3_1000_2 1.0024 12 486 1.0014 85 1.0014 85 10 889
1.0014 85 12 503

4x3_1000_3 1.0038 6 599 1.0040 80 1.0040 80 7 702
1.0040 80 6 611

4x3_1000_4 1.0026 39 609 1.0061 81 1.0039 6 956 7 744
1.0038 31 460 39 649

4x3_1000_5 1.0017 12 524 1.0111 76 1.0029 4 719 5 696
1.0029 4 719 12 559

Average 1.0024 23 745 1.0094 80 1.0033 3 431 8 186
1.0033 8 332 23 767

Std. deviation 0.0009 18 459 0.0092 3 0.0012 3 165 19 005
0.0012 13 164 18 459

4x3_5000_1 1.0042 28 203 1.0333 81 1.0052 9 304 11 926
1.0052 9 304 28 204

4x3_5000_2 1.0045 77 436 1.0009 109 1.0009 109 9 793
1.0009 109 77 459

4x3_5000_3 1.0106 30 718 1.0000 105 1.0000 105 11 249
1.0000 105 30 776

4x3_5000_4 1.0125 52 201 1.0148 67 1.0110 2 458 6 604
1.0001 52 008 52 207

4x3_5000_5 1.0121 24 651 1.0246 74 1.0090 5 013 6 304
1.0085 6 304 24 667

Average 1.0088 42 642 1.0147 87 1.0052 3 397 9 175
1.0029 13 566 42 662

Std. deviation 0.0041 22 228 0.0146 19 0.0048 3 874 2 603
1.0038 21 857 22 227

observations: when comparing the results with those of tables 3 and 4, we note that
the CPU times decrease significantly, especially for CPLEX, and that the slope scaling
procedure is equally effective: it identifies solutions that are, on average, within 2% of
the optimum. Since CPLEX runs significantly faster on sparser instances, one might ask
whether the first integer solutions it finds outperform the solutions produced by the tabu
search. On the contrary, the tabu search remains competitive with CPLEX(FI) on these
four instances after 300 iterations: on average, TS shows an optimality gap of 0.64%,
with an average CPU time of 4 492 seconds, compared to an optimality gap of 0.89%,
with an average CPU time of 7 333 seconds, for CPLEX(FI). Even if these four instances
are significantly easier to solve than the ones shown in tables 3 and 4, we note that
computing an optimal solution is still a very hard task, since CPLEX spent, on average,
1 251 706 seconds before it identified an optimal solution for each of these four instances.
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With regard to the fixed cost multipliers, we observe from tables 3 and 4 that the
instances with sf = 5000 are significantly more difficult to solve than the ones with sf =
1000. This can be seen from the CPU times, but also from the quality of the solutions
obtained. For example, the slope scaling procedure shows an average optimality gap
of 0.86% when sf = 1000, compared to 1.49% when sf = 5000. In spite of these
differences in the quality of the initial solution among the two types of instances, the
tabu search identifies solutions of about the same quality for both sf = 1000 and sf =
5000: when sf = 1000, the average optimality gap is 0.44%, compared to 0.47% when
sf = 5000.

In general, after 300 iterations, TS provides solutions of similar or better quality
than CPLEX(FI), but in much less CPU time. By running the tabu search as long as
CPLEX(FI), which often represents a substantial increase in CPU time, further improve-
ments are obtained. We note finally that the tabu search identifies many best solutions
relatively late during its execution, as revealed by CPU*, which indicates that the heuris-
tic is effective in exploring the solution space. This might also indicate that further im-
provements could be achieved through an increase in computation times (although this
avenue was not really investigated due to already substantial CPU times).

6. Conclusion

We have presented a tabu search heuristic, combined with a slope scaling procedure, for
solving the multicommodity capacitated location problem with balancing requirements
(MCLB). The tabu search is especially efficient when the customers are distributed over
a small number of geographic zones, and when the fixed costs for opening and operating
the depots are large. In these cases, it provides a means to generate solutions of high
quality in relatively short computation times.
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Appendix A. Problem generator

In the following, the problem generator is described. As it contains a large number of
parameters, the real values for generating our test problems are often used in place of
the underlying parameters.
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Figure 1. Customer and depot zones.

A.1. Network

The network lies in a rectangle divided into customer zones and depot zones. Both
types of zones correspond to squares of the same dimensions in the Euclidean plane.
The number of customer zones determines the dimensions of the rectangular area, while
each depot zone is centered at the intersection of four customer zones (see figure 1 for
an illustration).

A.1.1. Customer nodes
The rectangular area of interest is first divided into a certain number of customer zones,
where each zone corresponds to a 100 × 100 square in the Euclidean plane. Given nh

zones along the horizontal axis and nv zones along the vertical axis, the customers are
then distributed among the nc = nhnv available zones. An example is shown in figure 1
for nc = 6 zones with nh = 3, nv = 2. We also specify a number nhd of high-density,
nmd of medium-density, and nld of low-density zones, such that nhd + nmd + nld = nc.
These zones are randomly chosen among the available zones. With each type of zone, we
associate weights wchd > wcmd > wcld. Given n customers in set C, we then determine
the number of customers assigned to zone i as:

ni =
⌈

wci∑nc
j=1 wcj

n

⌉
, i = 1, . . . , nc,

where wci is either wchd, wcmd or wcld, depending on the zone type. The location of a
customer within a given zone is chosen uniformly randomly.

A.1.2. Depot nodes
Depot zones are shown with dashed lines in figure 1. Basically, there are nh − 1 zones
along the horizontal axis and nv − 1 zones along the vertical axis for a total of nd =
(nh − 1)(nv − 1) zones. Let us assume that any given zone j for the depots has a non-
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empty intersection with a set Kj of customer zones. Then, given m depots, the number
of depots assigned to zone j is:

mj =
⌈

wdj∑nd
k=1 wdk

m

⌉
, j = 1, . . . , nd,

where

wdj =
∑
k∈Kj

wck, j = 1, . . . , m.

The location of a depot within a given zone is chosen randomly according to a uniform
distribution.

A.1.3. Arcs
Having located the customer and depot nodes, the connectivity of the network is speci-
fied as follows.

Customer–depot and depot–customer arcs. Assume that customer i is located in cus-
tomer zone Zci and depot j is located in depot zone Zdj . Then, arcs (i, j) and (j, i) are
added to the network if and only if Zci ∩ Zdj �= ∅.
Depot–depot arcs. We first construct a shortest spanning tree on the complete undi-
rected graph obtained by considering only the depot nodes, with edges weighted by the
inter-depot Euclidean distances. This tree represents the backbone of the interdepot con-
nections. Then, additional edges are added by connecting a certain percentage of pairs
of leaves of this spanning tree found in adjacent depot zones. In our experiments, this
percentage is set to 10%. Each edge {i, j} obtained through this process is replaced by
the directed arcs (i, j) and (j, i) in the real network.

A.2. Linear and fixed cost

The fixed cost to open and operate a depot is set to a basic value randomly chosen in
an interval according to a uniform distribution. In our experiments, we used the interval
[1000, 2000]. These values introduce some variability among the depots. They are then
multiplied by a scaling factor sf to put more or less emphasis on the fixed costs versus
the linear costs.

The linear cost for each arc-commodity pair is based on the Euclidean distance
multiplied by a commodity-dependent factor which, for each commodity, is an integer
randomly chosen between 1 and 10 (for a given commodity, the same number is used
for all arcs). For customer–depot or depot–customer arcs, the linear cost is actually
the Euclidean distance between the two nodes multiplied by the commodity-dependent
factor. For depot–depot arcs, the linear cost is the Euclidean distance multiplied by the
commodity-dependent factor and by 0.6, to take into account the economies of scale
obtained through consolidation.
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We also generate linear costs for the depot–depot arcs which are missing in the
network. To this end, we compute the shortest paths for all pairs of depots and connect
every pair of depots with a pair of arcs weighted by the shortest path value. The linear
costs on these arcs are simply the shortest path value multiplied by the commodity-
dependent factor. Thus, the interdepot connections form a complete directed graph. This
is important, since even if some commodities are not stored at a particular depot, they
might pass through them in order to save on the overall transportation costs (this situation
arises in actual applications where depots correspond to rail terminals, and interdepot
connections are railyards: commodities might use the railyards without stopping at the
terminals).

A.3. Demand and supply

Each customer zone is also defined as being either a supply, demand or balanced zone.
These three types are distributed among the high, medium and low-density zones, at
their pro-rata. A mean demand value, d , supplied as a parameter and which is the same
for all commodities in set K, is then used to assign a demand dki and a supply ski to each
customer i for commodity k as follows.

When a demand is assigned to the customer, the amount is randomly chosen within
the following admissible intervals, depending on the zone type:

(a) demand zone [d + 10%, d + 30%];
(b) supply zone [d − 30%, d − 10%];
(c) balanced zone [d − 10%, d + 10%].

Conversely, when a supply is assigned to the customer, the amount is randomly
chosen in the following admissible intervals, depending on the zone type:

(a) demand zone [d − 30%, d − 10%];
(b) supply zone [d + 10%, d + 30%];
(c) balanced zone [d − 10%, d + 10%].

In a second step, a target value for the total demand (supply) of each commodity to
be distributed is first defined as:

t = 0.8dn.

Note that the fraction 0.8 is aimed at reducing the total demand (supply) to be distributed.
This introduces more variability in the assignment process, by depriving a number of
customers of any demand or supply for one or more commodities during the assignment
procedure (see below).

After the first step, the total amount distributed for each commodity k, d
k

for the
demand and sk for the supply, is typically under the target value t . The remaining de-
mand (supply) for each commodity, t − dk (t − sk), must then be distributed among the
customers. To this end, we repeat the following until the value t is reached: one cus-
tomer is randomly chosen and a demand (supply) for a randomly chosen commodity is
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assigned to it. If some amount has already been assigned to the customer during the first
step, a random fraction of the remainder, with regard to the upper bound of its admis-
sible interval, is assigned to it. Otherwise, the amount is randomly selected within the
admissible interval, as in the first step. When assigning this demand (supply), we also
verify that the total demand (supply) already assigned never exceeds the target t .

A.4. Capacity

The volume of one unit of commodity k ∈ K is an integer randomly chosen between
1 and 20. Assuming that V = ∑k∈K vk

∑
i∈Cs s

k
i represents the maximum volume that

might transit through all depots, we generate the capacities in such a way that
∑

j∈D qj ≈
V/γ , where γ ∈ (0, 1) is a user-supplied parameter. When γ → 1 the problem is more
constrained and conversely. Values between 0.2 and 0.4 are indicated: higher values lead
to infeasible instances, while lower values lead to virtually uncapacitated problems.

More precisely, the capacities are generated as follows:

1. Compute a target capacity qγ = �V/(γ ·m)�, where m is the number of depots.

2. Randomly group all depots into �m/2� pairs, except one if m is odd. In the latter
case, we set the capacity of the remaining depot to qγ .

3. For each pair of depots (j1, j2), compute qj1 = (1 + λ) · qγ and qj2 = (1 − λ) · qγ ,
with λ randomly chosen in an interval Iλ ⊆ [0, 1) (we used Iλ = [0.1, 0.5] for all
instances).
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