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Abstract

This paper studies an arc routing problem with capacity constraints and time-dependent service costs. This problem is
motivated by winter gritting applications where the ‘‘timing’’ of each intervention is crucial. The exact problem-solving
approach reported here first transforms the arc routing problem into an equivalent node routing problem. Then, a column
generation scheme is used to solve the latter. The master problem is a classical set covering problem, while the subproblems
are time-dependent shortest path problems with resource constraints. These subproblems are solved using an extension of a
previously developed algorithm. Computational results are reported on problems derived from a set of classical instances
of the vehicle routing problem with time windows.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

We study a variant of the Capacitated Arc Rout-
ing Problem (CARP), introduced in [15], where a
subset of arcs must be serviced at a cost that
depends on the time of beginning of service. In this
paper, the cost is a piecewise linear function of time.
This problem is motivated from winter gritting
operations, where the timing of an intervention is
of prime importance [3,9,10,21,23]. That is, if the
intervention is too early or too late, the cost in
material and time sharply increases.

The CARP is NP-hard and was first addressed
with relatively simple heuristics, like the construct-
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strike [4], path-scanning [16] and augment-merge
[15] heuristics. They have been improved over time,
mainly through the use of metaheuristics, like tabu
search [17] or genetic algorithms [20]. An interesting
variant of the CARP is presented in [14], where
intermediate facilities are available to reload the
vehicle. Although we do not address this variant
here, these intermediate facilities could correspond
to salt boxes, for example, in winter gritting applica-
tions. Surveys on the CARP and some of its vari-
ants can be found in [1,6,8,11,12]. We are not
aware of any variant of the CARP with time-depen-
dent service costs, although a particular case would
be the CARP with soft time windows, when the ser-
vice cost is ‘‘flat’’ within a given time interval and
then increases linearly on both sides of the interval.

The paper is organized as follows. The problem is
first introduced in Section 2. Then, its transformation
.
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into an equivalent node routing problem is described
and the resulting mathematical formulation is pre-
sented in Section 3. The column generation approach
for solving this problem is reported in Sections 4 and
5, where time-dependent shortest path subproblems
with resource constraints are addressed by extending
a previously reported algorithm. In Section 6, numer-
ical results on problems derived from instances of
the vehicle routing problem with time windows
(VRPTWs) are reported [26]. Finally, the conclusion
follows.

2. Problem description

Let G = (V,A) be a directed graph where V is the
vertex set and A is the arc set. We assume that A is
partitioned into a subset of required arcs A1, which
must be serviced, and a complementary subset of arcs
A2. With each required arc e 2 A1 is associated a
demand de, a length le, a travel time tte, a service time
ste, a travel cost tce and a time-dependent piecewise
linear service cost function sce(Te), where Te is the
time of beginning of service on arc e. The other arcs
in subset A2 have a length, a travel time and a travel
cost only. Note that the service time is typically larger
than the travel time because it takes more time to ser-
vice an arc than to simply travel along the arc.

A set K = {1, . . . ,m} of identical vehicles with
capacity Q is available to service the required arcs.
These vehicles are located at a central depot node
from which each vehicle services a single route that
starts and ends at the depot. The vehicles are not
allowed to wait along their route and must be back
at the depot by a given deadline. The objective is to
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Fig. 1. Different service cost functions.
service all required arcs in the graph at least cost
with feasible routes, where the cost is related to
the number of vehicles used, the travel cost and
the service cost.

Fig. 1 shows typical piecewise linear service cost
functions for the required arcs. Note that the func-
tion in Fig. 1a is a degenerate form of the one shown
in Fig. 1b, where the ‘‘optimal’’ time interval for ser-
vice reduces to a single point. The function shown in
Fig. 1b was used in our computational experiments,
due to its similarity with classical ‘‘soft’’ time win-
dows, but other piecewise linear forms could have
been used as well, like the one shown in Fig. 1c.

3. Problem formulation

The first step is to transform the arc routing
problem in graph G = (V,A) into an equivalent
node routing problem in a transformed graph
G 0 = (V 0,A 0). This type of transformation is well
known and was first proposed in [25] for an undi-
rected graph. The drawback in the undirected case
is that multiple nodes must be associated with each
required edge. Basically, if ei = (i1, i2) and ej = (j1, j2)
are two required edges, there are four possible ways
to link them together (i.e., either i1 with j1, i1 with
j2, i2 with j1, or i2 with j2). To keep this information
when solving the node routing problem, the trans-
formation proposed in [25] creates three nodes for
each required edge. Recently, the authors in [2,22]
have proposed new transformations where only
two nodes are associated with each required edge.
In our case, since we are working on a directed
graph, there is only one way to link two arcs and
a single node can thus be associated with each
required arc (a benefit also mentioned in [24]). More
precisely, the transformation is the following.

Each required arc ei 2 A1 corresponds to a node i

in graph G 0 with demand di, service time sti and
time-dependent service cost sci(Ti). Each pair of dis-
tinct nodes i and j in G 0 is connected by an arc
(i, j) 2 A 0 with length lij, travel time ttij and travel
cost tcij. The latter values are those of the shortest
path between the two corresponding required arcs
in graph G. These shortest paths are calculated from
the end node of the first required arc to the start
node of the second required arc and include the sec-
ond required arc. Finally, the central depot node is
added and connected to all other nodes in G 0. The
arc values in the latter case are given by the shortest
paths from the depot node to the start node of all
required arcs in G (including the required arc) or
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Fig. 2. Graph transformation.
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from the end node of all required arcs to the depot
node, depending on the orientation of the arc.

Fig. 2 illustrates this transformation. In the fig-
ure, the solid arcs in G are required arcs while dot-
ted arcs are non-required ones. Nodes i and j in G 0

correspond to arcs ei, and ej in G, respectively. Each
arc e 2 G is labeled with the vector (de, ste, le, tte, tce).
Nodes i, j 2 G 0 are labeled with vectors ðdei ; steiÞ and
ðdej ; stejÞ, respectively, while arc (i, j) 2 G 0 is labeled
with the vector (lij, ttij, tcij).

After the transformation, we obtain a vehicle
routing problem with time-dependent service costs.
This type of problem has never been addressed in
the literature, although some variants of the
VRPTW can be related to it (see [18,19,27], for
example, where missing a time window or a desired
service time within a time window is penalized). A
good review of different time-constrained vehicle
routing problems can also be found in [7].

In the problem formulation below, N 0 stands for
the set of nodes V 0 minus the depot (i.e., the nodes
that must be serviced). Also, the depot is duplicated
into an origin depot o and a destination depot d in
V 0. The decision variables are: (1) the binary flow
variables on the arcs xk

ij; ði; jÞ 2 A0; k 2 K, which are
equal to 1 if vehicle k travels on arc (i, j) to service
node j, 0 otherwise, (2) the non-negative load vari-
ables Qk

i ; i 2 V 0 which specify the load of vehicle k

just after servicing node i and (3) the non-negative
time variables T k

i ; i 2 V 0, which specify the time of
beginning of service of vehicle k at node i. Note that
Qk

0 ¼ Q; k 2 K; d0 ¼ dd ¼ 0 and that T k
0 and T k

d

stand for the departure and return time of vehicle k

at the depot.

Min
X
k2K
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i þ stiþ ttij�T k
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xk
ijðQk

i �dj�Qk
j Þ6 0;

k 2K; ði;jÞ 2A0; ð7Þ

06 T k
i 6 T ; k 2K; i2 V 0; ð8Þ

06Qk
i 6Q; k 2K; i2 V 0; ð9Þ

06 xk
ij6 1; k 2K; ði;jÞ 2A0; ð10Þ

xk
ij 2f0;1g; k 2K; ði;jÞ 2A0: ð11Þ

The objective is to minimize the sum of travel
costs and time-dependent service costs. A fixed
charge can also be added to the travel costs tc0i,
i 2 N 0, if one wants to penalize the use of an addi-
tional vehicle. Constraints (1) require that each
node in N 0 be serviced once. Constraints (2) impose
an upper bound m on the number of vehicles.
Constraints (3)–(5) are the flow conservation con-
straints. Constraints (6) and (7) ensure the feasibility
of the time schedule and loads, respectively. Con-
straints (8) impose that the time of beginning of ser-
vice at each node (including the departure and
return time at the depot) be a non-negative value
that does not exceed the deadline T. Constraints
(9)–(11) ask for non-negative load values that do
not exceed vehicle capacity Q and binary values
for the flow variables. Note that constraints (6)
and (7) can be linearized, due to the presence of bin-
ary flow variables (see [7], for details). In the next
section, a Dantzig–Wolfe decomposition, or column
generation, scheme is thus proposed to solve this
problem.

4. Column generation

The column generation scheme proposed here is
well documented in the literature. Consequently, we
will only introduce the master problem and the short-
est path sub-problems. The interested reader will find
more details about column generation in [7].
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The master problem corresponds to constraints
(1) and (2) in the original formulation and can be
expressed as follows:

Min
X
p2X

Cpup

Subject to
X
p2X

aipup ¼ 1; i 2 N 0;

X
p2X

up 6 m;

up P 0; p 2 X;

where decision variable up is 1 if path p is selected, 0
otherwise. In this formulation, X is the set of all fea-
sible paths from the origin depot o to the destina-
tion depot d, Cp is the total cost of path p (sum of
travel costs and service costs on all arcs and nodes
along the path), and aip is 1 if node i is in path p.
It is thus a linear relaxation of a set covering prob-
lem with an additional constraint on the total num-
ber of vehicles.

The subproblem, for each vehicle k, is an elemen-
tary shortest (least cost) path problem with resource
constraints and corresponds to constraints (3)–(11)
in the original formulation.

The resource constraints are the capacity con-
straint and the time deadline for the return of the
vehicle at the depot. Denoting the reduced travel
cost on arc (i, j) 2 A 0 by �tcij, the subproblem for a
given vehicle k is expressed as follows:

Min
X
ði;jÞ2A0

�tcijxk
ij þ

X
i2N 0

sciðT k
i Þ

X
j2N 0[fog

xk
ji

Subject to ð3Þ–ð11Þ:

We start with an initial set of columns (paths) in
the master problem, using a solution construction
approach based on the savings heuristic of Clarke
and Wright [5]. This simple heuristic works as
follows. At the start, it is assumed that each node
is serviced by a single route. Then, at each iteration,
a pair of routes is selected and merged together on
the basis of the best cost saving that can be achieved.
This is repeated until a single route is obtained or no
feasible merge exits. It is worth noting that the eval-
uation of the savings is based on the true time-depen-
dent costs, as it is explained in Section 5.

The dual variables associated with this initial set
of columns are then used to calculate the reduced
travel costs in the corresponding subproblem. The
latter is an elementary shortest path problem with
resource constraints, which is solved with the algo-
rithm of Feillet et al. [13]. All non-dominated paths
of negative cost are then added to the master prob-
lem and the latter is solved with CPLEX to obtain
new dual variables. This procedure is repeated until
no more paths with negative cost are found. Note
that we incorporate as many paths as possible into
the master problem, since the latter is relatively easy
to solve when compared with the shortest path sub-
problems. Different filtering schemes have been tried
to reduce the number of columns in the master
problem, but these have invariably led to less effi-
cient algorithms.

To obtain an integer solution, the column genera-
tion scheme is embedded within a previously reported
branch-and-bound algorithm, where branching takes
place on the arcs of the graph (i.e., an arc is forced
into or excluded from a solution). More details about
this algorithm can be found in [13].

The main difficulty when solving the shortest
path subproblems stems from the time-dependent
service costs that must be taken into account when
evaluating a path. The algorithm of Feillet et al.
was thus extended to address this issue. The original
algorithm and the new extension are described in
the following.

5. Elementary shortest path with resource

constraints

The algorithm of Feillet et al. is a label correcting
algorithm that solves the elementary shortest path
problem with resource constraints on graphs with,
possibly, negative cycles. In this context, a path is
characterized by the consumption of each resource,
in addition to its cost. When different paths lead to
the same node, it might well be that no path domi-
nates, or is better than the others, over all criteria.
As a consequence, many different labels are typi-
cally maintained at each node (i.e., all non-domi-
nated paths leading to that node).

Since elementary paths must be generated, cycles
are detected by keeping a trace of previously visited
nodes. More precisely, a path p from some origin
node o to some node j in a graph with n nodes
is labeled with Rp ¼ ðCp; t1

p; . . . ; tl
p; sp; V 1

p; . . . ; V n
pÞ,

where L = {1, . . . , l} is the set of resources, Cp is
the cost of path p; tk

p is the consumption of resource
k = 1, . . . ,l, sp is the number of unreachable nodes
(either because they have already been visited or
because their inclusion would violate one or more
resource constraints) and V i

p ¼ 1 if node i is
unreachable, 0 otherwise. The following dominance
relation is then defined:
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Dominance relation. If p and p 0 are two different
paths from origin o to node j with labels Rp and
R0p, respectively, then path p dominates p 0 if and
only if Cp 6 Cp0 ; sp 6 sp0 ; tk

p 6 tk
p0 ; k ¼ 1; . . . ; l; V i

p 6

V i
p0 ; i ¼ 1; . . . ; n.
That is, path p dominates p 0 if (1) it is not more

costly, (2) it does not consume more resources for
every resource considered and (3) every unreachable
node is also unreachable for path p 0. Note that sp,
the number of unreachable nodes, is included in
the label only to speed up the computations. As sta-
ted in [13], by eliminating paths through this domi-
nance relation, only labels corresponding to non-
dominated elementary paths are kept and a solution
to the problem is obtained at the end.

In our application, there are l = 2 resource con-
straints: the capacity constraint (where the resources
consumed are load units) and the deadline con-
straint for the return of the vehicle at the depot
(where the resource consumed is time). As the algo-
rithm is executed, we maintain and update at each
node all non-dominated shortest paths leading from
the origin depot to the node. In particular, with each
path p is associated its time-dependent total cost
CpðT p

0Þ which is expressed as a function of departure

time variable T p
0. Given some path p from the origin

depot to node i with cost function CpðT p
0Þ, the cost

function of the new path p 0 obtained by extending
path p from node i to node j is simply:

Cp0 ðT p
0Þ ¼ CpðT p

0Þ þ scjðT p
0 þ TT i þ ttijÞ þ �tcij;

where TTi is the total travel time from the origin de-
pot to node i.

An example is provided for a complete path in
the Euclidean plane from the origin depot o to the
destination depot d (see Fig. 3). It is assumed that
1

2

3

4
o,d

Fig. 3. A complete path.
the travel time and the travel cost are the same
and correspond to the Euclidean distance. The latter
values are 2.8, 2.2, 3.6, 1.4, and 2.0 for arcs (o, 1),
(1, 2), (2,3), (3, 4) and (4, d), respectively.

The time-dependent service cost function for
each vertex is also shown in Fig. 4. The total cost
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Fig. 4. Service cost for each vertex i = 1,2,3,4.
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function associated with the destination depot d is
given in Fig. 5 (where only the portion in the posi-
tive quadrant is considered). The minimum cost of
this path is thus 24.8 for any T0 between 0.4 and 2.

As we associate a cost function (rather than a
cost value) with each path, the dominance relation
between two partial paths that lead to the same
node holds only when one function is ‘‘under’’ the
other in the positive quadrant, as illustrated in
Fig. 6.

It is worth noting that these cost functions can be
easily handled within the Clarke and Wright heuris-
tic, which is used to generate the initial set of col-
umns. This is due to the merging process which
consists in appending one path at the end of
another. Let p1 and p2 be two paths from the origin
depot o to the destination depot d with cost func-
tions Cp1ðT p1

0 Þ and Cp2ðT p2
0 Þ, where T p1

0 and T p2
0

denote the departure time variables associated with
paths p1 and p2, respectively. Let also l and f be the
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Fig. 6. Example of dominance relation between two cost
functions.
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last node in path p1 (just before destination depot d)
and the first node in path p2 (just after the origin
depot o), respectively. Then, if we merge p1 and
p2 to form the new path p, we can easily express
its cost Cp in function of a single departure time var-
iable. Namely, we have:

T p2
0 ¼ T p1

0 þ TT l þ ttlf � ttof

and we then make the replacement in Cp2ðT p2
0 Þ to

obtain Cp2 in function of T p1
0 . Then, the total cost

of path p can be expressed in function of the single
departure time variable T p1

0 as follows:

CpðT p1
0 Þ ¼ Cp1ðT p1

0 Þ � tcld þ Cp2ðT p1
0 Þ � tcof þ tclf :

It is thus an easy matter to update the cost func-
tions as the Clarke and Wright heuristic unfolds.
6. Numerical results

For testing our exact column generation algo-
rithm, Solomon’s VRPTW benchmark problems
were used [26]. We have focused on problem
instances of type 1 which are easier to solve due to
a restrictive time deadline that leads to shorter
routes. As these problems are Euclidean, the length,
travel time and travel cost between two nodes are
identical and correspond to the Euclidean distance.
The service cost function at each node was specified
as follows. First, the ‘‘flat’’ or minimum cost inter-
val of the curve corresponds to the original time
window in Solomon’s instances. Second, the mini-
mum cost was set to the service time at the node,
as defined in Solomon’s instances. Finally, a slope
parameter was added to specify a linear cost
increase on both sides of the window. The shape
of the time-dependent service cost at each node is
thus similar to the one shown in Fig. 1b.

6.1. Parameter study

Our first results were obtained on the 25-customer
instances in class R1 (random customer locations)
and RC1 (mix of random and clustered customer
locations). These results are shown in Table 1, with
slopes of +1 and �1 on both sides of the time win-
dow and no penalty for the use of vehicles (recall
that this penalty can be included in the travel cost
from the depot to the first node in a route). In this
table, the first six columns provide the instance num-
ber, initial solution cost provided by the Clarke and
Wright heuristic, optimal solution cost, number of



Table 1
Results on 25-customer instances with slopes +1 and �1

Instance Initial cost Optimal cost # Vehicles Length CPU time (seconds) # Columns Iterations

R101 949.4 893.7 5 532.2 1485.6 1037 16
R102 861.2 806.0 5 479.2 2357.7 2565 41
R103 799.5 726.1 4 439.2 462.9 2339 11
R104 713.5 690.0 4 415.3 3283.8 5463 50
R105 959.3 780.4 5 487.3 679.8 1366 17
R106 767.8 721.4 4 454.2 1362.0 2847 45
R107 710.4 679.5 4 427.4 792.6 4062 28
R108 687.7 647.7 3 379.6 1338.9 8610 50
R109 714.5 691.3 5 441.3 412.4 1598 13
R110 696.7 668.8 4 407.6 724.0 3237 14
R111 712.9 676.3 4 416.8 907.6 2974 34
R112 703.7 643.0 4 393.0 2047.4 7673 50

RC101 844.1 623.8 3 362.4 358.8 1945 14
RC102 773.4 598.3 3 344.0 1034.1 2846 16
RC103 711.3 585.1 3 335.1 5413.4 5554 23
RC104 728.6 572.4 3 322.4 18302.8 8999 19
RC105 816.8 623.1 3 359.4 4276.3 3770 16
RC106 760.0 588.7 3 327.6 2142.3 2557 14
RC107 735.9 548.3 3 298.3 4742.4 2771 18
RC108 709.5 544.5 3 294.5 19878.1 5986 19
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vehicles used, solution length (i.e., total travel dis-
tance) and computation time in seconds. In the last
two columns, we indicate the total number of col-
umns or paths generated by our algorithm and the
total number of calls to the shortest path algorithm,
respectively. These tests were run on a 400 MHz
UltraSparc II processor.
Table 2
Results on 25-customer instances with slopes +10,000 and �10,000

Instance Initial cost Optimal cost # Vehicles Leng

R101 1083.0 1068.6 11 818.6
R102 910.6 887.0 7 637.0
R103 811.6 755.0 5 505.0
R104 744.1 694.4 4 444.4
R105 914.6 847.5 6 597.5
R106 800.0 752.2 6 502.2
R107 754.4 683.9 4 433.9
R108 723.1 660.3 4 410.3
R109 744.2 691.3 5 441.3
R110 735.7 694.1 5 444.1
R111 734.4 684.7 4 434.7
R112 691.1 643.0 4 393.0

RC101 945.7 724.0 4 474.0
RC102 866.3 601.8 3 351.8
RC103 738.5 585.1 3 335.1
RC104 765.9 574.8 3 324.8
RC105 952.0 687.2 4 437.2
RC106 747.2 595.5 3 345.5
RC107 717.2 548.3 3 298.3
RC108 650.6 544.5 3 294.5
Table 2 shows the results obtained when the
slope is set to �10,000 and +10,000 on both sides
of the time window. In this case, the algorithm is
‘‘virtually’’ forced to visit each node within its win-
dow, otherwise a huge penalty is incurred. We thus
obtain a solution to a vehicle routing problem with
hard time windows, where ‘‘hard’’ applies to both
th CPU time (seconds) # Columns # Iterations

72.1 83 7
429.5 1241 50
293.3 1356 28
242.2 2267 15
489.1 478 21
611.1 1961 29
203.9 2415 11

1336.3 4086 50
871.3 1423 12

42437.5 2848 50
836.3 1913 30

2094.0 6365 50

291.5 702 50
269.7 1853 15

11418.4 3109 15
3737.7 3894 19
428.5 3770 16

1148.5 1528 17
1477.5 2766 16
4793.8 5803 15



Table 3
Results on 25-customer instances with slopes +1 and �1 and vehicle penalty

Instance Initial cost Optimal Cost # Vehicles Length CPU time (seconds) # Columns Iterations

R101 1249.4 1140.3 4 510.3 4153.2 3958 37
R102 1161.2 1016.5 4 483.2 28149.8 6839 50
R103 1249.4 926.1 4 439.2 70031.9 8956 50
R104 979.8 835.9 3 408.3 58008.3 13,625 25
R105 1275.2 991.1 4 488.7 1683.7 3416 12
R106 1017.8 905.2 3 397.5 20287.7 5606 21
R107 963.3 874.6 3 410.3 109674.0 14,741 50
R108 869.9 797.7 3 379.6 32309.9 14,598 28
R109 955.1 904.3 4 442.4 5505.0 4488 20
R110 931.6 868.8 4 407.6 29219.3 7983 50
R111 952.4 875.7 3 426.1 61181.5 9558 50
R112 941.1 803.1 3 389.4 60551.4 19,266 49

RC101 1166.3 773.8 3 362.4 1551.2 4560 17
RC102 1002.5 748.3 3 344.0 21090.2 7870 21
RC103 911.3 735.1 3 335.1 60319.4 10,398 16
RC104 928.6 724.8 3 324.8 89256.0 12,687 20
RC105 1110.3 773.1 3 359.4 7201.9 7846 15
RC106 1013.6 745.5 3 345.5 1748.2 2127 17
RC107 937.5 697.3 3 296.3 56334.7 9174 18
RC108 913.5 694.5 3 294.5 253741.0 12,830 20
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the lower and upper bound of the window. This
feasibility/infeasibility issue leads to the larger var-
iance observed in the CPU times. For some
instances, a feasible solution is quickly found,
which allows the algorithm to prune the search
space early. Conversely, for some other instances,
it is much more difficult to identify a feasible solu-
tion. Also, it is clear that a larger number of vehi-
cles is needed to meet the time windows in this
case.

In Table 3 the slopes are reset to +1 and �1, but
a penalty of 50 Euclidean units is associated with
the use of each vehicle. As expected, the number
of vehicles is reduced when compared with the num-
bers shown in Table 1.
Table 4
Results on 35-customer instances

Instance Initial cost Cost # Vehicles Length

R101 1216.9 1168.3 7 675.9
R102 1121.7 1048.0 7 608.1
R103 991.8 929.2 5 527.1
R104 885.8 837.8 4 469.8
R105 1045.1 1017.1 6 611.7
R106 1003.8 930.8 5 562.2
R107 928.5 874.8 5 514.6
R108 861.7 805.7 4 446.6
R109 953.9 914.8 6 559.7
R110 935.4 893.6 5 531.5
R111 942.5 864.4 5 493.9
R112 848.2 834.3 5 476.4
6.2. Problem size

As our algorithm is an exact one, this section
shows how ‘‘far’’ we can go with regard to problem
size. To this end, we used a more powerful machine
with a 2.4 GHz ADM Opteron(tm) 250 processor.
In all those tests, the slopes were set to +1 and �1
and there was no penalty for the use of a vehicle.
Also, the tests were restricted to the R1 problem
class. Tables 4 and 5 show that the limit is reached
with only a slightly larger number of customers,
even if a more powerful machine was used.

In particular, a sharp increase in computation
times is observed from the instances with 25 custom-
ers to the instances with 35 customers (e.g., one day
CPU time (seconds) # Columns Iterations

23953.6 3659 50
37801.3 9978 50
29496.8 13,770 40
35712.4 41,532 70
16825.6 5228 12
12921.1 14,921 14
51504.8 31,736 70
84516.5 96,249 68
46254.0 7708 48
93493.0 11,215 50
57256.3 18,455 40
59672.9 28,430 50



Table 5
Results on 40-customer instances

Instance Initial cost Cost # Vehicles Length CPU time (seconds) # Columns Iterations

R101 1363.7 1318.4 8 778.7 25687.0 5953 28
R102 1280.4 1194.8 9 733.4 107191.0 15,764 70
R103 – – – – – – –
R104 – – – – – – –
R105 1328.3 1171.2 7 721.7 21735.9 7127 22
R106 – – – – – – –
R107 1082.3 995.3 6 591.3 29696.3 34,771 15
R108 – – – – – – –
R109 1318.6 1045.7 6 626.4 76125.3 12,944 40
R110 – – – – – – –
R111 – – – – – – –
R112 999.9 937.1 5 529.0 165221.0 58,859 50
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of computation for R110). When the number of cus-
tomers grows to 40, only 6 instances out of 12 were
solved to completion. For the remaining instances,
the algorithm stopped due to insufficient memory.

7. Conclusion

In this paper, we have considered an arc routing
problem with time-dependent service costs. To
address this problem, we first transformed it into
an equivalent node routing problem. The latter
was solved exactly with a column generation
approach. In the process, a previously reported ele-
mentary shortest path algorithm with resource con-
straints was extended to solve the time-dependent
subproblems. Future research will now focus on
problem formulations that are closer to the winter
gritting application that motivated this work. Heu-
ristic problem-solving approaches will then be
considered.
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CARP and its extensions, in: E.J.W. Boers (Ed.), Applica-
tions of Evolutionary Computing, Lecture Notes in Com-
puter Science, vol. 2037, Springer, 2001, pp. 473–483.

[21] L.Y.O. Li, R.W. Eglese, An interactive algorithm for vehicle
routeing for winter gritting, Journal of the Operational
Research Society 47 (1996) 217–228.

[22] H. Longo, M.P. de Aragão, E. Uchoa, Solving capacitated
arc routing problems using a transformation to the CVRP,
Computers & Operations Research 33 (2006) 1823–1837.
[23] T. Lotan, D. Cattrysse, D. Van Oudheusden, Winter gritting
in the Province of Antwerp: A combined location and
routing problem, Technical Report IS-MG 96/4, Institut de
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