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Abstract

The field of dynamic vehicle routing and scheduling is growing at a fast pace nowadays, due to many potential
applications in courier services, emergency services, truckload and less-than-truckload trucking, and many others. In
this paper, a dynamic vehicle routing and scheduling problem with time windows is described where both real-time
customer requests and dynamic travel times are considered. Different reactive dispatching strategies are defined and
compared through the setting of a single “tolerance” parameter. The results show that some tolerance to deviations
with the current planned solution usually leads to better solutions.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Real-time vehicle routing and scheduling has been the subject of many studies during the last few years,
as reviewed in[1–3]. Different questions and issues arising in a dynamic context are also discussed in
[4,5]. With regard to the work done in this field, our main contribution is the introduction of a “tolerance”
concept. In particular, it is empirically demonstrated that reactive dispatching strategies based on some
tolerance to deviations to the current planned routes (due to dynamic events) leads to better overall results
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when compared with simpler strategies, such as immediate reaction to any deviation or no reaction at all.
In this paper, dynamic events that relate both to the occurrence of new customer requests and dynamic
travel times are considered.

The remainder of the paper is the following. In Section 2, a static version of the vehicle routing and
scheduling problem is presented. This is followed in Section 3 by a description of a dynamic environ-
ment where new customer requests occur in real-time and where travel times are subjected to stochastic
variations. Then, a dispatching algorithm is developed in Section 4 to handle both types of events. In the
case of dynamic travel times, a tolerance to deviations is proposed to guide the course of actions when a
vehicle does not show according to the planned schedule. Computational results in Section 5 provide an
indication of the benefits associated with the latter strategy. Concluding remarks follow in Section 6.

2. The static problem

The problem is motivated from the management of local routes in international courier services. This
is a many-to-one type of problems where express mail is collected at different customer locations and
brought back to a central depot, for further shipping. The static version of the problem can be characterized
as an uncapacitated vehicle routing problem with time windows (VRPTW), which is formally stated in
the following.
Graph: We have a complete graphG= (V , E) whereV ={0, 1, 2, . . . , n} is the vertex set andE is the

edge set. Verticesi = 1, . . . , n correspond to customers, whereas vertex 0 is the depot. A non negative
travel timetij is associated with each edge(i, j) ∈ E.
Customers: Each customeri is characterized by a pick-up location, a service timesi , a time window
[ei, li] and a vehicle planned arrival timeti . If ti < ei , the vehicle has to wait up toei before servicing the
customer. Ifti > li , a penalty is incurred in the objective.
Depot: The depot is characterized by a location, a time window[e0, l0] for vehicle arrivals and de-

partures, as well as a vehicle return timetk0 for each vehiclek ∈ K, whereK is the set of vehicles. The
service time at the depot is assumed to bes0= 0.
Vehicles: We have a fixed number of identical uncapacitated vehicles, where each vehicle, if used,

travels along a single route that starts and ends at the depot.
Objective: The objective is to minimize, over all vehicles, a weighted summation of (1) travel time, (2)

sum of lateness at customer locations and (3) lateness at the depot. Given a solutionS=⋃
k∈KSk, where

Sk = {ik0, ik1, . . . , ikmk
} is the sequence of customer locations visited by vehiclek, with ik0 = ikmk

= 0, the
objective function can be expressed as follows:

f (S)=
∑
k∈K

f (Sk)

=
∑
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where�1, �2 and�3 are weighting parameters and(x − y)+ =max{0, x − y}.
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3. The dynamic problem

A dynamic version of the problem presented in Section 2 is now considered. The dynamic elements
include both new request arrivals and dynamic travel times. These will be described below, followed by
a description of the system’s operating mode.

3.1. Dynamic elements

Customer requests: New requests continuously occur during the day and must be inserted at least cost
into the current planned routes.
Travel times: Three different elements are considered to set the travel time between two customer

locations:

• Long-term forecasts: These travel time forecasts represent well documented long-term trends. Al-
though not dynamic, as they are known well in advance and are not subject to stochastic variations,
these forecasts are time-dependent and vary depending on the time period (e.g., morning, lunch time,
afternoon).
• Short-term forecasts: When the vehicle is ready to depart from its current customer location, the

travel time to its next destination is modified by a random uniform amount (positive or negative). This
modification, which implies a rescheduling of the planned route, represents short-term forecasts or
nowcasts based on any new information available at this time.
• Dynamic perturbation: The travel time to the next destination is finally perturbed by adding a value

generated with a normal probability law of mean 0 (and different standard deviations, see Section
5). This perturbation represents any unforeseen events that may occur along the current travel leg
and represents the truly dynamic component of the travel time. This perturbation is known to the
dispatching system only when the vehicle arrives at its planned destination.

The time-dependent travel times associated with long-term forecasts are addressed in[6]. Basically,
the scheduling horizon is partitioned into a number of time periods and the travel times change from one
period to the next (see[7,8] for alternative models). When the vehicle travels along a link, the travel time
calculation is adjusted each time a boundary between two consecutive time periods is crossed. In this
way, a vehicle that leaves earlier will arrive earlier at destination, which is known as the “first-in-first-out”
(FIFO) property. Details about these time-dependent calculations and the FIFO property can be found in
[6]. The short-term forecast and dynamic perturbation are then added to obtain the “true” arrival time at
destination. However, only the planned arrival time at destination, based on the long-term and short-term
forecasts, is assumed to be known when the vehicle departs.

3.2. Operating mode

A number of assumptions about the system’s operating mode, which impact the algorithmic develop-
ments presented in the next section, are introduced here.

• A number of requests that have been received at the end of the day (but too late to be serviced the same
day) are scheduled during the night for the next day. These requests are said to be “static” as they are
used to construct in advance a set of initial planned routes.
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• A central dispatching office receives the customer calls and manages the planned routes.
• Communication between the dispatch office, drivers and customers takes place at customer locations.
• Drivers are informed of their next destination when they depart from a customer location (i.e., they

have no knowledge of their current planned route).

This simplified model was used here to study the impact of different reactive strategies on solution
quality. Eventually, some of these assumptions could be relaxed or modified to obtain a more realistic
model. For example, one could assume that communication can take place at any time between the
dispatch office and the drivers. But this, in turn, would lead to new issues that are difficult to address, with
or without dynamic travel times (like opportunities to divert vehicles away from their current destination,
see[9]).

4. Dispatching algorithm

An insertion heuristic is used to dispatch requests to vehicle routes, followed by a local improvement
procedure. In the next subsections, we first describe how the initial routes are generated using the set of
static requests. Then, the discrete-event simulation scheme used to handle dynamic events is described.

4.1. Initial solution using static requests

The algorithm for generating initial routes considers the static customer requests one by one, in random
order, and finds the insertion place with minimum additional cost.

LetSbe the current solution andVs be the set of static customer requests. Using← for the assignment
operator and∅ for the empty set, this insertion algorithm can be written as follows:

1. S ← ∅;
2. whileVs 
= ∅ do:

2.1 s ← random selection inVs ;
2.2 for each insertion place inS, find the one that minimizes�f = f (S + s) − f (S) and inserts at

this place;
2.3 Vs ← Vs − {s}.

As the number of vehicles is fixed, there may be one or more vehicles with empty routes. Accordingly,
the insertion of customers in some empty route is also considered in step 2.2. The notationf (S + s)

simply represents the solution cost after the insertion of customers.
Once the insertion phase is completed, a reoptimization phase takes place. First, a local descent based

on CROSS exchanges is applied[10]. Here, two segments of routes are exchanged between two different
routes (by removing two arcs in each route and by appropriately reconnecting the two segments). At each
iteration, the CROSS exchange that leads to the largest improvement to the current solution is selected.
This is repeated until no more improvement can be obtained. At the end, each modified route is further
improved with a local descent that considers the relocation of each customer at another place in the same
route.
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4.2. Solution evolution using dynamic requests

Once the initial static routes are generated, the simulation of the operations day can start. During the
simulation, different types of events trigger different types of responses. These events are described below,
using the following notation for each vehiclek ∈ K.

• ik the current destination;
• jk the next customer location to be serviced (which may be different fromik, see below);
• (j + 1)k the successor ofjk;
• T T Lk the tolerance time limit. IfT T Lk is exceeded,jk is removed from the route of vehiclek and

reassigned to some other route (see below).

Occurrence of a new request: The new customer requests is inserted at minimum additional cost into
one of the planned routes (including empty routes), using the insertion procedure described in Section
4.1. If we assume that the chosen insertion place is in the route of vehiclek, the following steps are
performed:

1. Sk ← Sk + s;
2. update the planned arrival time ofsand all following locations inSk.

Then, the reoptimization procedure of Section 4.1 is applied, by considering moves that involve route
k (or any other route modified during the local search).

T T Lk is reached for somek ∈ K: The tolerance time limit on some vehicle route has been reached.
Consequently, customerjk is removed from the route of vehiclek and inserted at minimum additional
cost into the route of another vehiclek′. Note that vehiclek must still reach its current destinationik,
without servicing it, before going to the next location(j + 1)k. More precisely, the following steps are
performed:

1. Update route of vehiclek.

1.1. Sk ← Sk − {jk};
1.2. jk ← (j + 1)k; (jk is now different fromik);
1.3. T T Lk ← (tjk + tf )− tik,jk .

2. Update route of vehiclek′.

2.1 Sk′ ← Sk′ + jk;
2.2 update the planned arrival time ofjk and all following locations inSk′ .

Then, the reoptimization procedure of Section 4.1 is applied, by considering moves that involve route
k′ (or any other route modified during the local search process).

In this algorithmic description, parametertf corresponds to the maximum delay, with regard to the
vehicle planned arrival, which can be tolerated before taking a reassignment action.Fig. 1 provides an
illustrative example. Each customer location in this figure is labeled with the corresponding planned
arrival time. We assume here that every customer is currently serviced within its time window (so, there
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customer assigned to another route
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Fig. 1. Reassignment of customers.

is no waiting time) and that the travel time between any two customer locations is 5 time units. The
vehicle is currently moving towards customeru and is expected to reach it at time 10. The following
customersv,w, zwill be visited at time 15, 20 and 25, respectively. Assuming thattf is set to 1, customer
uwill be moved to another route if the vehicle does not arrive by the time 10+ 1= 11. Customervwill
also be moved to another route at the same time. If the vehicle has still not reached locationu at time
(20+ 1) − 5= 16, then customerw will also be moved, as it is not possible for the vehicle to reachw
before time 20+ 1= 21. The situation illustrated in the figure would thus occur at any timet, 16< t �21
(with u= ik andz= jk). After time 21, customerzwould also be moved to another route. Parametertf
is important as it leads to different ways of handling dynamic travel times. Whentf = 0, the reaction is
immediate: an action is taken as soon as the vehicle does not arrive at the planned time. At the other end
of the spectrum,tf =∞means that no action is taken (i.e., we simply wait for the vehicle; no customers
are reassigned to other routes).

Note that the reassignment (from vehiclek to vehiclek′) of the customer associated with locationik

can be canceled, if vehiclek actually arrives atik before vehiclek′. If, at this time, vehiclek′ has not
yet reached the predecessor ofik in its current planned route,ik is simply removed from it. Otherwise,
vehiclek′ reachesik without servicing it. InFig. 1, customerik = u may thus still be serviced by the
same vehicle, if the latter arrives atu before the vehicle to whichu has been reassigned.

Vehicle arrival at current destination: When the vehicle actual arrival time is known, the route schedule
is updated. The response to this event is described below in the “standard situation” with no cancelation
of a previous customer reassignment.

1. if (ik = jk) then

1.1 Sk ← Sk − {jk};
1.2 jk ← (j + 1)k;
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2. if the actual arrival time atik is different fromtik then update the planned arrival times inSk;
3. T T Lk ←∞.

Vehicle departure: Just before departure from the current location, the short-term forecast is introduced
to calculate the travel time to the next customer location and the route schedule is updated accordingly.
The TTL of the vehicle route is also calculated. More precisely:

1. ik ← jk;
2. introduce the short term forecast into the travel time and update the planned arrival times inSk;
3. T T Lk ← tjk + tf .

In the following section, we analyze the impact of various tolerance levelstf on solution quality.

5. Computational results

For testing purposes, Solomon’s VRPTW benchmark problems were used. These 100-customer Eu-
clidean problems are divided into six different classes, depending on the spatial distribution of customers
and length of the scheduling horizon. In the problems of type C (clustered), the customers are grouped
into well-defined geographic clusters; in the problems of type R (Random), they are randomly distributed;
and in the problems of type RC, both clustered and randomly generated customer locations are found.
Here, the focus is on the problem classes C2, R2 and RC2, which are particularly interesting for this study
because the time horizon is larger and more customers are scheduled on each route. In these problems, the
travel times correspond to Euclidean distances and are equal to 40 on average, with a standard deviation
of 12.

Half of the customers were used to generate the initial set of routes. The occurrence of each remaining
(dynamic) customeri was generated at timeei ∗ r, wherer is a random number uniformly distributed
between 0 and 1. Three different time periods of equal length were defined (morning, lunch time, af-
ternoon). Time-dependency was obtained by multiplying the travel times by coefficients 1.25, 0.5 and
1.25, respectively. Thus, the vehicles travel faster during lunch time. The short-term bias was obtained
by perturbing the coefficients with a random value uniformly chosen in the interval[−0.1,+0.1]. The
dynamic perturbations were generated according to a normal law of mean 0, with small(� = 1, 4) or
large(�=16, 32) standard deviations. In this study, only delays to the current schedule were considered.
Thus, a negative value was simply reset to 0 (no perturbation).

The number of vehicles, for each problem instance, was set to the number of routes in the best solution
reported in the literature (which is between 2 and 4, seehttp://w.cba.neu.edu/∼msolomon/heuristi.htm
for the exact numbers). Different settings for the tolerance leveltf were considered, ranging fromtf = 0
to tf =∞. In the first case, the reassignment of the next customer to be serviced is performed as soon as
the vehicle does not show at the planned arrival time. In the second case, nothing is done, as we always
wait for the vehicle. Intermediate values correspond to different levels of tolerance (i.e., we are willing
to wait for the vehicle, but only to a certain extent).

In Tables 1–3, the solution values correspond tof (S) with �1= �2= �3=1 (see Section 2). Each entry
in these tables is an average taken over 11, 8 and 8 problem instances, respectively. Each entry in a given
table is also normalized using the best average obtained over all� andtf values. The numbers in bold
correspond to the best results obtained with a given value of� over alltf values.

http://w.cba.neu.edu/~msolomon/heuristi.htm
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Table 1
Problem class R2

tf �= 1 �= 4 �= 16 �= 32

0 2.018 2.016 3.882 4.683
0.25� 1.609 1.589 2.876 3.864
0.5� 1.445 1.555 2.750 3.800
� 1.266 1.400 3.555 5.524
2� 1.018 1.254 4.241 6.766
3� 1.010 1.238 4.632 6.826
4� 1.000 1.239 4.600 6.808
∞ 1.006 1.247 4.649 6.962

Table 2
Problem class C2

tf �= 1 �= 4 �= 16 �= 32

0 3.182 3.036 4.292 5.210
0.25� 2.350 2.754 3.630 4.333
0.5� 1.865 2.402 2.409 2.220
� 1.498 1.829 1.805 2.405
2� 1.086 1.276 1.906 2.585
3� 1.022 1.182 1.992 2.698
4� 1.000 1.171 2.214 2.750
∞ 1.012 1.184 2.200 2.725

Table 3
Problem class RC2

tf �= 1 �= 4 �= 16 �= 32

0 1.723 1.791 2.884 3.339
0.25� 1.237 1.682 2.595 2.951
0.5� 1.025 1.627 2.500 2.854
� 1.233 1.265 2.156 3.014
2� 1.084 1.233 2.832 3.876
3� 1.010 1.208 3.213 4.231
4� 1.000 1.254 3.344 4.200
∞ 1.005 1.246 3.445 4.115

These results first show that problems associated with larger� values are more difficult to solve (as
the magnitude of the dynamic perturbations increases). For problems with� = 1, 4, the best results are
obtained withtf = 3�, 4�. Thus, it is generally better to wait for the vehicle’s arrival, given that events
with a magnitude larger than three or four standard deviations are unlikely to occur (similarly, note that
the small variations observed betweentf = 4� and∞ are basically due to randomness). The picture is
quite different with�=16, 32. Although there is some variation with regard to the besttf value, the latter
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is always less than or equal to�. In this case, the reassignment strategy is applied in a non-negligible
number of cases and with substantial benefits, if one considers the degradation observed when no such
reassignment takes place (c.f.,tf =∞). It is thus a good strategy to wait a little to “catch” events of small
magnitude, and to react only to events of larger magnitude.

6. Conclusion

This paper empirically demonstrates that some tolerance to unforeseen delays is indicated for better
solutions to emerge. Clearly, more sophisticated optimization techniques, like metaheuristics, could be
considered to generate even better solutions. In our case, the computation times of our local search
procedures were negligible (when a new dynamic request is inserted, the current solution does not change
much and the search converges within a fraction of a second to a local minimum). This could be quite
different with a metaheuristic, leading to considerations about CPU time/solution quality trade-offs.Also,
more sophisticated ways of setting the tolerance factortf could be devised. For example, different classes
of customers might lead to different tolerances. Similarly, the tolerance on routes with more slack time
should probably be larger than on “tight” routes.
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