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Abstract

A re
ection and refraction model for anisotropic surfaces is
introduced. The anisotropy is simulated by small cylinders
(added or subtracted) distributed on the anisotropic surface.
Di�erent levels of anisotropy are achieved by varying the
distance between each cylinder and/or rising the cylinders
more or less from the surface. Multidirectional anisotropy
is modelled by orienting groups of cylinders in di�erent di-
rection. The intensity of the re
ected light is computed
by determining the visible and illuminated portion of the
cylinders, taking self-blocking into account. We present two
techniques to compute this in practice. In one the intensity
is computed by sampling the surface of the cylinders. The
other is an analytic solution. In the case of the di�use com-
ponent, the solution is exact. In the case of the specular
component, an approximation is developed using a Cheby-
shev polynomial approximation of the specular term, and
integrating the polynomial.

This model can be implemented easily within most ren-
dering system, given a suitable mechanism to de�ne and al-
ter surface tangents. The e�ectiveness of the model and the
visual importance of anisotropy are illustrated with some
pictures.

CR Categories and Subject Descriptors: I.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism.
General Terms: Algorithms.
Additional Key Words and Phrases: Shadowing, sur-
face mapping, Chebyshev polynomials, hair rendering, sci-
enti�c visualization.

1 Introduction

Many objects in nature are visually very complex. Crow,
as quoted in [13], suggested having di�erent levels of geo-
metric models to capture this complexity. However, as the
representation of an object requires the addition of smaller

geometric models to de�ne smaller details, the extra cost of
modelling and rendering these details can become very high.
Moreover such an object representation would be prone to
aliasing problems.

To overcome these problems, approximations to some ge-
ometric models have been proposed. If we note Dg the level
of the geometry at which objects are usually de�ned (i.e.
polygons or parametric surfaces), then displacement and
bump mappings [4] [16] approximate what the geometric
model Dg+1 would de�ne at a higher resolution or magni�-
cation. As the details become smaller, even surface mapping
becomes highly subject to aliasing problems. At this geo-
metric level, Dg+2, the details cannot be seen individually
and appear only because of the way they modulate the light
re
ected o� them. This is the reason why these details must
be captured by local re
ection models.

Traditionally, re
ection models have been divided into
two components: di�use and specular [24] [3] [8] [2]. The
di�use component takes into account the light that inter-
re
ects onto elements of a same surface and is reemitted
equally in all directions. To model the specular re
ec-
tion, Torrance and Sparrow [24] assume that the surface
is made of highly re
ective microscopic facets distributed in
v-grooves. If the facets are randomly distributed over the
surface, shadowing and masking functions can be statisti-
cally estimated, and, for a given distribution of slopes of the
facets, the light re
ected in a particular direction can be
approximated.1 This type of surface is quali�ed as isotropic
because the re
ected light intensity at a given point is inde-
pendent of the surface orientation along its normal at this
point.

Many surfaces, however, cannot be modelled by a ran-
dom isotropic distribution of facets. If an element of such
surfaces is rotated around its normal while the light and
viewer directions remain unchanged, the light intensity re-

ected to the viewer will vary. These surfaces are called
anisotropic. Surfaces made of fur or burnished metal are
examples where there is a strong correlation between the ori-
entations of facets and the orientation of the surface. Bren-
nan et al. [6] measured several natural surfaces and showed
that surfaces like clouds, forests, oceans and even sand ex-
hibit anisotropy. Anisotropy can be caused by a collection
of strongly oriented elements, such as hair in fur or blades

1All the re
ection models discussed in this paper ignore the wave-
length. In the facets model, this means that the size of the facets is
assumed much greater than the wavelength of the light source.



of grass in a meadow, or by the selected action of an exter-
nal force. Many natural factors can contribute to preferred
orientations of the facets like the wind, the sun's position
for the orientation of leaves or the shape of the underwa-
ter terrain for waves. Since anisotropy is so prevalent, and
our visual system use it as a cue for orientation and depth,
a wide range of anisotropic surfaces needs to be accurately
rendered to obtain more realistic images.

Moreover, the use of anisotropy is not restricted to the
production of realistic images. With the recent emphasis on
scienti�c visualization techniques, more and more informa-
tion needs to be communicated to the viewers from a sin-
gle image. The shape, colour, texture, opacity and surface
roughness are some properties that can carry information.
Anisotropy adds a new dimension to the information trans-
mitted. For instance, a simple vector �eld over a surface
can be associated to a given orientation of the facets on this
surface, freeing colour or texture for other information.

This paper �rst brie
y surveys and discusses current
anisotropic re
ection models. The model based on cylinders
is then presented in detail, with its parameters and solutions
for the re
ected light. Finally images illustrating applica-
tions of anisotropy in computer graphics are presented and
commented.

2 Previous Work

Kajiya [13] attempted to compute analytically the re
ected
intensity from a continuous surface. He bases his approach
on the general Kirchho� solution for scattering of electro-
magnetic waves [1] [2]. For given incident and re
ected di-
rections, the intensity re
ected by a surface is computed.
However, the method has its restrictions. For instance, the
Kirchho� solution is valid only if self-shadowing and multi-
ple scattering are negligible. Even if this limitation is not
considered, the size of the surface required (Fresnel zones)
by the Kirchho� solution and the stationary phase method
used to approximate the integral [5] introduce new problems
that are dependent of each surface type.

Cabral et al. [7] go down to the facet level. Facets are
created from a height �eld and the re
ection o� each facet
is studied, including the blocking factor for incident and
re
ected light. This method, which can be quali�ed as brute
force, is computationally expensive. The computation of the
blocking factor is done via a modi�cation of Max's method
for the self-shadowing of bump maps [16]. This method can
seriously alias the shadows for surfaces which exhibit high
frequency behaviour.

In these two approaches, the re
ection intensities are
computed once and kept in tables; interpolation is used
for fast rendering. However, a new table needs to be com-
puted each time another type of surface is being rendered,
which involves a few hours of CPU time (� 12 hours on an
IBM4341 for Kajiya's and around the same time for Cabral's
on a VAX 11/785).

In Phong's re
ection model, the distribution of the spec-
ular intensity is symmetric around the re
ection direction.
Ohira [29] de�nes it as elliptic with the intention to sim-
ulate the re
ection from scratches-like surfaces. However,
the de�nition of the ellipse has no physical motivation and
can lead, according to Yokoi et al., to \unnatural images".
Takagi et al. [29] extend this idea of an ellipsoid to the re-

ection model of Torrance and Sparrow [24]. For a surface
covered with scratches, the distribution of the normals of
the facets can be approximated by an ellipsoid elongated in
the preferred orientation of the scratches. For given light
and viewer directions, the bisector between these two direc-
tions is computed. Then the intensity re
ected specularly

to the viewer is considered directly proportional to the ratio
of facets with their normal in this bisector direction. These
last two models are only valid for \scratched" surfaces with
negligible self-shadowing and multiple scattering.

Miller [17] introduced the use of cylinders to simulate
anisotropy. When projecting a cylinder onto the viewing
screen, only half of it is visible. The intensities at equal
intervals of this projected cylinder are computed and aver-
aged. Later, at the rendering stage, if scratches are oriented
in the direction of one cylinder, the computed intensity is
used to simulate the e�ect of the anisotropy of the surface.

Miller also adapts the re
ectance sphere [28] for faster
rendering. However, the technique inherits the limitations
of the re
ectance sphere. Thus, light sources are expected
to be far from all the objects in a scene. The projection of
the cylinder onto the viewing screen is also restricted to per-
spective rendering of a scene and therefore, unsuitable for a
rendering technique like ray tracing. Another disadvantage
is that each cylinder is treated individually, which obliges
Miller to neglect the self-shadowing and the inter-re
ection
of one cylinder onto its neighbours. Therefore in Miller's
model, for a given orientation of a cylinder, the same in-
tensity will be computed, whatever the orientation of the
surface normal.

3 Cylindrical Scratches

The model proposed here builds on the concept of Miller's
cylinders. Scratches are represented by a large number of
adjacent small cylinders. The intensity re
ected by all the
cylinders in one direction is approximated by the re
ection
o� only a single cylinder. This approximation is accurate
if many cylinders cover every sampled region of the sur-
face. Moreover, since the cylinders have a very small radius
in comparison to their length, the intensity re
ected o� a
cylinder can be approximated by the re
ection o� only one
cross section of this cylinder.

Consider the hierarchy of geometric models discussed
previously. At the geometric level Dg+2, the details can-
not be seen individually and are captured by the re
ection
model. Including our anisotropic re
ection model corre-
sponds to inserting two new geometric levels between the
mapping (displacement or bump) and the isotropic re
ec-
tion model, now identi�ed as Dg+4. The isotropic re
ection
model Dg+4, like the facets model of Torrance and Sparrow,
characterizes the surface nature of each cylinder. A group of
adjacent cylinders oriented in one direction de�nes the Dg+3

level while a set of groups of adjacent cylinders represents
the Dg+2 level. Figure 1 illustrates the interaction between
these various levels.

To orient the cylinders, surface frame bundles (to use the
terminology of [13]) need to be established. One axis is the
normal at the surface, N . Another axis is the tangent to the
surface, T (thus perpendicular to the normal). This tangent
allows the speci�cation of the orientation of the cylinders
on the surface. The last axis de�ned is the binormal, B,
formed by the cross product T �N . The cross section of the
cylinder of interest thus lies on the plane NB.

Since the normals are already de�ned for most of the
surfaces used in computer graphics, the extra information
required for introducing anisotropy is simply a tangent at
each point of the surface. Many techniques have been de-
veloped to map textures [11] and perturbations of normals
[4] onto objects; these techniques can easily be extended to
map tangents onto objects.

The cylinders are too small to be seen individually. For
each cylinder, the viewer position is so far away relative to
the cylinder's radius that its direction can be assumed to be



Figure 1: Hierarchy of Geometric Models

constant over the cylinder. By the same token, the light di-
rection is also assumed constant over each cylinder. Groups
of adjacent cylinders are also assumed to be small enough
to not be seen individually. Moreover, the surface covered
by parallel and adjacent cylinders (within one group) is as-
sumed to be so large in comparison with the surface cov-
ered by non-parallel and adjacent cylinders (cylinders on the
edges of two groups with cylinders oriented di�erently) that
the self-shadowing and the inter-re
ection from one group
on the other will be considered as negligible.

We will now examine in details the light re
ected by in-
dividual cylinders. The result is the heart of the anisotropic
model introduced in this paper.

3.1 Controlling the Anisotropy

The anisotropy in this model is created because the dis-
tribution of the surface normals along the cross section of
the cylinders is di�erent from the distribution along their
axis; this di�erence determines the level of anisotropy. Two
parameters are used to control the anisotropy. One is the
distance d between the centers of two adjacent cylinders.
Without lost of generality, assume a unit radius for each
cylinder. This means that an intersection point on a cylin-
der de�nes directly the normal at this point. If the distance
d 2 [0;1) is 0, only the surface normal is taken (i.e. no
variation of normals) and the resulting e�ect is given simply
by the underlying re
ection model (Torrance and Sparrow
in this case). As d goes from 0 to 2, the anisotropy increases
to its maximum (the variation of normals cannot be greater
than �). If the distance is greater than 2, a 
oor between
adjacent cylinders appears. The resulting anisotropy is then
a combination of the varying normals across the cylinders
and the length of the 
oor where the surface normal does
not vary.

d d

dd

h

h

Figure 2: Controlling the Level of Anisotropy

The anisotropy is also controlled by a second parameter,
the height h 2 [0; 1] by which the 
oor is raised. A higher

oor reduces the variation of the normals on the cylinders
and increases the length of the 
oor. Figure 2 illustrates the
control of the anisotropy by these two parameters, d and h.

De�ning an anisotropic surface relies on our intuitive
knowledge of the surface. If the anisotropy is less pro-
nounced (like in the scratched stainless steel surfaces shown
in Image III and on the knobs of Image IV), a small d and
no 
oor produce these characteristics. For surfaces like hair
and textile (see the drapery of Image III), d is expected to
be closer to 2. The roof of barns are often covered with cor-
rugated iron that corresponds well to cylinders spaced by a
large 
oor, d > 2.

A complementary model using negative (transparent)
cylinders has also been developed. This model allows for
(a) large grooves with relatively sharp edges or (b) for sharp
grooves spaced by a longer 
oor. Conceptually, this model
is more suitable for (a) surfaces like water with waves form-
ing crests or (b) records (see the record on the turntable in
Image IV). The equations relative to the model are given
in appendix A. Although the concepts for both models are
quite similar, the rest of the paper will treat only positive
cylinders in order to simplify explanations.

3.2 Shadowing and Hiding

Consider one cylinder. Because of the parameters d and h,
the normals on the cylinder can vary only within a certain
angle �M from the surface normal:

�M = min(�d; �h)

where �h = cos�1(h)

�d =

�
sin�1(d=2) if d < 2
�
2

otherwise.

Depending on the orientation of the light vector L, some
parts of the cylinder might not be lit. Let �L be the an-
gle between the light vector projected onto the NB plane
and the surface normal. The self-shadowing angle �ss cor-
responds to the angle from the surface normal at which the
cylinder starts blocking light onto itself. The shadowing an-
gle �s corresponds to the angle at which the neighbouring
cylinder starts casting a shadow onto the cylinder. For a

oor of length f , some length fi is lit and some length fs
is in the shadow of the cylinder. All of these values can be
computed as follows:

�ss =
�
2
� �L

f = max(d� 2
p
1� h2; 0)
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Figure 3: Some Variables for the Positive Cylinders

if (�ss > �M )
f
�s = �ss = �M
fi = f ; fs = 0
g

else
f
if ( 1

cos �L
< (d� 1))

�s =
�
2

else
�s = �L + sin�1(d cos �L � 1)

�s = min(�s; �M)

fs = min( 1
cos �L

�p
1� h2 � (h sin �L

cos �L
); f)

fs = max(fs; 0)
fi = f � fs
g

The same logic is used to obtain the self-hiding angle �sh
(the angle at which the cylinder starts hiding itself from the
viewing position), the hiding angle �h (the angle at which
the neighbour cylinder starts hiding the cylinder from the
viewing position), the length of the hidden 
oor fh and the
length of the visible 
oor fv . It is only necessary to replace
�L by �E , the angle between the viewing vector projected
onto the NB plane and the surface normal. Figure 3 iden-
ti�es the various angles for given light and viewer positions.

3.3 Sampling as Seen by the Viewer

At this point, all the information about the visible and illu-
minated portions of the 
oor and the cylinder is known. It
is now necessary to compute the light intensity re
ected in
the viewing direction. Since the 
oor has a constant normal
and the viewer position is assumed at in�nity, the intensity
re
ected by the 
oor is computed via any favorite re
ection
model.

Computing the light re
ected o� the cylinder to the
viewer is more involved. One solution consists of sampling
the cylinder at regular intervals as seen by the viewer. Fig-
ure 4 illustrates this process and �gure 5 shows how the
sampled normals are computed. Thus, the visible and il-
luminated arc is projected onto the surface plane and this

Eye direction

Figure 4: Regular Sampling from the Viewer
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Figure 5: Finding the Sampling Angles �p

projection is subdivided equally. For each subdivision, the
corresponding angle on the cylinder is

�p1 = sin�1(p1 cos �E) + �E

�p2 = sin�1(p2 cos �E)� �E

depending on which side of N the projection of the sampling
angle lies.

The intensity re
ected to the viewer is averaged from
the intensities computed at all sampling normals. If the
anisotropic surface is re
ective, these normals are used to
determine the directions in which re
ected rays are gener-
ated. For transparent objects, the same normals are used.
To reduce the strong aliasing patterns susceptible to appear,
the new rays are simply jittered. Finally, the new rays might
intersect the neighbouring cylinders. In this case, only the
colour of the surface is considered.

The intensities computed so far are only for the visible
and illuminated arc Ia and 
oor If . However visible por-
tions of the surface can be in shadow. For these portions,
the di�use and specular intensities are zero. In order to be
able to treat the 
oor and the cylinder in the same units, it
is necessary to project the cylinder onto the surface plane.
Then, the lengths of the visible part of the cylinder lv and
of the visible and illuminated part lvi are given by

lv =
sin(�h � �E) + sin(�sh + �E)

cos �E

lvi =

� sin(�l��E)+sin(�e+�E)

cos �E
L,E same side of N

sin(�e��E)+sin(�l+�E)

cos �E
otherwise

where �l and �e de�ne the visible and illuminated arc, �l
being the angle between the surface normal and the point
where the visible and illuminated portion of the cylinder



begins from the side of the light source, and �e being de�ned
like �l but from the other side (see �gure 3).

Now, the intensity Ir re
ected to the viewer can be nor-
malized by

Ir =
(Ia � lvi) + (If � fvi)

lv + fv

where Ir is the fraction of the incident light that is re
ected
to the viewer.

3.4 Analytic and Approximate Solutions

Sampling the re
ected intensity has some advantages, es-
pecially in the context of a rendering method such as ray
tracing. In this case, when the surface is re
ective or refrac-
tive, the same sampled normals can be used to compute the
directions of the re
ected or refracted rays. Sampling, how-
ever, has many drawbacks. It is usually prone to aliasing. As
the specular coe�cient n of a re
ection model like Phong's
grows, the peak of the intensity re
ected becomes thinner
and could easily be missed when sampling the cylinder. As a
result it is di�cult to determine the correct number of sam-
ples for a visually satisfactory result at a reasonable cost.

In order to avoid sampling problems, an analytic solu-
tion for the relevant integrals would be useful. An analytic
solution for the di�use term of the re
ectance model is intro-
duced in this section. The solution for the specular term is
not as easy, but a solution is presented where the re
ection
function is approximated by Chebyshev polynomials and an
analytic solution for the integral of this approximation is
used.

3.4.1 Re
ected Di�use Intensity

In many re
ectance model, the term (N �L) determines the
light re
ected di�usely. If a coordinate system in two dimen-
sions is established in the NB plane2, summing the contri-
butions as a function of (N � L) is expressed as:

Z �s

�i

(N � L) cos(�E � �)d� (1)

where the term cos(�E � �) is a correction factor due to
the viewing position. In the NBT coordinate system, L
is expressed as (Ln; Lb; Lt) and N as (sin�; cos �; 0). The
solution to equation 1 is

Ln
2

�
cos�E(sin

2 �s � sin2�i)+
sin�E (�s � �i � sin�s cos�s + sin�i cos �i)

�
+

Lb
2

�
sin�E(sin

2 �s � sin2�i)+
cos�E (�s � �i + sin�s cos�s + sin�i cos �i)

�

Since it was necessary to include a correction factor due to
the viewer's position, this solution must be normalized by
dividing by

Z �s

�i

cos(�E � �)d� =
cos �E(sin�s � sin�i)+
sin�E(cos�i � cos �s)

3.4.2 Re
ected Specular Intensity

If the term (N �H)n is used to determine the light re
ected
specularly3, an analytic solution similar to the one above

2� in this coordinate system is calculated from the positive axis
of B. Then �E in this coordinate system corresponds to �

2 � �E or
�

2 + �E , depending on which side of the normal N the viewer is.
3H being the bisector vector between L and E and n Phong's

specular coe�cient.

could be computed assuming n integer, but it degenerates
into an impressive number of terms for each intersection
point.

If the curve of cosn � is plotted as a function of �, one can
observe that it is symmetric about the Y axis and relatively
smooth. Thus, this curve can easily be approximated by one
or more polynomials which are simple to integrate.

It is important to mention that the approximating poly-
nomials need only be computed once for a given n. The
polynomials are thereafter only referred to at the rendering
stage.

One approximation is based on Chebyshev polynomials.
If regular samples are taken on the curve, Chebyshev ap-
proximation is assured to return the best (min-max) poly-
nomial of a given degree. In order to reduce the degree of
the polynomials for a given tolerance, some simpli�cations
are necessary. First, since the curve is symmetric about the
Y axis, the approximation can be limited to the positive
side of the X axis. It is also known that the re
ected in-
tensity for an angle larger than �

2
is zero. Moreover, since

we deal with discrete intensities at a pixel level, we can use
this fact to bound the error of the polynomial approxima-
tion. If the intensity of an incident light ranges from 0 to
1, 4 the di�erence in intensity between the real value and
the approximate one can be at most 1

256
if we want to be at

�1 rgb value. Then the approximate polynomial can cover

the domain [0,�] where � = cos�1( 1
256

1=n
) without violat-

ing the 1
256

accuracy. With this assumption, several curves
with various n have been approximated and, by experience,
a degree 6 polynomial has always been su�cient to respect
this criterion.

A short piece of code returning Chebyshev polynomials
is given in appendix B. The advantage of this technique is
that not only can the curve (N �H)n be approximated easily,
but so can any smooth curve such as most of the curves given
by other re
ection models.

The solution for (N �H)n follows. To �nd the intensity
re
ected specularly to the viewer, an integral of the form

Z �s

�i

(N �H)n cos(�E � �)d� (2)

has to be solved. Figure 6 illustrates the variables used to
solve equation 2; N 0 is a sampling normal.

Equation 2 can be rewritten as

(H cos �p)
n

Z �0��i

�0��s

cosn � cos(�E + �� �0)d�

for which the integral part is evaluated as

cos �E
�
cos�0

R
cosn+1 �d�+ sin�0

R
cosn � sin�d�

�
�

sin�E
�
cos�0

R
cosn � sin�d�� sin�0

R
cosn+1 �d�

�
In this solution,

R
cosn+1 �d� is approximated via Cheby-

shev polynomials andZ
cosn � sin�d� =

� cosn+1 �

n+ 1

There is another, simpler method to approximate the
integral needed for the specular contribution. The �rst ob-
servation is that the Phong model is itself only an approx-
imation. A very similar distribution is obtained when, as

4This is an unrealistic limitation but many current rendering sys-
tems use this range.
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Figure 6: Integrating (N �H)n

in the Torrance-Sparrow re
ection model [24], one takes a

Gaussian distribution around the highlight: e�(k�)2 . As sug-
gested by Blinn [3] the two distributions can be �tted to each
other by specifying a common angle � for which the inten-
sity falls to one half of the peak value. In this case, the
Phong exponent n is given by:

n = � log 2

log(cos �)

and the coe�cient k is given by:

k =

p
log 2

�

We can therefore replace the Phong expression by the Gaus-
sian distribution with the same characteristics using only
one parameter. The result of the total integral is immediate
from the knowledge of the integral of the Gaussian:Z

1

�1

e�(k�)2d� =
2

k
p
�

In general what is needed is some de�nite integral. In this
case one can replace the Gaussian by its classic piece-wise
approximation by a cubic spline, also known as the Parzen
window (scaled to have a maximum of 1). The polynomials
are:

8>><
>>:

1
4
(2 + u)3 when �2 � u < �1

1
4
(4� 6u2 � 3u3) when �1 � u < 0

1
4
(4� 6u2 + 3u3) when 0 � u < 1

1
4
(2� u)3 when 1 � u < 2

0 when juj > 2

The parameter u is scaled as a function of �:

u0 =
0:7223517u�

2�

For the usual range of n, from 4 and up, the integral com-
puted this way is never more than 1% away from the corre-
sponding Phong integral. If n is less, then the approximation
of the Gaussian integral can deviate by up to 10% from the

Phong integral. It must be remembered, however, than one
has as much claim to the truth as the other.

It is not critical for the present problem to have a fast
method to replace the Phong expression by an integrable
function, since it is done only once per distinct value of
n. Once the polynomials are obtained, computing the inte-
grals is quite close in cost for the two methods. The second
method will be of interest in other applications (such as
normalizing the energy redistributed by a specular re
ec-
tor) where it is important to have a fast approximation of
the total integral.

4 Rendering Anisotropic Surfaces

The model of cylindrical scratches presented in this paper
can be used within several rendering techniques. The only
requirements are to know the surface normals, tangents and
the viewer and light positions. The images provided in this
paper have been produced via ray tracing which is very at-
tractive for this model because of its \ray" nature.

Techniques relying only on scanline conversion are also
suitable to render anisotropic surfaces through this model.
However, the re
ective and transparent anisotropic surfaces
have to be treated di�erently. For instance, if some environ-
ment is mapped onto the surface, the characteristics of the
cylinders in the model can be used to determine the colour
re
ected/refracted to the viewer. This colour will therefore
be a weighted average of some portion of the environment
map.

Techniques intended to solve the global illumination of
scenes can also include anisotropic surfaces. Path tracing
[14], combinations of radiosity and ray tracing [12][22] and
the light driven approach of FIAT [9] are some examples of
techniques where this model can be applied, demonstrating
its 
exibility.

The equations used in this paper include many trigono-
metric functions. The equations have been presented as such
in order to simplify their understanding and make them as
general as possible. However many times the angles them-
selves do not have to be computed since only their sines and
cosines appear in the actual code. In that case the cosines
(and consequently sines) can be evaluated via dot products.
Finally rules to decompose trigonometric functions can be
used.

Image Description Relative Time

Image Ia and Ib Varying d and h 1.27
Image II Re
ective surfaces

isotropic 1.00
bumps 1.09
longitudinal 14.55
latitudinal 14.75

Image III Kitchen utensils 1.06
Image IV Sound Design 1.03

The table given above indicates the additional rendering
cost for the images presented in this paper. The numbers
given are times relative to rendering the same scene without
anisotropy. Note that for the longitudinal and latitudinal
anisotropy of Image II, no jittering was used and as much
as 90 re
ected rays where shot in the environment.

In the current implementation of Optik, our local ray
tracer, the rendering of a scene with every surface anisotropic
shows an increase on average of 25% over the same scene
without anisotropy, assuming ray casting. As can be seen
for Images III and IV, the ratio can be much lower for com-
plex scenes.



5 Images

On Image Ia and Ib, twelve spheres with di�erent levels
of anisotropy are rendered. A directional light source is
used and all the spheres are projected orthogonally onto
the screen in order to keep a constant viewing direction.
The anisotropy over the spheres is de�ned by longitudinal
scratches; on some spheres the position of one of the two
poles is clearly visible as a black region.

Image Ia shows spheres with the anisotropy simulated by
positive cylinders. From left to right and top to bottom, the
�rst sphere has a d = 0:0001 and h = 0. This is practically
undistinguishable from an isotropic re
ection model. On
the next sphere, d is increased to 0.5; the highlight starts
forming a ring. The highest anisotropy produced by the
cylindrical model is shown on the next sphere where d = 2:0
while h is still 0. Note how the highlight ring is clearly
de�ned and how dark regions appear, due to the shadow-
ing between cylinders. On the next sphere (second row), d
is raised to 5.0, leaving a 
oor of length 3.0 between the
cylinders. Note how the isotropic highlight reappears due
to this 
oor region while the highlight ring becomes dimmer
because the cylinders occupy a smaller region (proportion-
ally to the 
oor). The 
oor is raised to h = 0:86 on the
next sphere, and most of the dark regions disappear. Fi-
nally, the cylinders are spaced by only 2.0 with the same
h = 0:86. The shadowing e�ect, while less pronounced on
this last sphere, still makes the highlight ring dimmer.

On Image Ib, negative cylinders are used, with the same
values for d and h. Most of the spheres are quite similar
to the ones with positive cylinders, but notice how the self-
shadowing e�ect is more pronounced on the third sphere
(with d = 2 and h = 0).

The anisotropy on a surface also in
uences the way the
environment is re
ected onto it. Image II shows four views
of the same highly re
ective sphere above the unavoidable
checkerboard. The surface is not specular so that highlights
do not complicate the picture. A directional light source
points down on the sphere. On the top left corner, we used
a perfect mirror-like re
ection. By adding high frequency
bumps onto the surface, we get the image on the top right
corner; it just adds some noise to the re
ection. On the bot-
tom left corner, the surface is given longitudinal anisotropy,
and on the bottom right corner the surface exhibits latitudi-
nal anisotropy. Note how the red squares are stretched hor-
izontally on the left while on the right the re
ected squares
are stretched vertically.

Images III and IV show some objects which we normally
associate with anisotropy. In Image III, the objects have
been created by sweeping a spline curve, and the triangles
produced have their tangents approximated via the same
technique than used for the surface normals. In Image IV,
the sound system has many anisotropic knobs abd other
parts, The hanging cloth on the right is modelled as an
isotropic surface. The motifs on the cube in the foreground
were created using a 3D texture which provides the various
orientations for the surface tangents.

6 Conclusion

We presented an anisotropic re
ection model based on
covering the surface with groups of microscopic cylinders.
Anisotropy is caused by the directional distribution of the
normals along the cylinders. Multidirectional anisotropy
can be achieved by de�ning groups of cylinders oriented
in speci�c directions and given speci�c weights. Two pa-
rameters, the distance between cylinders and the height of
the 
oor, provide qualitative and quantitative control over

the anisotropy. These parameters can easily be tuned to
simulate a speci�c surface or to produce the desired e�ect.
Slightly di�erent e�ects can also be produced by \negative"
cylinders.

The model takes into account hiding and shadowing be-
tween cylinders. The re
ected intensity can be determined
from regular samples (as seen by the viewer) along the cylin-
ders surface which are then averaged. The sampling angles
can also be used to obtain the colour re
ected/refracted to
the viewer via the anisotropic surface. An analytic solution
to the di�use intensity over the cylinders was developed,
as well as an approximation to the specular intensity using
Chebyshev polynomials. The Chebyshev approximation can
also be used to solve similar problems encountered by Saito
et al. [21] for the re
ection o� rounded edges and Kajiya
and Kay [15] for the rendering of fur. It has also been used
to solve the specular re
ection o� a surface lit by a linear
light source [19].

There are several related problems yet to solve. One such
problem concerns the trade-o� between the accuracy of the
Chebyshev approximation and the degree of the resulting
polynomial. It might be possible to reduce the degree of
the polynomial with a more careful study of the maximal
di�erence between the curves such that, for a given display
system, no observer could distinguish between the two re-
sulting intensities.

The Chebyshev approximation can also be used to esti-
mate the inter-re
ection between cylinders. In the current
model the inter-re
ection is ignored, but it would be inter-
esting to see if inter-re
ection improves the realism of the
model enough to justify the extra processing.

The authors also believe this model can be used to pro-
vide an additional tool for visualizing information on data
like orientation of simple vector �elds. However in order to
obtain understandable results, some motion must be applied
to the surface or to the light source. At the current stage of
our implementation we are quite far from real-time motion.
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Appendix

A Model of Negative Cylinders

A negative cylinder is a cylinder subtracted from the surface.
The mathematics involved with this type of cylinder are sim-
pler because a negative cylinder cannot be hidden from the
viewer by another negative cylinder. Thus, only the self-
shadowing and self-hiding have to be considered. The same
parameters d and h are used to control the anisotropy, how-
ever the 
oor is pushed downwards by a distance h instead
upwards from the surface in the case of positive cylinders.

For negative cylinders, the angles are measured from the
surface plane and they represent the opposite of what they
did for the positive cylinders5 (see �gure 7, 8 and 9). The

5The main reason of this rede�nition is to generate simpler math-
ematical expressions.
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variation of the normals is then within [�M ; � � �M ], where
�M is given by

�M = min(�d; �h)

and �h = sin�1(h)

�d =

�
cos�1(d=2) if d < 2
0 otherwise

The angles at which the self-shadowing �ss and the self-
hiding �sh stop are then respectively

�ss = max(2�L � �M ; �M)

�sh = max(2�E � �M ; �M )

Simpli�cations also occur because the 
oor is always
completely visible and illuminated. The sampling angles
are computed as

�p1 =
�

2
+ �E � sin�1(p1 cos �E)

�p2 =
�

2
� �E � sin�1(p1 cos �E)

It is worthwhile to note that the analytic solution for the
di�use term as well as the Chebyshev approximation for the
specular term are the same as for positive cylinders.

B Chebyshev Approximation

Pseudo-code is provided to compute the Chebyshev polyno-
mials approximating the function cosn �, where � 2 [0; xM ].
The array a[0::D(a)] will contain the coe�cients of the poly-
nomial approximating the curve. For more information on
the properties of the Chebyshev polynomials for approxima-
tion, consult [20].

p1p2

�
2
+ �E � �p1

�
2
� �E

�
2
� �E � �p2

E
N

�
2
� �E

1 1

�p1
�p2

Figure 9: Finding the Sampling Angles �p

D(a) is the degree of the polynomial approximation

Approximate (n;D(a); a[])

xM : cos�1 0:0039
1

n

for i = 0 to D(a)
sum = 0;
for k = 0 to D(a)

xcheby = cos(k�=D(a))
x = xM � (xcheby + 1)=2
if (k = 0 or k = D(a))

sum = sum+ 0:5 cosn(x)� Cheby(i; xcheby)
else

sum = sum+ cosn(x)� Cheby(i; xcheby)
endfor

b[i] = 2=D(a)� sum
endfor

for i = 0 to D(a)
if (i = 0 or i = D(a))

a[i] = 0:5b[i]� Cheby(i; xcheby)
else

a[i] = b[i]� Cheby(i; xcheby)
endfor

Cheby (degree; x)
if (degree = 0) return (1)
if (degree = 1) return (x)
return (2x Cheby(degree� 1; x) � Cheby(degree� 2; x))
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