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Abstract

The display of volumetric data is a problem of increasing importance. The

display of this data is being studied in texture mapping and volume rendering

applications. The goal of texture mapping is to add variation to the surfaces

that is not caused by the geometric models of the objects. The goal of volume

rendering is to display the data so that the study of this data is made easier.

Three-dimensional texture mapping requires the use of �ltering not only

to reduce aliasing artifacts but also to compute the texture value which is

to be used for the display. Study of two-dimensional texture map �ltering

techniques led to a number of techniques which were extended to three di-

mensions: namely clamping, elliptical weighted average (EWA) �lters, and a

pyramidal scheme known as NIL maps; (NIL stands for nodus in largo, the

rough translation of which is knot large).

The use of three-dimensional textures is not a straightforward extension

of the use of two-dimensional textures. Where two-dimensional textures are

usually discrete arrays of texture samples which are applied to the surface of

objects, three-dimensional textures are usually procedural textures which can

be applied on the surface of an object, throughout the object, or in volumes

near the object. We studied the three-dimensional extensions of clamping,

EWA �lters, and NIL maps for �ltering these textures. In addition to these

three techniques a direct evaluation technique based on quadrature methods

is presented. The performance of these four techniques is compared using a

variety of criteria, and recommendations are made regarding their use.

There are several techniques for volume rendering which can be formulated

as �ltering operations. By altering these display �lters di�erent views of the

data can be generated. We modi�ed the NIL map �ltering technique for use

as a �lter-prototyping tool. This extension incorporated transfer functions

into the NIL map technique. This allows the manipulation of the transfer

functions without requiring the re-computation of the NIL maps. The use of

NIL maps as a �lter-prototyping tool is illustrated with a series of examples.
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Chapter 1

Introduction

A man who carries a cat by the tail

learns something he can

learn in no other way.

Mark Twain

1-1 Overview

The objects we encounter in every day life are usually far more complex than the objects

that we can model and display using computer graphics. A great deal of this complexity

is due to the detail of texture found on the surfaces of these objects. These textures

are usually small enough so that modeling them with computer graphics primitives is

not feasible. Texture mapping is an answer to the problem of incorporating this kind

of texture into the images that we generate. Initially texture mapping was restricted to

two-dimensional textures. By digitizing the surface characteristics of di�erent objects in

the real world we were able to wrap these textures onto our objects. Two-dimensional

texture mapping was not a su�cient tool for modeling many of the textures that we

encounter, because textures are de�ned throughout the material from which the object is

made. Three-dimensional textures were introduced as a tool with which to simulate these

solid textures. In Plate 1.1 we see examples of two-dimensional and three-dimensional

textures applied to a sphere.

The study of three-dimensional textures has so far concentrated mainly on the mod-

eling of textures. The resulting procedural models have provided us with a rich class

of three-dimensional textures. In most cases the incorporation of a three-dimensional

texture map into display (rendering ) systems is a simple process that typically requires

less work than two-dimensional textures. These textures are then computed by passing

the shading parameters for a surface point to a procedural texture engine. Because the

textures are procedurally de�ned they can be made to alter any of the variables in the

shading equation. Even though the original three-dimensional textures were applied to

1



1{INTRODUCTION

Three-dimensional (left) and two-dimensional texture (right) on a unit sphere. These

procedural textures have similar de�nitions in two and three space.

Plate 1.1

the surfaces of objects, there have been a number of systems that have extended three-

dimensional textures to include textures that are de�ned near the surfaces of the objects.

When these volumetric textures are used, the display method must be adapted to com-

pute the texture throughout the region in which it is de�ned. In a sense we can view

these regions of texture as small volumetric data sets.

Volume rendering is an area of study that has received much attention of late. The

research in this area is driven by a variety of applications that generate complex three-

dimensional data sets. Examples of sources for data are, medical imaging (CAT scans,

MRI scans), geology (seismological surveys), and simulations (
uid mechanics, stress

analysis. Methods for displaying volumetric data may be categorized into two classes,

surface extraction and direct display. Surface extraction methods use some property

of the data to generate traditional computer graphics primitives, such as triangles or

quadrilaterals. These objects are then displayed using traditional computer graphics

techniques. Direct display techniques attempt to display the data without using inter-

mediate geometric primitives.

The techniques for the direct display of the data can be split into two groups, pixel-

based and voxel-based. Pixel-based volume renderers calculate the image pixel by pixel,

usually by traveling through the data along the line of sight through each pixel. In

most cases this is approximated using a ray casting technique that computes the shading

2



1{INTRODUCTION

Geometric objects representing a volumetric data set. This data set is a 256�256 � 21 8

bit MRI scan of the region between the collar bone and the bridge of the nose. The

230,000 triangles used to generate this image were constructed using the marching

cubes technique. The iso-surface was generated using a low-threshold of 0.31 and a

high-threshold of 0.60.

Plate 1.2

3



1{INTRODUCTION

Direct display of volumetric data. This display of the MRI data set was constructed

using Sabella's volume rendering technique.

Plate 1.3
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1{INTRODUCTION

along the ray. Voxel-based volume rendering techniques compute the image by project-

ing individual voxels onto the screen and updating the a�ected pixels. If occlusion is

important then the order in which the voxels are processed is important, and, they must

be processed relative to the viewing direction.

The display of volumetric data, whether in texture mapping or volume rendering, will

continue to be an interesting area of study. Texture mapping has been shown to be very

useful as part of the computer graphics pipeline. The increased computational power

makes the study of the display of larger and more complex datasets possible.

The computer graphics pipeline [Fole90, Newm79] has proven useful as a conceptual

framework. Even though texture mapping is a subset of the �nal step of the pipeline

(see Figure 1.1), we can think of the texture mapping process as itself being a pipeline.

The modeling stage consists of developing the procedural models. The transformation

stage is typically a set of simple transforms to map the object into the texture space.

The display stage is where the texture is evaluated or sampled. Most of the research in

three-dimensional texture mapping has concentrated on the modeling of textures.

The process of displaying volumetric data also �ts into a pipeline model. Given a set

of data we make a choice of which model will be used for the display. The transformation

stage allows the user to set the viewing parameters to view a particular aspect of the data.

It is only natural that the �rst two steps be simple because the modeling required for the

display of a data set consists of choosing a display model and the viewing transformations.

This typically results in a view of the data set where the data set almost �lls the entire

viewing screen.

Whenever a signal is sampled there is the possibility that this sampling will be in-

adequate. When the sampling of the signal is inadequate a variety of e�ects known as

aliasing can appear in the reconstructed signal. This problem is exacerbated in com-

puter graphics because we are required to sample objects and their associated textures

in a non-uniform manner. The solution to this problem is well known, and requires the

�ltering of the textures to remove the frequencies that are causing the problems. The

cost of evaluating these �ltered samples is high. This high cost stimulated the search for

e�cient approximations to two-dimensional �lters. An overview of the two-dimensional

texture �ltering literature is presented in Chapter 3.

5



1{INTRODUCTION

DisplayGeometryModeling

Scanner

T(x,y,z) = ........

Transformation

The general graphics pipeline augmented with a texture pipeline.

Figure 1.1

1-2 Three-dimensional textures

Texture mapping has allowed us to generate images of rich visual complexity[Catm74].

Initially two-dimensional textures were used to modulate the surface characteristics of

the objects. This technique was soon extended to allow the perturbation of the normals

on the surface [Blin78a], and to modulate the transparency on surfaces [Gard84]. Us-

ing two-dimensional texture maps textured objects were easy to model and display. A

problem with this technique was that sculpted objects were di�cult to display. Three-

dimensional textures [Gard84, Gard85, Grin84, Perl85, Peac85, Four86] were introduced

partly to address this weakness of two-dimensional textures. Instead of requiring a com-

plex mapping from the surface of the object to the texture space, a simpler set of a�ne

transforms proved su�cient in most cases. Over this three-dimensional texture space a

procedural model of the texture was de�ned. This model of the texture was then sam-

pled at the surface points of the object being displayed. Because these textures were

6
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procedurally de�ned any of the shading parameters could be altered by this procedu-

ral texture engine. This is in contrast to two-dimensional texture mapping where most

of the textures are discrete. The relative di�culty of acquiring three-dimensional data

for the optical characteristics of solid materials and the costs of storing su�ciently high

resolution data may account for this choice.

Early work on three-dimensional textures concentrated on texturing the surface of the

object. More recent three-dimensional texture mapping systems have placed texture in

a neighbourhood near the surface of the object [Perl89, Kaji89, Lewi89, Eber90]. These

textures model objects with high frequency or fuzzy surfaces, such as fur. These textures

require the computation of the texture throughout the texture region instead of at a

single point.

1-3 Volume rendering

Volumetric data display is proving to be a useful tool in a variety of areas. In med-

ical imaging it has allowed better diagnosis to be made. In geology it has given us

a better understanding of the underground structure. The study of methods for dis-

playing volumetric data has primarily concentrated on scalar volumetric data. The

methods developed to display this data can be divided into two classes. The �rst

set of methods displays the volumetric data by �rst �tting geometric objects to the

data [Artz81a, Artz81b, Artz80, Artz79a, Artz79b, Chen85, Herm83, Herm82, Herm80,

Wilh90a, Wilh90b, Lore87, Shir90, Galy91, Clin88]. These geometric objects or primi-

tives are then passed to a traditional display system. We will refer to this set of techniques

as geometric volume rendering. The second set of methods displays the data without �t-

ting geometric objects to the data. This set of methods assumes that the data represents

density samples taken throughout the volume. Displays of this volume are then generated

by simulating the transport of light through the volume. These techniques have been

called direct volume rendering. In the ensuing discussion we will refer to these techniques

simply as volume rendering because geometric volume rendering techniques lie outside

the scope of this manuscript.

Two approaches to volume rendering are being studied, voxel-based and pixel-based.

7
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Air
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#

Air Fat
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tissue

Density distribution, probability functions, and transfer functions for CAT scans. The

linear approximations on the bottom are the transfer functions used by Drebin et al.

[Dreb88]

Figure 1.2

Voxel-based techniques, [West90, Wilh91, Laur91, Dreb88, Upso88, Max90] calculate a

volume of in
uence around the voxel and then project this volume onto the screen, this

process is also known as voxel splatting. The pixels that lie in the projection of the voxel

are updated as required. If occlusion is a desired property of the display process then the

processing of the voxels must be done in an order determined by the viewing direction.

The direction of this processing adds another label to these techniques; thus we have

back-to-front and front-to-back voxel-based volume rendering. The manner in which a

voxel is displayed depends on the shape of the voxel, the distribution of density through

the voxel, and the intent of the method.

Pixel-based volume rendering techniques [Levo90a, Levo90d, Levo90b, Levo90c,

Sabe88, Levo88, Upso88, Novi90] typically cast a ray from the eye through the pixel

into the scene computing the integral of the densities/intensities along the ray. The

resulting intensities are used to determine the colour of the pixel.

8
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Voxel-based techniques have the advantage that they do not need to have all the data

in main memory at the same time, but they have the disadvantage that they may have

to process all of the data. Pixel-based techniques have the advantage that they can �nish

processing along a line of sight when one of the calculated quantities passes a pre-set

threshold, however these techniques require that all of the data, or a major portion of it

[Novi90], be in main memory. One could argue that as memory sizes and compute power

increase this will not be a problem. But it is probably the case that no matter how large

memory becomes, there will always be a larger data set that needs to be studied.

1-3.1 Transfer functions

Di�erent aspects of the data can be highlighted by concurrently displaying separate

transformations of the data. This separation is often done by means of procedurally

de�ned transfer functions. These functions will either map a scalar data set into another

scalar data set or into a multi-dimensional data set. By carefully tailoring these transfer

functions di�erent properties of the data can be highlighted. An example of transfer

functions is presented by Drebin et al. [Dreb88]. Transfer functions were used to segment

the data into three data sets corresponding to fatty tissue, muscle, and bone. These

transfer functions and the related density distribution curves are presented in Figure 1.2.

To date most of the volume rendering systems presented point sample the data.

Pixel-based techniques point sample each pixel and then use sample points along the

ray generated from the pixel. Voxel-based techniques generate an approximation of the

projection of the voxel onto the screen. The pixels that lie in this projection of the

voxel are then updated according to the shading/display model being used. A few sys-

tems [Upso88, West90] deal with approximations to a three-dimensional integral over

the volume of the voxel that is cast onto the pixel. Unfortunately these systems rely

on point sampling to generate their approximations to the integrals. In this thesis we

present a study of the �ltering requirements of volume rendering and propose the use of

three-dimensional NIL maps for approximating these �lters.

9
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1-3.2 Fourier-based methods

Levoy [Levo92] recently presented a technique for volume rendering that used the Fourier

projection-slice theorem. The data is �rst transformed into the Fourier or frequency do-

main. Given the orientation of the desired display a corresponding slice of the Fourier

transform is sampled. The inverse two-dimensional Fourier transform of this data yields

an orthogonal display of the data. Most volume rendering techniques require the process-

ing of O(n3) voxels per image. In contrast to this the Fourier based technique requires

the processing of O(n2) pixels for the construction of the sample slice. The cost of trans-

forming this slice into the spectral domain is O(n2 log n). The pre-processing step costs

O(n3 log n). This means that the total cost is per view O(n2 log n). This technique works

well but allows little control of the display model since it is �xed.

In order to compute the slice an interpolating �lter of width W is used. The cost

of evaluating each element of the slice is W 3. This implies that the cost of evaluating

the spectrum slice is actually O(W 3n2). Work in this area continues with encouraging

results [Tots93, Malz93].

1-4 Filtering

Given a signal T (t) that is de�ned over some interval [a; b] we wish to store a sampled

or digitized version of the signal in such a way that we can later reconstruct the signal.

We know from signal processing theory that the frequency of the sampling grid used

must be greater than twice the highest frequency in the signal1; this is known as the

Nyquist frequency. In Figure 1.3 we present an illustration of the problem that occurs

when a bad sample set is used to reconstruct a signal. The circles depict a sample set

with a frequency lower than the Nyquist frequency, and the squares a sample set with a

frequency that is higher than the Nyquist frequency. The reconstructions that result from

applying the ideal reconstruction �lter to these sample sets are illustrated underneath.

The erroneous signal that results from the �rst sample set is called an aliased signal.

When we are sampling signals with more complex frequency spectra we must either

1For a good overview of signal theory see [Rose76].
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R2

R1

Two reconstructions of a sampled signal. The �rst reconstruction (R1) results from

using an ideal (sinc) reconstruction �lter on the samples de�ned by the circles. The

second reconstruction is generated from the samples de�ned by the squares. Because

the �rst sample set sampled below the Nyquist frequency it is impossible to correctly

reconstruct the original signal.

Figure 1.3

sample at or above the Nyquist frequency or remove the high frequency components that

are causing the aliasing. This latter process is called �ltering.

These sampling problems are compounded in computer graphics since we must often

sample our signal using non uniform sample grids. A simple example of this situation is

presented in Figure 1.4. In this �gure we see a view of a square that is being displayed

using a perspective transform. Because the picture elements or pixels on the viewing

plane are regularly spaced we sample the square based on this grid. On the left of

the illustration we see the texture displayed with the sample points highlighted on it.

We notice that these samples are not regularly distributed throughout texture space

even though the samples are uniformly distributed on the viewing plane. If the square is

substituted with a large plane the spacing between the texture sample points can become

arbitrarily large near the horizon.

11
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Non uniform sampling in computer graphics. The uniform grid of samples generated on

the screen does not generate a uniform grid of samples on the texture.

Figure 1.4

For a given texture the resulting sampling frequency may be lower than the texture's

Nyquist frequency. We may choose to take more samples to ensure that the Nyquist

frequency is satis�ed. By averaging these samples a representative value can be computed.

In order to compute this average we must determine an area of the texture space from

which the samples are to be taken. This is usually accomplished by using some pro�le or

perimeter of a pixel, such as a circle. The texture elements or texels within this projected

pixel are then averaged to generate the �ltered sample.

Once we have developed this �ltering process we can start to consider more sophis-

ticated �lters. The Bartlett �lter and the Gaussian �lter have proven useful in the

computer graphics literature. These �lters have been used for anti-aliasing. The use of

�lters in computer graphics is not restricted to anti-aliasing. By tailoring di�erent �lters

we can compute di�erent e�ects, such as motion blur and depth of �eld. In both of these

situations the �lters are not removing aliasing frequencies but are being used to compute

the value of the texture. In the case of motion blur the �lter is deformed, or spread out,

along the path in which the surface point is traveling. By averaging the texture under

this �lter we can produce motion blur e�ects. In a similar way the blurriness of the �lter

can be de�ned as a function of the distance from the focal plane. In this way a depth of

�eld e�ect can be computed. Because the cost of directly computing the convolution of

12
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these �lters is high, research has focused on �nding reasonable approximations to these

�lters.

In order to apply a two-dimensional texture map to an object in a meaningful way

we must develop a u; v parametrization of the surface. This parametrization is then used

to index into the two-dimensional texture. Constructing these parametrizations becomes

increasingly di�cult as the complexity of the object increases. As the complexity of the

u; v parametrization increases so does the complexity of the �lter shape required for anti-

aliasing. Fortunately there has been some work done on constant cost approximations

to these �lters [Will83, Four88a, Gots93]. One of the most successful of these approx-

imations uses pyramidal representations of the data to approximate the �lter[Four88a].

The constant cost is a result of approximating the �lter at di�erent levels of the pyramid,

thus requiring a �xed number of samples to be taken from the data.

Suppose we wish to texture an object in such a way that it appears as though it were

carved out of some solid material. Three-dimensional textures provide adequate tools for

this task, since the coordinates on the surface of an object can be used to index into the

solid texture. This carved out of e�ect is di�cult if not impossible to accomplish using

two-dimensional textures.

With two-dimensional textures much of the complication of the �lter's shape was due

to the complex parametrizations used. With three-dimensional texture maps we do not

have to concern ourselves with this aspect since the transformations used to map the

texture onto the object are not that complex. Instead, we now have to worry about the

model of the material that is used for the object. If the material is opaque the texture is

only visible on the surface, and if the material is translucent then the texture is important

in a region or volume near the surface of the object. This means that if we are attempting

to �lter the texture on an object that is made of a opaque material we must tailor the

�lter to concentrate on the texture at the surface. On the other hand when we wish to

�lter textures on objects that have translucent properties then we must use a �lter that

processes a volume near the surface of the object2.

2Note that in the case of translucent textures the texture may have to be evaluated throughout the whole

volume along the viewing direction.
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Current implementations of three-dimensional textures allow any of the variables of

the shading equation to be altered. This raises a number of �ltering issues. Consider

the case where it is not the colour of the object that is altered, but the normal of the

surface (bump mapping). The bumpy or rough surface that is produced cannot be �ltered

using the traditional �ltering approach since the normal is not a linear component of the

shading equation. Even though the usual �lters cannot be used on these normals, the

�lters do provide a means of removing the aliasing [Blin78c, Blin78a]. A simple example

serves here to illustrate how using standard �lters removes aliasing for bump mapping,

but does not do it in a \correct" way. Consider the surface with the distribution of

normals detailed in Figure 1.5. If these normals are replaced with their average the

resulting normal distribution bears no resemblance to the original distribution (Figure

1.6). There is ongoing work in the area of �ltering normal distributions [Four93].

Normal distribution
Figure 1.5

Filtered normal distribution
Figure 1.6
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1-4.1 Colour textures

In this thesis we will be dealing with those elements of the texture space that can be

`averaged' i.e. variables that are linear. When dealing with three-dimensional texture we

will primarily concern ourselves with textures that alter the colour of the object.

1-4.2 Filtering semantics

In its most general form a �lter is a weighting function F (t) applied to another function

T (t). There are di�erent reasons for �ltering. Anti-aliasing was the original reason

for this work. It soon became apparent that the use of �lters for three-dimensional

textures provided a far richer set of operations than simply anti-aliasing. In both three-

dimensional texture mapping and volume rendering there are a large number of possible

�lters that can be applied to the data. We will not attempt to enumerate these �lters

in this thesis, but rather we will select some examples of �lters and show how their

application can be evaluated using a set of approximating techniques. These techniques

are developed and evaluated in Chapter 4 and 5 of this dissertation. Chapter 6 discusses

the use of �lters for volume rendering.

1-4.3 Reconstruction �lters

The reconstruction of the data is another area where there is potential for aliasing or

reconstruction artifacts to appear. For the most part the two reconstruction �lters that

have been used are the box �lter and the tri-linear interpolation �lters. Figures 1.7

and 1.8 illustrate these reconstruction �lters in one dimension for a particular sample

set. When the box reconstruction �lter is used the image often looks as though the

volume is made up of uniform cubes. This e�ect is somewhat diminished when tri-linear

interpolation is used. To date there is no discussion on using higher order reconstruction

�lters in volume rendering applications. Because most three-dimensional textures are

procedurally de�ned the issue of reconstruction �lters has not been so relevant.
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to t1 tn

Box �lter reconstruction of a one-dimensional signal. The bold vertical lines indicate

the position and values of the sample set.

Figure 1.7

tnto t1

Linear interpolation reconstruction of the signal used in the previous �gure.

Figure 1.8
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1-4.4 Filter approximation requirements

In some sense two-dimensional �ltering is a much simpler task than the �ltering of three-

dimensional textures. The initial motivation for this work was to provide �lters for

anti-aliasing of three-dimensional textures. As we started to look at three-dimensional

textures it became obvious that �lters could be used for more than simple anti-aliasing.

For some of the newer volumetric textures the display of the texture required an averaging

over a region near the surface of the object. This calculation can easily be formulated

as a �ltering operation. Similar �lters can be used in the display of volumetric data.

Di�erent displays of the volumetric data can thus be generated by designing di�erent

display �lters.

This leaves two possible avenues of research, �lter design and �lter evaluation or

approximation. Considering the path by which we arrived at this point, it is natural

that we chose to concentrate on �lter approximation techniques. Our hope is that the

results in this thesis will allow the further investigations of �lter design with applications

in volume rendering and texture mapping. In order to support further study into �lter

design we will base our analysis primarily on the 
exibility of the �lter approximating

technique. Other evaluation criteria might include, pre-processing costs, �lter evaluation

cost, �delity measures, and visual e�ects.

1-5 Thesis Goals

The main contributions of this thesis can be summarized as follows:

� An overview of the three-dimensional texture mapping �ltering issues is provided.

We study the relationship between two-dimensional computer graphics sampling

and �ltering problems and the related three-dimensional problems.

� The usefulness of �ltering is shown to be greater than that of simply anti-aliasing.

We show how some of the display problems in volumetric texture display and volume

rendering can be formulated as �ltering problems.

� The evaluation of these �lters is costly. We develop three techniques for approxi-

mating the evaluation of �lters. These are:
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{ Direct convolution evaluation using numerical quadrature.

{ Elliptical Weighted Average (EWA) �lters. This technique is developed as

an extension of the similarly named two-dimensional technique presented by

Greene and Heckbert [Gree86].

{ NIL maps. This technique is also developed as an extension of the correspond-

ing two-dimensional technique presented by Fournier and Fiume [Four88a].

� These three techniques are studied along with a fourth technique from the literature.

This technique is known as Clamping [Nort82, Perl85] We compare their 
exibility,

performance, and domain of application. Examples of their application to texture

mapping and volume rendering are also included.

� We present the results of an initial investigation into the use of �lters for volume

rendering.

1-6 A Road-map to this thesis

There are �ve chapters that follow. These are:

� Chapter 2

De�nitions

An overview and precise de�nition of the terms, concepts, and formulas used

throughout the dissertation.

� Chapter 3

Related work

This work was in
uenced by the two-dimensional texture mapping, the three-

dimensional texture mapping, and the volume rendering literature. In this chapter

we present an overview of the literature from these three areas.
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� Chapter 4

Filtering techniques

Three �ltering techniques were developed for volumetric data, direct evaluation by

quadrature, EWA �lters, and NIL maps. These techniques are presented with dis-

cussions on their possible implementation. A fourth technique from the literature,

known as clamping, is also presented brie
y.

� Chapter 5

Comparison and application of the techniques

The four techniques are evaluated with regard to their application to texture map-

ping and volume rendering. We present example images illustrating application of

these techniques to texture mapping.

� Chapter 6

Filters for volume rendering

Three examples are used to illustrate the use of �lters for volume rendering.

� Chapter 7

Conclusions

Summary, conclusions, and recommendations of dissertation.

� Appendix A

Implementation details of NIL maps

Implementation details of NIL maps. A variety of speed-ups for the technique are

presented.

� Appendix B

High level view of NIL code

The code at the heart of the NIL map implementation for volume rendering.

� Appendix C

Code required to make a NIL motion blur �lter

An example of C code required for the implementation of a three-dimensional mo-

tion blur �lter.
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Chapter 2

De�nitions

It is not necessary to understand

things in order to argue about them.

Pierre de Beaumarchais.

De�nition 1 Volumetric Data:

Volumetric data is a discrete data set or a continuous function de�ned over a volume

V � <3 ! D � <p.

De�nition 2 Discrete Volumetric Data:

A discrete set of samples of volumetric data acquired by some sampling process over a

�nite volume.

De�nition 3 Procedural Volumetric Data:

A continuously de�ned volumetric data set which is de�ned algorithmically.

Three-dimensional texture maps have been implemented as procedural textures. Most

of the acquired volumetric data used in volume rendering is discrete.

De�nition 4 Texture:

A texture is a map from a geometric space <n to a texture space <p.

Examples of textures include, colour textures ( <2 ! <(red;green;blue)), normal pertur-

bation or bump maps ( <2 ! <(nx;ny;nz)). In practice two-dimensional texture maps have

been discrete and three-dimensional textures have been procedural.

De�nition 5 Frame Bu�er:

A portion of main memory dedicated to the storage of an image.

Usually a frame bu�er is associated with a display device. If this is the case there is an

implicit mapping from the frame bu�er values to the intensities displayed on the display

device.
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De�nition 6 Pixel:

The smallest addressable element of a frame bu�er.

As such the strict de�nition of a pixel is a numerical value representing the colour at

a point in an image. There is some confusion inherent in this term, partly due to the

confusion between an image stored in a frame bu�er and an image displayed on a physical

screen. When an image is displayed on a screen the pixel values of the frame bu�er are

converted into an intensity setting over an area of the screen. Sometimes pixels have

been de�ned as the smallest addressable elements on a display device.

The linking of a pixel to a physical display device is not without its merits. We can

use a model of the \physical pixels" as an indication of the area of the viewing screen over

which we must integrate the image display. In this sense pixels may have a shape. We

must emphasize, however, that the shape of the pixel model bears little if any resemblance

to the physical shape of pixels on a display device. For further discussion on this topic

please see [Lyon89, Naim89].

De�nition 7 Texel:

A texel is a texture element.

This term is used when referring to discrete textures. In three dimensions the texel may

be either a volume over which a procedural texture is de�ned [Kaji89] or a sample of a

procedural texture.

De�nition 8 Voxel:

A voxel is an element of a discrete volumetric data set.

Notice that this de�nition is independent of the volume which the sample is thought to

represent. This volume has been tailored according to the display technique. Some people

consider it a rectangular parallelepiped of uniform density [Wilh91], others consider it

a rectangular parallelepiped whose density is de�ned by a tri-linear interpolation of its

eight corner points [Upso88], and others have taken the volume to be a spherical or

elliptical volume enclosing the sample point [West90].
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De�nition 9 Filter:

Consider a signal T (t) de�ned on [�1;1]. A �lter is any function F (t) such that the

integral

I =
Z 1

�1

T (t)F (t)dt

is well de�ned.

De�nition 10 Space invariant �lter:

A space invariant �lter is a function which is translated and applied to a signal. The

�ltering operation is then a function of the centre of the �lter to.

I(to) =
Z 1

�1

T (t)F (t� to)dt:

This operation is called the convolution of the �lter with the signal at to. In two dimen-

sions this convolution is de�ned by

I(uo; vo) =
Z 1

�1

Z 1

�1

T (u; v)F (u� uo; v � vo)dudv;

and in three dimensions by

I(uo; vo; wo) =
Z 1

�1

Z 1

�1

Z 1

�1

T (u; v; w)F (u� uo; v � vo; w �wo)dudvdw:

De�nition 11 Ray tracing:

The process of intersecting a line de�ned by an origin and a point on the viewing plane

with geometric objects.

Typically this process is used for rendering or displaying objects. The viewing plane

is discretized according to the size of the frame bu�er being used. The rays are used

to approximate the path which the light arriving at a point on the viewing plane has

followed. This is typically done backwards, i.e. proceeding from the viewer's position

out into the geometric de�nition of the scene.
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De�nition 12 Ray marching:

The process of stepping along a ray and sampling some function at each step.

These samples may be used to �nd a property of the function or may be incorporated

into an overall computation which yields a single value. In the case that an object is

de�ned by an implicit surface F (x; y; z) = 0, the ray marching technique can be used to

�nd the surface. If the object being displayed has a volumetric texture near the surface

the ray marching technique can be used to approximate the transport of light through

this texture volume, thus yielding a color for the display of the pixel in question.

De�nition 13 Voxel splatting:

The process of projecting the volume representation of a voxel onto a viewing plane.

When the area of the image screen is found the a�ected pixels within this area are updated.

De�nition 14 Pyramidal data structure:

A pyramidal data structure is a hierarchical data structure[Tani75, Rose75]. The data

structure is constructed in such a way that for a one-dimensional data set each level

requires half the storage of the next lower level. This provides a pyramid of representations

for the data.

This technique has been used primarily in the vision literature. The �rst application of

this storage technique serves as an example to illustrate both the data structure and how

the levels provide multi-resolution representations of the data.

De�nition 15 MIP map:

Multum In Parvo (Many things in a small place)

A MIP [Will83] map is a pyramidal data structure for representing two-dimensional

textures. Each level contains texels which are the average of the four texels in the level

directly below them. If the original image is of resolution x = y = 2p then the height of

the MIP map is p. In this case the single texel on the p + 1th level is an average of the

whole texture. This scheme is illustrated in �gure 2.9.
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Pyramidal representation of two-dimensional data

Figure 2.9

De�nition 16 NIL map:

Nodus In Largo (Knot large)

A NIL [Four88a] map is a pyramidal data structure in which a set of basis functions have

been pre-integrated with a texture. These pre-integrated basis functions can then be used

to approximate the convolution of �lters with a texture.

De�nition 17 EWA �lters:

Elliptical weighted average �lters is a technique which takes advantage of the radial

symmetry of a Gaussian �lter so that the �lter evaluation can be accomplished using a

simple table-lookup.

If an a�ne transformation was used to generate the elliptical area or volume over

which the �lter is to be evaluated this technique can be used.

De�nition 18 Transfer functions:

A set of functions which map a scalar data set into one or more di�erent scalar sets.

In this dissertation the term transfer function indicates a function which maps a density

distribution into another density distribution. The use of these functions is important

in the volume rendering literature since it allows users to easily segment the data they

are studying. These segments of the data are often mapped into other scalar data sets.

These new data sets can then be displayed concurrently or separately.
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Chapter 3

Related work

He who boasts of his descent

praises the deeds of another.

Seneca

The work reported here was motivated by a variety of sources. The images and ideas

of three-dimensional texture mapping motivated the research into this area. Many of

the details that remain open to study in three-dimensional texture mapping have been

extensively studied in two-dimensional texture mapping. Two techniques for the �ltering

of two-dimensional texture stand out when this literature is read with the idea of extend-

ing the techniques to three-dimensional textures, namely EWA �lters and NIL maps.

The initial study of three-dimensional texture �ltering showed that in many cases the

problems being studied were similar to those being studied in volume rendering. In this

section we present an overview of the relevant literature from two-dimensional texture

mapping, three-dimensional texture mapping, and volume rendering.

3-1 Two-dimensional textures

Computer graphics has shown that the display of shaded polygons is easily done. For-

tunately for us, the real world is much richer than this.1 This richness is due partly

to the texture details on many of the objects we see. In order to generate compa-

rable images we must develop techniques for adding this complexity to objects. One

approach would be to generate geometric models of the texture and use these models

to compute the texture components of the image. The work on anisotropic re
ection

[Ward92, Poul90, Poul89, Kaji85, Bren70] is an example of such an approach.

Two-dimensional colour textures was the �rst tool with which texture information

could be added to geometric objects. Using scanned textures, objects can be mapped

1This assertion is one that the post-modern architects seem bent on nullifying. Their frenzied desire to

populate our cities with buildings that look like their simple computer graphics models still continues.
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with these textures. In carpentry veneering is often used to enhance the look of furniture

built from inferior wood2. When one encounters furniture that has been veneered it is

quite easy to spot the discontinuities in the texture. Two-dimensional texture mapping

su�ers a similar problem.

The mapping from the surface of the object to the two-dimensional texture space is

accomplished by generating a two-dimensional parametrization of the surface. When we

need the texture parameters for a point (x; y; z) on the surface we evaluate the corre-

sponding parameters (u; v) and use them to index into the texture. As an example of

such a mapping we can use the sphere. For a given point on its surface (x; y; z) we have

the corresponding spherical coordinates (r; �; �). Because we are interested in texturing

the surface of the object we can ignore r and use � and � as the texture parameters. If

we have a texture de�ned over the [1; 0] � [1; 0] square in u; v space we have to �nd a

mapping from [0; 2�]� [0; �] to [1; 0]� [1; 0]. Thus the map

u(x; y; z) =
�(x; y; z)

2�

v(x; y; z) =
�(x; y; z)

�

will wrap the texture around the sphere. This mapping introduces a singularity at

each of the poles of the sphere. These singularities and the complexity of some of the

parametrizations required for two-dimensional texture mapping motivated some of the

early work on three-dimensional texture mapping [Peac85].

Two-dimensional texture mapping techniques have been concerned with the related

sampling and �ltering issues from the very beginning. Most of the textures that are being

used by two-dimensional texture mapping applications are discrete textures. The sam-

pling of these texture data sets introduced many undesirable artifacts. As we discussed

previously the only solution was to incorporate �ltering into the texture sampling pro-

cess. In general this requires �ltering with space variant �lters, a process that precludes

2Even though the primary application of the veneer process is to disguise, another similar process is marquetry.

In this process small, usually geometric, shapes are glued to a surface to produce strikingly beautiful patterns.

`Marquetry taken to an extreme' would be a �tting description of intarsia. This process uses marquetry to

generate images of impressive complexity. These processes are hopefully a better analogy for the two-dimensional

texture mapping process.
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the use of multiplication in the Fourier domain. This means that the only remaining

option is to compute the direct convolution of the texture with the �lter. This usually

involves computing the integral of the �lter centered at uo; vo with the texture over some

integral area A.
I =

Z Z
A

T (u; v)F (u� uo; v � vo)dudv

Figure 3.10 shows a simple computer graphics scene. The textured objects in this

scene are the two checkered planes that are mapped with the same texture. By picking

three pixels we illustrate some of the problems of �nding the appropriate �lter to apply

to the texture. For simplicity's sake let us assume that the area on the viewing plane

over which we want to compute the texture is a circle. The �rst pixel circle is near

the bottom of the screen and when it is transformed into texture space it su�ers little

distortion. The second pixel is near the top left of the screen and its projection into

texture space introduces a strong distortion caused by the perspective transformation.

The third pixel contains two objects, the spout of the teapot and the checkered board

behind the teapot. The projection of this pixel into texture space should take into account

the amount of the texture that is obstructed by the teapot's spout. The solution to the

problem of occlusion has usually been addressed by subdividing the pixel into smaller

regions until we can assume that only one object covers each sub-pixel. An average of

these sub-pixels is then used as the �nal pixel colour [Fium83a, Fium83b, Carp84]. If it

were possible to tailor the �lter so that the weights of the �lter in the occluded regions

were set to zero then this occlusion problem would be addressed. Thus we have a complex

set of areas over which the convolution of a �lter and the texture must be computed. As

the scene complexities increase so the complexity of the shape of these �lters will also

increase.

Once we have found the area of integration we must compute the integral. The cost

of evaluating these integrals motivated the search for �lter approximating methods.

Catmull [Catm74, Catm75] is generally credited with introducing two-dimensional

texture mapping to computer graphics. Because the texture was tied to bi-cubic para-

metric patches the (u; v) parameters of the patch were used to index into the texture.3

3This parametrization of the surface does allow textures to be applied to the surfaces of the objects. There
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3

1

2

Texture distortions due to perspective projection, transformation, and occlusion.

Figure 3.10

Aliasing was reduced by �ltering the patch segments with a box �lter placed over the

pixel. In addition to this box �lter the texture was pre-�ltered to remove excessively

high frequencies. A pyramid �lter was proposed by Blinn and Newell [Blin78b, Blin78a].

Using the quadrilateral approximation to the projection of a square pixel into texture,

a pyramid �lter was computed as a weighted average of the texels under the distorted

pyramid. Feibush, Levoy, and Cook [Feib80b] proposed a rather complex method for

approximating a Bartlett �lter or triangle �lter. First the bounding rectangle of the

pixel is projected into the texture space. The texels in the resulting quadrilateral are

projected back to the screen and a weighted sum of the texels that project into the circu-

lar representation of the pixel is performed. A modi�cation to this method is presented

by Gangnet, Perny, and Coueignoux [Gang82, Pern82]. In their method sample points

on the screen are projected into the texture and used in the weighted sum. In most

circumstances these two techniques perform essentially the same �ltering operation, the

projection of screen samples into texture space requires the evaluation of the texture at

points between texels. If the cost of evaluating the reconstruction �lter for the texture

is a problem in that the parametrization induced by a particular basis may not be a desirable parametrization

of the surface.
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is high then Gagnet's technique will be costly. On the other hand there may be situa-

tions where the somewhat superior sampling technique employed by Gangnet produces

a better result.

A di�erent approach was proposed by Norton, Rockwood, and Skolmoski [Nort82].

They approximate a box �lter in the Fourier domain (sinc �lter) by the �rst two terms in

its power series expansion 1�x2=6. The textures that can be �ltered with this technique

are those textures that can be expressed as T (x; y) = A+F (x; y), where A is a constant

term and F (x; y) has a simple Fourier representation. The clamping is applied to the F ()

component of the signal depending on the area of the texture map that is to be �ltered.

The high cost of computing these approximations motivated the study of pre-�ltering

techniques for approximating �lters. Dungan, Stenger, and Sutty [Dung78] used pyra-

midal data structures [Tani75, Rose75] to allow the use of pre-�ltered images in texture

mapping. They generated a �ltered pyramid of the image using a box �lter to gener-

ate the di�erent levels. Based on the area that the �lter covers in texture space they

select a level in the pyramid and use the appropriate texel in this level for the �lter.

Williams [Will83] suggests using a tri-linear interpolation scheme on the same pyramid

where the sample point now lies between levels. Bi-linear interpolation is used on each

level to determine two values of the texture. Linear interpolation between levels is used

to determine the �nal value of the texture that is to be used.

A variant of this pyramidal approach is to use a summed area table as suggested by

Crow [Crow84] and also by Ferrari and Sklansky [Ferr84, Ferr85]. This technique allows

the approximation of rectangular area �lters to be computed. The method proposed

by Ferrari and Sklansky also allows arbitrary rectilinear polygons to be used as �lters.

Glassner further extended this method to allow arbitrary quadrilaterals to be approxi-

mated [Glas86]. The tables for this approach are constructed by pre-integrating in u and

in v. An extension to this idea was proposed by Heckbert [Heck86]. His method relies

on the identity

f(x) � g(x) = dnf

dxn
(x) �

��Z �n
g(x)dxn

�

With Heckbert's technique �lters are approximated by axis-aligned B-splines.
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Greene and Heckbert [Gree86] use the radial symmetry of the Gaussian �lter in their

approximation technique for Gaussian �lters. Assuming that pixels are circular their

projection onto a plane is either an ellipse, a parabola, or a hyperbola. When the pro-

jection of the pixel is an ellipse the resulting elliptical Gaussian is easily found by the

combination of a scale and rotation. The projection of the �lter can easily be computed

when the circular representation of the pixel projects to an ellipse. For each texel in the

bounding box of this ellipse the distance from the centre of the ellipse is evaluated. The

value of the �ltered sample is then the weighted sum of all the texels inside the ellipse.

If the �lter being approximated is a radially symmetric �lter, then the values of the �lter

can be pre-computed in one-dimension. The weight of the �lter is then a simple table

look up instead of the computation of the �lter weight, which may be costly. Discussions

of the generalization of EWA �lters to three dimensions are presented in Chapter 4.

A study of conformal mapping with an application to texture mapping by Fiume,

Fournier, and Canale [Fium87] motivated the study of space variant �lters. NIL maps

are another use of pyramidal data structures proposed by Fournier and Fiume [Four88a].

In their approach the �lter is approximated by a set of parametric patches4. By analyzing

the integrals of the �lter approximation with the texture it was found that the integrals

of the basis functions with the texture are independent of the shape of the �lter. Because

these integrals are independent of the �lter they can be pre-computed. The approxima-

tion to the integral of the �lter with the texture is then computed by �nding the control

points for the patches that are to approximate the �lter. These control points are then

used as weights for the pre-integrated basis functions. If a hierarchical approach is used

for approximating the �lter the cost of this approximation is no longer dependent on

the size of the �lter but on the number of patches in the hierarchy that approximates

the �lter. In chapter 5 we present a more detailed description of NIL maps and their

extension to three dimensions.

A method derived from NIL maps has recently been proposed by Gotsman [Gots93].

Instead of using parametric spline patches to approximate the �lters they construct a set

4In their implementation they used constant, bi-linear, bi-quadratic, and bi-cubic Catmull-Rom patches as an

example. They point out that there is no restriction on the class of patches used so long as they can be de�ned

by a reasonably `nice' set of basis functions.
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of basis functions using singular value decomposition. By restricting the class of �lters

that they are going to approximate they are able to generate basis functions that better

approximate this class of �lters. They illustrate their method by developing a set of basis

functions for Gaussian �lter applied to ellipses.

Most of the work in two-dimensional texture mapping has been concerned with the

development of fast approximations to the required �ltering operations. Little considera-

tion has been paid to the properties of the �lters. In their paper, Mitchell and Netravali

[Mitc88] present a class of cubic reconstruction �lters with a discussion of the tradeo�s

involved in using these �lters for reconstruction of a signal. The class of �lters they

studied is parameterized by two parameters. Over this two-dimensional space they clas-

sify the �lters based on the observed visual characteristics of these �lters. The main

characteristics used for this classi�cation were ringing, blurring, and anisotropy. Based

on this visual classi�cation they present a map of these �lters over the two-dimensional

space de�ned by the parameters. The map divides fairly simply according to the visual

characteristics they were looking for.

One of the points they make in their paper is that it is di�cult to measure objectively

the performance of �lters in computer graphics. They rank their �lters using several

subjective visual properties. This is probably the best measure we may have for �lters

in computer graphics.

Unfortunately this is the only work of which the author is aware in which the proper-

ties of �lters in the context of computer graphics have been studied. This kind of analysis

is more popular in the vision �eld where �lters are used for a variety of purposes such as

edge detection [Rose76, Cann86], texture segmentation [Bovi87], and detection of optical


ow [Adel85, Heeg87, Heeg88].

There has been some work in the development of texture models for two-dimensional

texture mapping. Feibush and Greenberg [Feib80a] showed how arti�cial textures could

be used in the context of architectural design. Schweitzer [Schw83] showed how arti�cial

textures could be added to objects to aid in their understanding. The textures were tied

to geometric properties of the objects such as curvature or normal orientation. Using

statistical models for texture Gagalowicz et al. [Benn89, Gaga88, Gaga87, Gaga86, Ma86,

Gaga83] developed a texture mapping technique that relies on these statistical models.
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First a white noise texture is mapped onto the textured regions of the image. These

textured regions are then adjusted so that they have the same statistical properties as

that of the texture model. Because the process is performed on the image after the

rendering of the geometric objects has occurred there is no simple way of ensuring that

the same point on an object receives the same texture in two di�erent images.

Another approach to two-dimensional texture mapping is to use these techniques to

display textures that are related to a dynamic process. By altering the texture van Wijk

[Wijk91] was able to animate two-dimensional data sets in a variety of ways. Reaction

di�usion [Turk91, Witk91] is a model that has been proposed for the growth of textures.

Examples of textures that this process is able to model include the fur markings on

many animals such as zebras, tigers, and gira�es. The reaction di�usion process is used

to produce two-dimensional textures that can then be mapped onto the objects using a

two-dimensional parametrization. Even though reaction di�usion textures can produce

striking images it is not clear how to set up the parameters to produce a particular

texture. Generating new textures using this technique can involve the search in a large

parameter space.

Research in �ltering two-dimensional texture maps has concentrated on �nding ap-

proximations to the convolution of the �lter with the texture. This convolution is neces-

sary because the shape of the �lter changes throughout the scene. A variety of schemes

have been proposed for this approximation. Of these schemes two approaches stand out.

Elliptical weighted average (EWA) �lters [Gree86] and NIL maps [Four88a]. EWA �lters

allow the use of the Gaussian or other radially symmetric �lter with little memory over-

head. The cost of evaluating the �lter is dependent on the size of the �lter in texture

space. When it is known that a radially symmetric �lter is to be used, this choice seems

to be the appropriate one. When a more complex �lter is required we may not be able use

this technique. NIL maps, on the other hand, allow us to approximate arbitrary �lters.

The cost of evaluating one of these approximations is not dependent on the size or shape

of the �lter, but rather on the quality of the approximation required. In contrast to EWA

�lters the NIL map �ltering approximation requires a considerable amount of memory

for the storage of the NIL maps. In the next chapter we discuss the extension of these

two �ltering techniques to three dimensions.
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3-2 Three-dimensional textures

The �rst references to three-dimensional textures were made by Fournier and Amanatides

[Grin84], Gardner [Gard84, Gard85], Perlin [Perl85] and Peachey [Peac85]. Fournier and

Amanatides mentioned it in another context. Gardner used an approximation to the

Fourier series to model a variety of the e�ects seen in clouds. His textures were used to

modulate the translucence of planes or ellipsoids. These objects were then grouped to-

gether to approximate clouds. Perlin [Perl85] used solid textures as part of his rendering

package. Peachey [Peac85] presented the idea of solid textures with the goal of removing

some of the parametrization problems associated with two-dimensional textures. Per-

lin's work was largely based on using a band-limited noise function for the modeling of

textures. By applying a variety of transformations to these noise functions he was able

to generate di�erent textures. Because many of Perlin's textures are developed from

band-limited noise functions, a clamping [Nort82] approach can be used to ensure that

no aliasing frequencies are introduced to the texture while it is being generated. The cut

o� frequency for the clamping of the signal is computed as a function of the size of the

projected pixel. Peachey recognized that, even though the introduction of these solid

textures removed some of the aliasing problems that were due to the problems of two-

dimensional parametrizations, the use of three-dimensional textures introduced another

source of potential aliasing problems.

Lewis [Lewi89] proposed a di�erent way of generating the noise function and its

associated transformations. In addition to a new method for generating the noise function

he, Perlin and Ho�ert [Perl89], and Kajiya and Kay [Kaji89] showed how textures could

be applied in regions or volumes near the surface of the object.

Kajiya and Kay developed a volumetricmodel for fur. This fur texel was then mapped

onto the surface of the object. When a ray intersected the object the texture was com-

puted by �rst calculating the entry and exit points of the ray into the texel volume.

Between these two points ray marching was used to incrementally compute and accumu-

late the shading. The resulting value was used as the value of the pixel. Their shading

model included interference and scattering.
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Perlin and Ho�ert, and Lewis generated deformed objects using three-dimensional

textures. By embedding their objects in a solid density function they were able to use a

thresholding of this function to de�ne a surface. The object was then displayed using a

ray marching technique. In this case the ray would not be computing the shading at each

point, but rather looking for the point at which the pre-de�ned threshold was reached.

When this threshold was found the shading was computed as if a surface was present at

that point. This allowed them to generate objects with highly complex surfaces. These

volumetric textures clearly blur5 the distinction between textures and objects.

Greene [Gree89] presented volume based technique for growing plants. When au-

tomata were placed in a voxel grid with the correct rules, interesting plant-like objects

were generated. The resulting volumetric objects were displayed using volumetric display

methods, either surface extraction or direct display.

Ebert and Parent [Eber90] presented a system that allows the rendering of standard

geometrical objects along with gaseous objects. The gaseous objects are modeled using

Perlin's turbulence function. In order to display these hybrid scenes they used a variation

of the A-bu�er scan line rendering technique [Fium83a, Fium83b, Carp84].

In previous work the author [Buch91] made the case for the �ltering of three-

dimensional textures. Using Simpson's mid-point adaptive quadrature rules over rect-

angular parallelepiped regions provided a means for evaluating the required integral in-

tegrals [Burd81]. The cost of evaluating this integral can be high,6 mainly due to the

adaptive nature of the quadrature method used and the variety of shapes that the �lter

can assume. The cost of evaluating the integral is directly proportional to the volume of

the rectangular parallelepiped over which the integral is being evaluated and the fourth

derivative of the product of the �lter with the texture function.

To date there are two �ltering options for three-dimensional textures, clamping, as

proposed by Perlin, and �ltering over rectangular volumes, as proposed by the author.

In the situations where we know the Fourier spectra of the signal, clamping the signal

may su�ce, however, most procedural textures are de�ned directly rather than by their

5Pun intended
6The Simpson's quadratic quadrature rule in one dimension requires a minimum of 5 samples to be taken. In

a three-dimensional implementation this means that a minimum of 125 samples must be taken.
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Fourier spectrum. If we could �nd the Fourier transform of these textures then clamping

would be feasible. The class of functions that is available in most procedural texture

engines is not a set of functions for which nice7 Fourier transforms exist. An example

of this is the step function, whose Fourier transform has in�nite support. Because the

procedural implementations of these textures usually allow the introduction of arbitrarily

high frequencies, sampling these textures and �nding their Fourier transform are not

usually options. The method proposed by the author allows the �ltering of arbitrary

three-dimensional textures but in many situations this �ltering becomes prohibitive in

cost.

3-3 Volume rendering

The increase in available volumetric data and the decrease in the cost of computation

power has stimulated research into the �eld of volume rendering. The display of this

data has been studied along two directions, surface extraction and direct display.

The premise of surface extraction methods is that there is some property of the

data that can be directly related to a surface in the data. In medical imaging it is

obvious that the surface of a bone corresponds to a discontinuity in the density function8.

Using this density discontinuity it is possible to extract surfaces that approximate the

surface of the bones in the data. This approach has been followed by a variety of people

[Artz81a, Chri78, Fuch77, Lore87]. The complexity of the generated geometric primitives

depends on the reconstruction �lter that is applied to the data. If the simple sample and

hold �lter is used the resulting signal is made up of rectangular voxels of uniform density.

If the reconstruction is more complex then the procedure for generating the geometric

objects that represent the surface becomes more complicated. This complication is due

to the fact that a continuous signal must now be sampled and the surface reconstructed

7As in most cases \nice" means \easy to evaluate".
8CAT scans exhibit this property.
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from these samples. Fortunately 9 the other reconstruction �lter that is used is the tri-

linear interpolation �lter. Because this results in voxels with a tri-linear distribution of

density throughout them it is simple to estimate the location of an iso-valued surface

(iso-surface).

The direct rendering of volumetric data is accomplished by imposing a physical model

onto the data [West90, Wilh91, Laur91, Dreb88, Upso88, Max90, Levo90a, Levo90d,

Levo90b, Levo90c, Sabe88, Levo88, Upso88, Novi90]. This model usually has no rela-

tionship with the physical object from which the data was obtained. It also has little to

do with the process by which the data was obtained. The display of the data is accom-

plished using the properties of this display model. Most display techniques use a varying

density gas model. The density of the gas is related to the data set. Because most of data

being displayed is scalar, this relationship is usually a linear one. If the data is not scalar

then either a more complex display model must be found or the di�erent dimensions of

the data can be mapped into di�erent scalar volumes that can then be displayed using

the gas model. Kajiya and von Hertzen [Kaji84] suggested

I =
Z tb

ta

e
��
R
t

ta
�(x(�);y(�);z(�))d� �

"X
i

Ii(x(t); y(t); z(t))p(cos�i)

#
� �(x(t); y(t); z(t))dt

as an approximation to the amount of light that arrives at a point on the screen, where

x(t); y(t); z(t); x(�); y(�); z(�) are the equations that de�ne the ray along which this

integral is being computed and Ii is the integral representing the light that arrives from

light source Li to points in the data x(t); y(t); z(t). �i is the angle between the viewing

direction and the direction of the ray. The integrals Ii need only be computed when

the light locations are changed. � is a user parameter that controls the strength of the

scattering e�ect.

9The term 'fortunately' here is used in the context of the complexity of the resulting code. The truth of

the matter is that the issues of reconstruction �lters and their associated properties in the context of volume

rendering needs to be studied. Trousset and Schmitt [Trou87] indicate that there is a problem in using a simple

reconstruction �lter for the evaluation of the gradient. Rather than introducing a higher order �lter they simply

extend the 3� 3� 3 box �lter to a 5� 5� 5 box �lter.
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If the integrals towards the light are dropped, as suggested by Sabella [Sabe88], then

we have

I =
Z tb

ta

e
��
R
t

ta
�(x(�);y(�);z(�))d�

�(x(t); y(t); z(t))dt (3.1)

Integrating this equation over a pixel area on the viewing plane de�ned by (u0; u1) �
(v0; v1)gives
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Because the display model we use is arbitrary we can approximate e
��
R
t

ta

�(x(�);y(�);z(�))d� �
e��(t�t0). When this approximation is used the computation of the shading can be viewed

as the convolution of an exponential decay �lter with the data set.

Z u1

u0

Z v1

v0

Idudv =
Z u1

u0

Z v1

v0

Z tb

ta

e��(t�to)�(x(t); y(t); z(t))dtdudv (3.3)

This shows how the volume rendering problem can be formulated as a �ltering opera-

tion. As in texture mapping, the cost of evaluating these convolutions is high, but if the

approximation methods we develop for these �lters are 
exible enough there is no reason

to restrict our choice of �lters. We may wish to query some local property at some point

in the data. If this query can be formulated as a �lter operation then we may be able to

use one of the approximation methods to evaluate it.

Thus we would like to provide users with a system that allows two modes of inter-

action, global and local. In the general or global inquiry stage the user is interested in

�nding global properties of the data. The local query mode may involve the search for a

particular property near some point in the data. The �lters used in these scenarios will

be di�erent. These di�erent �lters will then be approximated using similar evaluation

techniques.
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3-4 Wrapup

Adding textures to objects allows us to easily enhance the display of computer graphics

models. Whether we choose to use two-dimensional textures or three-dimensional tex-

tures there is a set of �ltering issues that must be addressed. In two dimensions we must

�lter the texture with a space variant �lter. Much of the research in two-dimensional

texture mapping has studied approximations to the evaluation of �lters. Two of these

�ltering techniques were selected for further study, namely EWA �lters and NIL maps.

Three-dimensional textures extended texture mapping so that objects could be tex-

tured with solid textures. The �ltering of three-dimensional textures has not been studied

much except for an application of the clamping technique. Most of the textures that are

provided by three-dimensional texture mapping are procedural. Despite the increase in

memory sizes, the cost of storing textures of su�ciently high resolution will continue to

be prohibitive for the next few years, therefore �ltering techniques proposed for three-

dimensional textures must allow for the use of procedurally de�ned textures.

In conclusion we wish to develop �ltering methods for three-dimensional texture map-

ping that:

� Allow arbitrarily shaped and scaled �lters to be used.

� Handle three-dimensional procedural textures.

Volume rendering has studied a variety of approaches for displaying volumetric data.

Of interest here is the set of volume rendering techniques that use ray tracing for the

display of the data. These techniques are remarkably similar to the techniques used for

the display of textures de�ned in volumes near the surface of objects. Transfer functions

are useful tools for volume rendering. This means that it is important that any �ltering

techniques used for volume rendering not preclude the use of transfer functions.

Thus we require �lters for volume rendering that:

� Allow approximation of arbitrarily shaped and scaled �lters.

� Incorporate transfer functions.
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In the next chapter we describe four �ltering techniques. Each of these techniques

has applications in texture map �ltering, and one of the techniques has applications in

the volume rendering area. The evaluation and comparison of the �ltering techniques is

presented in Chapter 5.
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Chapter 4

Filtering techniques

Elutriate

Edulcorate

In this chapter we present the details of four �ltering techniques for volumetric data.

These techniques are clamping, direct evaluation, EWA �lters, and NIL maps. Clamp-

ing is the application of the two-dimensional �ltering technique of the same name [Nort82]

to three-dimensional textures as suggested by Perlin [Perl85]. The direct evaluation tech-

nique [Buch91] uses Simpson's mid-point adaptive and Gaussian cubic quadrature rules

for approximating the integral of the �lter applied to the texture. The implementation

of EWA �lters for the �ltering of three-dimensional textures is an extension of two-

dimensional EWA �lters presented by Greene and Heckbert [Gree86]. NIL maps are an

extension of two-dimensional NIL maps presented by Fournier and Fiume [Four88a]. In

addition to the extension to three dimensions it is demonstrated how NIL maps can be

used with procedural textures and transfer functions.

4-1 Clamping

In their paper Norton et al. [Nort82] showed how the �ltering of textures could be

approximated using a Fourier representation of the texture. Given a complex-valued1

texture de�ned by

I(x; y) = ei(kx+ly)

they show that the application of a box �lter over a parallelogram centered at (xo; yo)

and de�ned by

(xo; yo) + s(x1; y1) + t(x2; y2) with� 1 < s; t < +1

1The signal need not be complex-valued. As is often the practice, complex variables are being used here to

develop the theory. In practice all operations will be restricted to real valued signals.
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can be approximated in the Fourier domain by

e(ikxo+ilyo)
 
1� (kx1 + ly1)

2

6
� (kx2 + ly2)

2

6

!
= e(ikxo+ilyo)C(x1; x2; y1; y2; k; l):

Where C() is the approximation to the Fourier representation of the box �lter generated

by using the �rst two terms of the power series expansion of the sinc function. Norton et

al. further simpli�ed this approximation by truncating this quadratic function so that it

never became negative. The clamping function C is then de�ned by

C(x1; x2; y1; y2; k; l) =

8>>><
>>>:

�
1� r( (kx1+ly1)

2

6

(kx2+ly2)
2

6
)
�

if
�
1� r( (kx1+ly1)

2

6
� (kx2+ly2)

2

6
)
�
< 1

0 otherwise

;

where r is a spread constant that can be used to control the width of the �lter.

Perlin [Perl85] suggested a variant of the above method for �ltering three-dimensional

textures. The maximum allowable frequency is computed from the size of the projected

pixel into texture space. By comparing the frequency of a texture component with this

maximum frequency it is possible to exclude texture components that may introduce

aliasing. The use of this step function for a clamping function can introduce discontinu-

ities in the resulting image. We can use a simple variant of the quadratic approximation

suggested by Norton et al. to reduce the impact of these discontinuities.

Given a pixel area on a viewing screen we project it onto the tangent plane of the

object. From the size of this projection we compute the maximum allowable frequency

fmax. The clamping function we use is then

C(f) = max(0; 1�
 

f

fmax

!2

):

This has the e�ect of gradually removing the aliasing frequencies before they are

truncated. In Figure 4.11 we show the clamping function that results when fmax = 3:2.
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Clamping function C = max(0; 1�
�

f

fmax

�
2

) when fmax = 3:2

Figure 4.11

4-2 Direct evaluation

We developed a system for approximating three-dimensional �lters using numerical in-

tegration [Buch91]. Two volumes of integration were developed, one aligned with the

tangent plane of the object and the other aligned along the line of sight. The volume of

integration aligned with the tangent plane is useful for evaluating the texture on objects

with high opacity. The volume of integration aligned with the ray is useful for objects

whose material has low opacity.

For those materials that have high opacity we require the evaluation of a �lter over the

surface of the object. The area over which this integral is to be evaluated is the projection

of the pixel onto the surface. This area can be approximated by the projection of the

pixel onto the tangent plane of the object. In order to reduce the aliasing that may be

introduced by sampling the texture on the tangent plane we evaluate the �lter over a

volume that encloses this projection. This volume is computed by �nding the rectangle in

the tangent plane that encloses the ellipse2. This ellipse is the projection of the circular

representation of the pixel onto the tangent plane. This rectangle is then extruded in a

2In most situations the projection of the circular pixel onto the tangent plane will be an ellipse. In the

rare cases where the circle projects to either a parabola, or an hyperbola we can either use a large ellipse to

approximate the projection or use a pre-computed average for the �ltered texture sample. If the DC, or average,

component of the texture is known then this could be used as the average of the texture.
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direction normal to the tangent plane. This is illustrated in Figure 4.12.

Box enclosing projection of circular pixel onto tangent plane.

Figure 4.12

The volume of integration aligned with the ray is constructed in a similar fashion.

The pixel is projected onto a plane perpendicular to the viewing ray. The center of this

projected pixel lies at the intersection of the viewing ray and the object. The bounding

rectangle of this circle is then extruded into the object. The depth of this extrusion

is controlled by the user. By varying this depth parameter (�), materials of di�ering

opacities can be modeled and displayed.
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Box enclosing projection of circular pixel onto plane parallel to viewing plane.

Figure 4.13
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Once a volume of integration V is de�ned we must evaluate the integral of the �lter

F (u; v; w) and the texture T (u; v; w) over this volume.

I =
Z Z Z

V
F (u; v; w)T (u; v;w)dudvdw

Evaluating this integral analytically is often not feasible, thus we must resort to numerical

integration methods. Two numerical integration or quadrature methods were studied.

These are adaptive Simpson's quadrature and �xed-point cubic Gaussian quadrature rules

[Burd81]. When an integral volume is relatively thin in one or more of its dimensions it

is appropriate to use the Gaussian rule for evaluating the integral along that direction.

For the integral volumes that are aligned with the surface of the object we have found

that a hybrid method consisting of Simpson's adaptive mid-point method in the two

dimensions over the plane and a cubic Gaussian quadrature normal to this plane works

quite well; in this case the minimum number of samples taken is 5 � 5 � 3 = 75. This

hybrid method works well because in most applications of this �lter the dimension of the

box normal to the plane is much smaller than the other two dimensions. Because this is

not the case when we consider the integral volumes aligned with the ray, we have found

that we need to use Simpson's adaptive quadrature rule in all three dimensions. When

the full adaptive method is used the minimumnumber of samples taken is 5�5�5 = 125.

The cost of using this approximation to the �lter is dependent on the quadrature rule

chosen. Simpson's adaptive rule uses an estimate of the fourth derivative of the function

being integrated. This means that the cost of evaluating these three-dimensional �lters

is proportional to the magnitude of the fourth derivative of the product of the �lter and

the texture. If we wish to bound the cost of this approximation we can either restrict

the level of subdivision that we allow Simpson's rule to take or we can use a �xed-cost

quadrature rule.

4-3 Elliptical Weighted Average �ltering

In a system designed for distorting images for later projection on a OMNIMAXTM screen

Greene and Heckbert [Gree86] approximate the convolution of a truncated Gaussian with

textures over arbitrarily oriented ellipses. These ellipses are the projection of circular

48



4{FILTERING TECHNIQUES

pixels into the texture space. The Gaussian �lter is centered over the resulting ellipse

and its weights are evaluated using the radial symmetry of the Gaussian �lter. For each

WTAB(Q)

q
(Q)=1

Q

e��Q

Elliptical weighted average �lter evaluation.

Figure 4.14

texel that lies within the truncated Gaussian the weight of the �lter at that position is

computed by �rst evaluating the square of the radial distance jjQjj2 = du2 + dv2 of the

point from the center of the ellipse. This radial distance is then used to index into the

pre-computed one-dimensional Gaussian �lter. By using this pre-computed array of �lter

values the cost of evaluating the Gaussian �lter is reduced to a table look-up operation.

The use of this �ltering technique allows the approximation of radially symmetric �lters

centered in the projected ellipse. When the perspective projection is being used the

center of a circle does not project to the centre of the ellipse.

This is illustrated in Figure 4.15. In Figure 4.16 we see the error associated with

centering the Gaussian �lter as the �lter projection approaches the horizon in the display

of the image in Plate 4.2. This error is only signi�cant near the horizon. Another
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Viewing plane

A

B

A is not equal to B

If the center of the circle projected to the center of the ellipse then A and B would be

equal. This diagram shows that this is not the case.

Figure 4.15
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Scan line

0 150

0

1

4.8

A/B

error

Error associated with centering a Gaussian. This ratio was computed on the image

used in the next chapter.

Figure 4.16

example of this problem can be seen in Plate 4.1. In this plate we present two views

of three ellipses. The �rst view has the eye positioned so that these ellipses project to

circles of the same size on the screen. As can be seen from the second view, which shows

an orthographic view of the ellipses, the texture on the ellipses is centered where the

projected centre of the texture is not at the centre of the circles in the �rst view.

For three-dimensional texture mapping there are two extensions of this technique that

we wish to explore. The �rst is to apply this technique to the projection of the pixel onto

the tangent plane of the object. The other option is to extend this technique to three

dimensions so that the �ltering is performed over an ellipsoidal volume near the surface

of the object. In this case the third axis of the ellipsoid will be de�ned by the same

parameter that de�ned the normal dimension of the integral volume for objects made of

opaque materials. When procedural textures are being used there are no restrictions on

the positions of the sample points. This allows us to distribute the sample points in the

bounding box aligned with the ellipsoid, rather than in the bounding box aligned with

the texture. The number of points used to approximate a �lter depends on the size of the

�lter. Because these ellipses can become quite large it is necessary to limit the number

of sample points.
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A Gaussian centered in texture space is not centered in screen space.

Plate 4.1

The �ltered texture sample is then a weighted sum of texture samples. The texture is

sampled at the sample point locations and the weight of this sample point is computed

by a look-up of the pre-computed Gaussian.

4-4 NIL maps

In 1988 Fournier and Fiume [Four88a] presented an algorithm that used a pyramidal

representation of the data to compute the �ltering of two-dimensional textures in constant

time (with respect to �lter shape and size). An overview of NIL maps is presented,

followed by discussions of the extensions of this technique to three dimensions, to include

transfer functions, and to handle procedural textures.
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Consider a signal T (t) de�ned over some region [a; b]. We wish to evaluate the con-

volution of a �lter F (t) centered at to. This is evaluated using the following integral.

I(to) =
Z 1

�1

F (t� to)T (t)dt (4.1)

If we assume that the signal is identically 0 outside of the region [a; b] the integral becomes:

I(to) =
Z b

a
F (t� to)T (t)dt (4.2)

Now let us approximate the �lter F as K curve segments over the interval [a; b]. With out

loss of generality we can assume that the segments are of unit width, that is b�a = K. If

this is not the case it is a simplematter to introduce a change of variables so that b�a = K

is satis�ed. Each curve segment is de�ned by a set of basis functions B0; B1; :::; BM�1 so

that the �lter is approximated by the union of these K segments.

F (t� to) =
[K�1

m=0

M�1X
i=0

bmi (to; F )Bi(t�m) (4.3)

Note the unusual notation for the control points of the curves. We have indicated that

the control points are dependent on both the �lter F and its location to. For simplicity's

sake we will drop the bmi (to; F ) notation in favor of the simpler bmi notation. Substituting

Equation 4.3 into Equation 4.2 we get:

I(to) =
Z b

a

[K�1

m=0

M�1X
i=0

bmi Bi(t�m)T (t)dt (4.4)

Because the integral is being evaluated over theseK segments of the curve we can evaluate

this integral as K distinct integrals. So, separating the integrals and introducing a change

of variable t! t+m we have:

I(to) =
K�1X
m=0

Z
1

0

M�1X
i=0

bmi Bi(t)T (m+ t)dt: (4.5)
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Because the bmi coe�cients are independent of t:

I(to) =
K�1X
m=0

M�1X
i=0

bmi

Z
1

0

Bi(t)T (m+ t)dt: (4.6)

This means that the NIL cells Cm
i can be pre-computed.

Cm
i =

Z
1

0

Bi(t)T (m+ t)dt (4.7)

The approximation to the integral 4.2 is then:

I(to) =
K�1X
m=0

M�1X
i=0

bmi C
m
i (4.8)

Unfortunately the cost of evaluating this approximation is still dependent on the

width of the �lter. A solution to this problem is to use our knowledge of the �lter's

properties to guide the approximation of the integral.

The �rst step in developing this constant-cost approximation is to compute a pyrami-

dal NIL map. Let's use 
 to indicate the level of the NIL map, where 
 = 0 indicates we

are on the lowest level of the representation, and increasing 
 means we are generating

levels whose NIL cells cover increasingly larger portions of the texture. For the time

being let us also assume that K = 2p for some integer p. We deal with the case where K

is not an integral power of 2 in Appendix A.

These new levels of the pyramid are de�ned by:




Cm
i =

Z
1

0

Bi(t)T (2

m+ 2
t)dt: (4.9)

The pyramid that this produces is illustrated in �gure 4.17. Consider a �lter that

is relatively smooth and spans the whole texture; such a �lter is illustrated in Figure

4.18. Let us lay down eight points of interest, or trigger points, where we want the

approximation of the integral to focus. Because the �lter spans the whole texture we

distribute these trigger points uniformly through the texture. We now place these trigger

points at the level of the NIL pyramid that encloses them, in this case it is the top level.

We will subdivide this NIL cell if there are more than two trigger points in it. This

54



4{FILTERING TECHNIQUES

0

C
7

i

0

C
1

i

0

C
2

i

0

C
3

i

0

C
4

i

0

C
5

i

0

C
6

i

1

C
0

i

1

C
1

i

1

C
2

i

1

C
2

i

0

C
0

i

2

C
1

i

3

C
0

i

2

C
0

i

Pyramid data structure for a one-dimensional NIL map

Figure 4.17

subdivision proceeds until only two or less trigger points lie in a NIL cell. The resulting

subdivision is shown by the positions of the trigger points. The dotted line shows the

resulting approximation to the �lter if the basis Bi chosen is linear. 3 Pseudo code for

this subdivision algorithm is presented in Figure 4.19.

In Figure 4.20 we illustrate a �lter that has non-zero weights in a localized region

around to. Because we know that the �lter is localized in the area around to we increase

the number of the trigger points in this region. Performing the subdivision as indicated

yields a di�erent hierarchy. This hierarchy focuses the evaluation of the �lter in the

region of interest, that was highlighted with a higher density of trigger points.

Another example of the use of this technique is presented in Figure 4.21. In this �gure

we see a highly localized �lter whose approximation requires the use of negative levels

of the NIL map. Using these negative levels gives a better approximation of the integral

because they provide a better �t to the �lter curve. Again we defer the details of the

implementation of these negative levels to Appendix A.

Fournier and Fiume [Four88b] showed that in the case of two-dimensional texture

maps the number of NIL cells chosen in this manner was linear in the number of trigger

points and the tolerance. The proof of this in three dimensions is presented in the next

3Note that this approximation is a virtual approximation to the �lter function. The values of the control

points are used for the approximation of the integral of the �lter with the texture and not for evaluating the

curve.
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3

C

T (t)

t = to t = bt = a

F (t� to)

0

C

1

C

2

C

Filter that spans the whole texture.

Figure 4.18

chapter.

4-4.1 Normalization

Using NIL maps as indicated allows the approximation of a range of �lters in time

independent of their width or shape. We wish to impose one further condition on this

method. Given a �lter whose integral over the interval [a; b] is K =
R b
a F (t)dt and a

constant texture T (t) = To 8t 2 [a; b] the integral

I(to) =
Z b

a
T (t)F (t� to)dt (4.10)

becomes

I(to) = To

Z b

a
F (t� to)dt = ToK (4.11)

because the texture is constant. We shall require that the approximation of this convolu-

tion by any NIL map approximation be equal to the quantity ToK. Because the texture

is constant over the [a; b] interval the NIL map coe�cients



C m
i are simply the integral
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First �nd the smallest cell that encloses the trigger points

cell(Find Lowest Enclosing NIL Cell(trigger points)

procedure Find Nil Hierarchy (points,cell, tolerance,
min)

Check to see if tolerance satis�ed

if ( number of points in cell(cell, points)� tolerance ) then

return ( cell )

end if

Check to see if maximum subdivision reached

if ( 
(cell)= 
min ) then

return ( cell )

end if

Split the cell into its eight children and process them

hierarchy(null

for child in children(cell) do

hierarchy(hierarchy + Find Nil Hierarchy(points,child,tol)

end for

return ( hierarchy )

end Find Nil Hierarchy

Generation of NIL map hierarchy

Figure 4.19
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3

C

T (t)

t = bt = a t = to

F (t� to)

0

C

1

C

2

C

Using information about the shape of the �lter we are able to place the trigger points

closer together. By positioning the trigger points in this manner the resulting hierarchy

is better suited to approximate this �lter.

Figure 4.20

F (t� to)

0

C

1

C

2

C

3

C

T (t)

t = bt = a t = to

�1

C

Narrow �lter showing the need for negative levels.

Figure 4.21
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of the basis functions multiplied by the constant K since:




Cm
i =

Z
1

0

Bi(t)T (2

m+ 2
t)dt = To

Z
1

0

Bi(t)dt: (4.12)

So for a particular approximating NIL hierarchy H to the �lter F (t) we require:

IH = ToK = S
X
p2H

M�1X
i=0




b
m
i To:

Z
1

0

Bi(t)dt (4.13)

Because To is constant we have that:

IH = ToK = STo
X
p2H

M�1X
i=0




b
m
i

Z
1

0

Bi(t)dt: (4.14)

Thus the scale factor S is:

S =
KP

p2H

PM�1
i=0




b m
i Bi

(4.15)

where the quantities Bi =
R
1

0
Bi(t)dt can be pre-computed. In many situations the �lters

are normalized so that
R b
a F (t� to) = K = 1. In this case the scale factor is simply

S =
1P




m2H

PM�1
i=0




b m
i Bi

(4.16)

4-4.2 Weighting the levels of the NIL maps

3

C

0

C

1

C

2

C

Approximation hierarchy at two levels

Figure 4.22

Another normalization problem is introduced when we use a hierarchy of NIL cells to

approximate the �lter. In Figure 4.22 we illustrate an approximation to a �lter with three
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NIL cells. Consider the situation when we set the �lter F (t) = 1 over the approximation

region and the texture T (t) = 1. The approximation to this �lter is then computed by

I =

PM�1
i=0

2

b
0

i

2

C
0

i +
PM�1

i=0

1

b
2

i

2

C
2

i +
PM�1

i=0

1

b
3

i

2

C
3

iPM�1

i=0

2

b 0

i

2

B 0

i +
PM�1

i=0

1

b 2

i

2

B 2

i +
PM�1

i=0

1

b 3

i

2

B 3

i

But since T (t) = 1 we have:

I =

PM�1
i=0

2

b
0

i

2

B
0

i +
PM�1

i=0

1

b
2

i

2

B
2

i

PM�1
i=0

1

b
3

i

2

B
3

iPM�1

i=0

2

b 0

i

2

B 0

i +
PM�1

i=0

1

b 2

i

2

B 2

i

PM�1

i=0

1

b 3

i

2

B 3

i

= 1

At �rst glance this appears to produce the correct result. However, the weights that

are assigned to the di�erent portions of the �lter approximation are equal. This means

that the contribution of the NIL cell that spans half the approximation (
2

C 0

i ) is weighted

equally to those that span a quarter of the approximation (
2

C 2

i and
2

C 3

i ). This weighting

of the NIL cells can cause a problem. A simple example is a texture that is zero over the

interval [0; 1
2
) and one elsewhere:

T (t) =

8<
: t 2 [0; 1

2
); T (t) = 1

t 2 [1
2
; 1]; T (t) = 0

In this case we have

I =

PM�1
i=0

2

b 0

i

2

B
0

i +
PM�1

i=0

1

b 2

i0 +
PM�1

i=0

1

b 3

i0PM�1

i=0

2

b 0

i

2

B
0

i +
PM�1

i=0

1

b 2

i

2

B
2

i +
PM�1

i=0

1

b 3

i

2

B
3

i

=
1

3
6= 1

2

The solution is to weight the contributions of the NIL cells according to their height in

the NIL map; the quantity 2
max�
 accomplishes this. The integral approximation now

becomes:

I =
1

2

PM�1

i=0

2

b
0

i

2

B
0

i +
1

4

PM�1

i=0

1

b
2

i0 +
1

4

PM�1

i=0

1

b
2

i 0

1

2

PM�1
i=0

2

b 0
i

2

B
0

i +
1

4

PM�1
i=0

1

b 2
i

2

B
2

i +
1

4

PM�1
i=0

1

b 3
i

2

B
3

i

=
1

2
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4-4.3 Transfer functions

Manipulation of the transfer functions allows us to generate di�erent views of the model

that we are displaying. This is particularly true in volume rendering. By altering the

transfer functions we can highlight or hide di�erent aspects of the data. In this section

we show how the re-initialization of NIL maps can be avoided by using a class of transfer

functions de�ned by a basis set.

Equation 4.9 de�nes the NIL cells:




Cm
i =

Z
1

0

Bi(t)T (2

m+ 2
t)dt: (4.17)

Where T () is the texture function. Consider the case where we wish to evaluate the NIL

map for a transformed representation of this texture. In the following discussion we will

use the T�() to indicate a transfer function that maps a scalar-valued texture T () into

another scalar-valued texture T�(T ()). The NIL map entries are then computed using a

modi�ed version of Equation 4.17:




Cm
�i=

Z
1

0

Bi(t)T�(T (2
m+ 2
t))dt (4.18)

Following the pattern of NIL maps we can select a set of basis functions that will be

used to generate our transfer functions T�()4. Using this notation the transfer function

is de�ned by

T�(t) =
N�1X
l=0

blBl(t) (4.19)

Substituting equation 4.19 into equation 4.18 we get:




C
m
�i
=
Z

1

0

Bi(t)
N�1X
l=0

bl(�)Bl(T (2

m+ 2
t))dt (4.20)

4This does not need to be a basis set, it can be any function set. The space spanned by these functions then

de�nes the transfer functions available to the user.
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Noticing that the bl coe�cients are independent of t:




C
m
�i
=

N�1X
l=0

b�l

Z
1

0

Bi(t)Bl(T (2

m+ 2
t))dt (4.21)

These integrals can be pre-computed since they are independent of the transfer function

chosen.



D
m
il =

Z
1

0

Bi(t)Bl(T (2

m+ 2
t))dt (4.22)

Remembering the original NIL map equation for a set S of selected segments

I =
X
S

M�1X
i=0

bi



C i (4.23)

This becomes

I� =
X
S

M�1X
i=0

bi

N�1X
l=0

b�l



D il (4.24)

for the display using transfer function T�
Laur and Hanrahan [Laur91] used a three-dimensional MIP map to speed up the

display of volumetric data. Because they compute a MIP map for each of the red, green,

blue, and alpha channels they have to recompute the MIP map each time the transfer

functions are edited. Using the above technique with M = 1 and N = 3 would require

the same amount of memory as the MIP map proposed by Laur and Hanrahan. This

corresponds to the use of a one-dimensional basis to approximate the �lter and a three-

dimensional basis to model the transfer functions.

4-4.4 Procedural textures

NIL maps can be extended to allow the �ltering of procedural texture. Consider a class

of textures de�ned by some basis functions X0(t);X1(t); :::;XR�1(t). A texture T is then

de�ned by

T (t) =
R�1X
r=0

xrXr(t) (4.25)
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Recall that

Ci =
Z

1

0

T (t)Bi(t)dt

=
Z

1

0

R�1X
r=0

xrXr(t)Bi(t)dt

=
R�1X
r=0

xr

Z
1

0

Xr(t)Bi(t)dt

De�ning

Xri =
Z

1

0

Xr(t)Bi(t)dt

The integral I is approximated by

I =

PM�1
i=0 bi

PR�1
r=0 xrXri

S




X ri =
Z

1

0

Xr(2

t)Bi(t) (4.26)

If the signal T is periodic

T (t+ 1) = T (t)

and we need only store one NIL cell per positive level of the NIL map. If negative levels

are required then these can be computed as needed.

4-4.5 Cosine textures

In order to show the application of NIL maps to a procedural texture we have chosen

to implement a set of procedural textures de�ned by a truncated cosine series. These

textures serve to illustrate the application of NIL maps to procedural textures and also

give us a texture set that can be �ltered by all four �ltering techniques presented in this

chapter.

The texture T (u; v; w) is a periodic texture with unit period such that T (u+ n; v +

m;w + o) = T (u; v; w), with n;m; o being integers. Given a set of texture coe�cients
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Tijk the texture at a point (u; v; w) is given by

T (u; v; z) = S
I�1X
i=0

J�1X
j=0

K�1X
k=0

Tijk cos(2�iu) cos(2�jv) cos(2�kw) + 0:5

The scale factor S is de�ned by

S =
1PI�1

i=0

PJ�1
j=0

PK�1
k=0 Tijk

the addition of 0.5 is to ensure that the texture values lie in [0; 1]. If these texture

coe�cients Tijk are obtained by applying the cosine transform on a real data set this 0.5

term in not required. An example of a texture generated in this manner is seen in plate

4.2.

Texture de�ned by cosine series with I = 4, J = 4, and K = 4

Plate 4.2

4-4.6 Cosine textures with NIL maps

Using these cosine textures with NIL maps results in a succinct analytical de�nition of the

NIL maps. Consider the integral of a texture basis function cos(2�rt) with a polynomial
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basis function for the �lter Bi(t) = a3t
3+ a2t

2+ a1t+ ao. The integral of the product of

these two functions X ri is then

Xri =
Z

1

0

cos(2�rt)
h
a3t

3 + a2t
2 + a1t+ ao

i
dt

= a3

Z
1

0

t3 cos(2�rt)dt+ a2

Z
1

0

t2 cos(2�rt)dt+ a1

Z
1

0

t cos(2�rt)dt

+a0

Z
1

0

cos(2�rt)dt

= a3

"
(12�2r2t2 � 6) cos(2�rt)

16�4r4
+
(4�2r2t3 � 6t) sin(2�rt)

8�3r3

#
1

0

+a2

"
2t cos(2�rt)

4�2r2
+
(4�2r2t2 � 2) sin(2�rt)

8�3r3

#1
0

+a1

"
cos(2�rt)

4�2r2
+
t sin(2�rt)

2�r

#
1

0

+a0

"
sin(2�rt)

2�r

#1
0

= a3
3

4�2r2
+ a2

1

2�2r2
(4.27)

In our implementation of NIL maps we use Lagrange polynomials as the basis of our

�lters. We chose these polynomials because the points they interpolate are all in the

interval [0; 1].

B0(t) =
�9
2
t3 + 9t2 � 11

2
t+ 1

B1(t) =
27

2
t3 � 45

2
t2 + 9t

B2(t) =
�27
2

t3 + 18t2 � 9

2
t

B3(t) =
9

2
t3 � 9

2
t2 + t: (4.28)

With this set of basis functions the NIL map values are:

X r0 =
9

8�2r2
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X r1 =
�9
8�2r2

X r2 =
�9
8�2r2

X r3 =
9

8�2r2

Incorporating the 2
 factor into the above equations gives a de�nition of the positive

levels of the NIL map.




X r0 =
9

8�2(2
r)2




X r1 =
�9

8�2(2
r)2




X r2 =
�9

8�2(2
r)2




X r3 =
9

8�2(2
r)2

Other basis functions can be used for NIL maps, in particular the Catmull-Rom cubic

basis integrated with the cosine basis yields:




X r0 =
1

8�2(2
r)2




X r1 =
�1

8�2(2
r)2




X r2 =
�1

8�2(2
r)2




X r3 =
1

8�2(2
r)2

For a particular texture de�ned by fX0;X1;X2; :::;XR�1g we can compute the NIL

map



C i. The periodicity of this texture ensures that we only have to store a single

NIL cell per level. For most applications we have found that a NIL map with depth


max = 10 is su�cient. If any �lter covers more than 210 texels then using the DC, or

average, component of the texture is appropriate.

The negative NIL levels for these textures are also de�ned analytically. De�ne for
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convenience the following functions




F
m
3
(t) =

Z
t3 cos(2� (r2
) (t+m))dt

=
(12�2 (r2
)

2
t2 � 6) cos(2� (r2
) (t+m))

16�4 (r2
)
4

+
(4�2 (r2
)

2
t3 � 6t) sin(2� (r2
) (t+m))

8�3 (r2
)
3




F
m
2
(t) =

Z
t2 cos(2� (r2
) (t+m))dt

=
2t cos(2� (r2
) (t+m))

4�2 (r2
)2
+
(4�2 (r2
)2 t2 � 2) sin(2� (r2
) (t+m))

8�3 (r2
)3




F
m
1
(t) =

Z
t cos(2� (r2
) (t+m))dt

=
cos(2� (r2
) (t+m))

4�2 (r2
)2
+
t sin(2� (r2
) (t+m))

2� (r2
)



F
m
0
(t) =

Z
cos(2� (r2
) (t+m))dt

=
sin(2� (r2
) (t+m))

2� (r2
)

The negative levels of the nil map are then de�ned by




X m
ri = ai[




F
m
i (t)]

1

0

This allows us to de�ne arbitrarily deep NIL maps. Pre-computation of these levels

incurs a heavy memory cost, but because they are procedurally de�ned and the cost

of evaluating these NIL cells is roughly comparable to the cost of evaluating the �lter

basis functions it makes sense to evaluate these NIL cells as they are needed. If enough

memory is available, these may be stored in case they are needed later on.

Using this de�nition for NIL maps we can de�ne a general NIL map for a class of

textures de�ned by a basis set fXig. Once a particular texture has been de�ned the

generality of these NIL maps is no longer needed. Thus evaluating the



C i coe�cients

can be done using the



X m
ri coe�cients.
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4-4.7 Three dimensions

The extension of NIL maps to three dimensions is straightforward. The resulting NIL

cells are



C
mno
ijkl ,




D
mno
ijkl ,




X rurvrwijk, and S.




C
mno
ijk =

Z
1

0

Z
1

0

Z
1

0

Bi(x)Bj(y)Bk(z)T (2

(m+ x); 2
(n+ y); 2
(o + z))dxdydz (4.29)




D
mno
ijkl =

Z
1

0

Z
1

0

Z
1

0

Bi(x)Bj(y)Bk(z)Bl(T (2
(m+x); 2
(n+y); 2
(o+z)))dxdydz (4.30)




X rurvrwijk =
Z

1

0

Z
1

0

Z
1

0

Xru(2

u)Xrv(2


v)Xrw(2

w)Bi(u)Bj(v)Bk(w)dudvdw (4.31)

or




X rurvrwijk =
Z

1

0

Xru(2

u)Bi(u)du

Z
1

0

Xrv(2

v)Bj(v)dv

Z
1

0

Xrw (2

w)Bk(w)dw

=



X rui




X rvj




X rwk

The scaling variable S is

S =
X
abc

M�1X
i=0

M�1X
j=0

M�1X
k=0

2
max�
babcijkBijk (4.32)

with

Bijk =
Z

1

0

Z
1

0

Z
1

0

Bi(u)Bj(v)Bk(w)dudvdw (4.33)

4-4.8 Trigger points

As discussed previously, the placement of trigger points is a critical part of the NIL map

technique. This is particularly true when we are considering issues of practical e�ciency.

In order to study the usefulness of NIL maps in both volume rendering and texture

mapping we have chosen to use a fairly simple algorithm for laying down the trigger

68



4{FILTERING TECHNIQUES

points. In a particular application where we have a more restricted set of �lters that we

wish to approximate we can use the properties of these �lters to guide the placement

of the trigger points. This possibility was pointed out by Fournier and Fiume and was

explored by Lansdale in his M.Sc. thesis [Lans91].

Trigger points for texture mapping

The direct evaluation �lter that we presented earlier provides a volume in which to place

the trigger points. The user controls the number of trigger points that are uniformly

distributed throughout this volume. We have found that using a large number of trigger

points (on the order of 64 = 43) and setting a fairly large tolerance for subdivision (on

the order of 4-8) produces a better hierarchy for approximating the �lter than when we

use a small number of trigger points and a low tolerance for subdivision. In the next

chapter we illustrate the 
exibility of NIL maps by showing how to model a �lter that

simulates motion blur by using NIL maps. This motion blur is implemented by modifying

the trigger placement code and by de�ning the appropriate �lter. The code for both the

trigger placement and the �lter function de�nition are presented in Appendix B.

Trigger points for volume rendering

The distribution of trigger points throughout the volume extruded from the pixel uses

two user de�ned variables, width and steps. The width parameter determines the number

of trigger points to be placed per slice. The step parameter determines the number of

slices to be placed through a unit length of the volume. Thus the number of trigger

points placed for a particular pixel is width2� steps� length and the maximum number

of trigger points placed is width2 � steps�
p
3:

Again we have found that using a larger number of trigger points and a higher value

for the subdivision tolerance induces a better hierarchy with which to approximate the

�lter.
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4-5 Wrapup

In this chapter we have presented four �ltering techniques, clamping, direct evaluation,

EWA, and NIL maps. Each of these techniques has its strengths and weaknesses. An

evaluation of their characteristics is presented in the next chapter.
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Chapter 5

Comparison and application of the

techniques

Si operatur, operatur.

Bob Lewis

The four �lter evaluation techniques presented in the previous chapter have applications

to three-dimensional texture mapping. Each of these techniques has its strengths and

weaknesses. In order to use a particular technique we must be able to assess its usefulness.

Because these techniques are quite di�erent it would be overly simplistic to use a single

evaluation criterion. In this chapter we present an evaluation scheme consisting of several

criteria. It is our hope that the results will allow the best �lter approximating technique

to be chosen.

5-1 Three-dimensional texture �lter comparison

Mitchell and Netravali [Mitc88] presented a study of a class of cubic �lters de�ned by

two parameters. Their evaluation criteria used visual characteristics (ringing,blurring,

anisotropy) to measure the performance of this family of reconstruction �lters. They

mentioned that that it is di�cult to come up with objective measures for �lters. Rather,

they suggested that the properties of �lters should be analyzed, documented, and made

available so that the user can select a �lter depending on the application. In some sense

the same can be said about the evaluation of �lter approximating techniques. In order to

choose a �lter technique we must be familiar with its strengths and weaknesses. We can

use image �delity measures to evaluate how well the technique approximates a particular

�lter but there are other non-quantitative measures that must also be considered. For

the evaluation and comparison of the �lter techniques we use the following criteria.
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5-2 Filter technique evaluation criteria

� Class of �lters:

This criterion is intended to provide a measure of the application of the technique.

There are three main issues that will be addressed by this criterion:

{ What kind of �lters can approximated with the technique? e.g. A Gaussian

�lter projected into texture space, box �lter projected into texture space.

{ What control over the approximation quality is provided by the technique?

{ Does the technique handle the scaling of �lters? Most of the �lters used in

computer graphics have a �nite support. How does the performance of the

�lter depend on the number of voxels or texels that are covered by the �lter?

� Class of textures:

This criterion studies the textures to which the technique is applicable. There are

three classes of three-dimensional textures that we wish to check the techniques

against.

{ General procedural:

A procedural texture with no restrictions on the functions from which it is

constructed.

{ Procedural de�ned by a basis:

The basis may be further restricted to a frequency basis. Any restrictions

imposed on this basis by the technique are also explored.

{ Discrete:

A texture de�ned by a volumetric sample set. These textures may be empir-

ically or procedurally de�ned.

� Fidelity measures:

The image compression literature uses several �delity measures for image data.

The two main measures used are the mean square error (MSE), and the signal to

noise ratio (SNR). In an overview of the compression literature Jain [Jain81] de�nes

these two terms. The MSE of two images fui;jg and fu�i;jg of resolution N �M is
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de�ned as

e2ms =
1

NM

NX
i=1

MX
j=1

(ui;j � u�i;j)
2:

The signal to noise ratio for an image whose pixel values range from 0 to 255 is

then de�ned in decibels by

SNR = 10 log
10

(255)2

e2ms

(db):

A quick scan of recent literature in the �eld of image compression [Wu91, Mark91,

Xue91, Pent91, Tilt91] con�rms that these two error metrics are still being used.

Slight variations of these measures can be found in [Prat78].

Point sampled rendering of the cosine texture used for evaluation purposes. This image

exhibits a large amount of aliasing in the upper portion.

Plate 5.1

We will attempt to evaluate the performance of the clamping, EWA, and NIL map

techniques using the direct evaluation �lters as a comparison. Clamping will be

compared with the direct evaluation of a box �lter, EWA �lters and NIL maps will

be compared with the direct evaluation of a Gaussian �lter. The image that will be
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used for these comparisons is presented in Plate 5.1. The resolution of the image

was chosen to be 100 by 100 because this increases the pixel size relative to the

scene, thus increasing the aliasing artifacts.

� Visual quality:

Unfortunately the computational metrics used above are not directly related to our

perception of the images so we must also perform a subjective evaluation. We will

perform this evaluation using the following criteria.

{ Directional artifacts:

Does the technique introduce any directional artifacts?

{ Discontinuities:

Does the technique introduce any discontinuities to the texture?

� Cost of the technique:

{ Pre-processing cost: The cost of any required pre-processing.

{ Evaluation cost: The cost of evaluating one �lter application.

5-3 Clamping

� Class of �lters:

The original clamping technique [Nort82] focused on �nding a quick approximation

to a box �lter. They achieved this by requiring that the frequency components of

the texture be known. Once the frequency components for a texture are known the

class of �lters that can be approximated with this technique is quite large. The only

requirement placed on the �lters to be approximated by such a clamping technique

is that they have a well de�ned Fourier transform. The �ltering quality is then

controlled by the order of the polynomial that is used for the approximation of the

transformed �lter.
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Step function used for clamping.

Plate 5.2

Quadratic function used for clamping.

Plate 5.3

� Class of textures:

Procedural textures for which the frequency distribution of the signal is known.

This does not mean that we must know the exact Fourier distribution of the signal,

but we must have a good idea of the frequency distribution of the signal and how

these frequency components are put together. This was the method used by Perlin

[Perl85] for anti-aliasing his turbulence function. He modeled turbulence by adding

successively higher frequency band-limited noise functions to the signal. By using

the size of the projection of the pixel the computation could be stopped when it

was determined that the next band-limited noise function would cause aliasing.

� Fidelity measures:

The clamping methods we evaluated were compared to a direct evaluation of the

box �lter. The box �lter was computed using the direct evaluation technique with

an error tolerance of 0:004 � 1

256
.

� Visual quality:

Two particular implementations of this technique were studied, the �rst a direct
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extension of the original quadratic clamping technique as suggested by Norton et

al. [Nort82], the second a step function as implemented by Perlin [Perl85]. As can

be seen from the image in Plate 5.2 the use of a step function for clamping results

in visible discontinuities in the image. Using the quadratic function (Plate 5.3)

reduces the e�ect of the discontinuity, however, the discontinuities are still visible.

� Cost of the technique:

{ Pre-processing cost:

There is no pre-processing required if the frequency information of the texture

is known. If this information is not available the cost of pre-processing is the

cost of �nding the frequency information. For a discrete texture of size N3 this

would incur a cost of O(N3 logN) if a fast Fourier transform or some other

related transform is used.

{ Evaluation cost:

The computation of a texture de�ned by its frequency spectrum requires the

weighed sum of the appropriate basis functions. In the case of the cosine

textures the computation is

T (u; v; z) = S
I�1X
i=0

J�1X
j=0

K�1X
k=0

TijkXi(u)Xj(v)Xk(w)

The introduction of the above computation to include the clamping function

results in

T (u; v; z) = S
I�1X
i=0

J�1X
j=0

K�1X
k=0

TijkC(i; j; k)TijkXi(u)Xj(v)Xk(w)

where C(i; j; k) is the clamping function. The additional cost incurred by the

technique is then I � J �K invocations of the clamping function. Thus the

total cost for evaluating the clamped texture is

I � J �K(cost(Xi) + cost(clamp)):
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When the cost of evaluating the texture basis functions is higher than the cost

of evaluating the clamping function the cost incurred by clamping is low. For

cosine textures the ratio of the cost of the cosine function to the cost of the

clamping function ranges between 26:1 and 6.6:11. If the clamping function is

known to be zero above a certain frequency then this can be used to ensure

that no unnecessary basis functions are evaluated. In most situations this

removal of higher frequency components results in a decrease in computation

cost that outweighs the cost of evaluating the clamping function. In Table

5.1 we present the timings for evaluating the test image using point sampling,

step clamping and quadratic clamping. The third and fourth columns of this

table contain the MSE andSNR of the image relative to the image that results

from a direct evaluation of the box �lter.

Even though we could argue that the quadratic clamping function produces a better

picture, its MSE is higher than that of the image produced by the step clamping function.

This is not surprising because the quadratic �lter starts clamping down on a frequency

component long before it needs to be �ltered out. This excessive �ltering causes the rise

in the MSE.

If the textures are de�ned in terms of their Fourier spectra and the �ltering required

is simple, anti-aliasing this technique should be considered. The discontinuities presented

in this example illustrate the problems of choosing an inadequate clamping function. By

tailoring a clamping function to a particular application it is possible to use this technique

quite e�ectively.

5-4 Direct evaluation

� Class of �lters:

Arbitrary �lters de�ned over rectangular parallelepipeds2. This restriction is in

1On a Silicon Graphics 300 series workstation the ratio is 20:1. On a SUN SPARCstation SLC the ratio is

26:1. On a IBM RS/6000 560 the ratio is 6.6:1.
2It is possible to use quadrature rules to evaluate integrals over non-rectangular volumes. Details of this

can be found in [Burd81]. The construction of these non-rectangular integration volumes might require that

specialized code be developed for di�erent �lters.
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Technique Time (min:sec) MSE SNR

Point sampled 0:11 115 27.5

Step clamped 0:8 115 27.5

Quadratic clamped 0:9 224 24.6

Direct evaluation 13:29 { {

MSE and SNR of clamping methods

Table 5.1

place because of the quadrature methods used. Because there is no restriction on

the size of these rectangular parallelepipeds it is possible to compute complex �lters

by extending the volume of integration until it encloses all of the interesting parts

of the �lter. Even though this approach is costly it does provide us with a method

for evaluating these �lters with some degree of con�dence. The images computed

in this manner can then be used to test the accuracy of other �ltering techniques.

� Class of textures:

The direct evaluation of �lters using quadrature rules imposes no restriction on the

class of textures that can be �ltered.

� Fidelity measures:

Because the images computed with the adaptive quadrature rule are being used as

a measure of the goodness of the other techniques, we computed these images using

a tolerance of 0.004 � 1

255
. Using this tolerance and Simpson's quadrature rule we

computed the image using the box �lter and the Gaussian �lter. In addition to

this, one image was computed using the Gaussian quadrature rule with a Gaussian

�lter.

In Table 5.2 we present a comprehensive set of data resulting from the application

of the di�erent �ltering techniques to our test image.

� Visual quality:
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Technique Time (min:sec) MSE SNR (dB)

1 Point sampled 0:11 115(4) 27.5

2 Step clamped 0:8 115(4) 27.5

3 Quadratic clamped 0:9 224 24.6

4 Direct Simpson's (box) 13:29 { {

5 Direct Gaussian (box) 3:51 2.18(4) 44.7

6 Direct Simpson's (Gauss) 13:31 { {

7 NIL, M=1,Tol=10 1:04 6416(6) 10.2

8 NIL, M=1,Tol=5 1:38 255(6) 24.0

9 NIL, M=1,Tol=2 1:12 165(6) 26.0

10 NIL, M=4,Tol=10 5:57 238 (6) 24.3

11 NIL, M=4,Tol=5 13:35 138 (6) 26.7

12 NIL, M=4,Tol=2 17:42 117 (6) 27.5

13 EWA 3d (3) 1:33 196(6) 25.2

14 EWA 3d (5) 4:47 193(6) 25.3

15 EWA 3d (7) 8:38 193(6) 25.3

16 EWA 3d (11) 24:18 192(6) 25.3

Comparison of run times for �ltering techniques. The parenthesized numbers in the

fourth column indicate which technique was used to compute the MSE and SNR.

Table 5.2

By using an adaptive quadrature rule we can directly evaluate the e�ects of using

di�erent �lters on a particular image. Plates 5.5 and 5.4 show the results of using

a box �lter and a Gaussian �lter�lter!Gaussian on our test image.

In Plate 5.6 we present the results of three classes of �lters being applied to a

marble block. The �rst column shows the results obtained with box �lters aligned

with the surface of the object. In the second column Bartlett �lters are applied to

the same object. The lower images were generated with increasingly wider �lters.

The last column shows the results of using a box �lter aligned with the ray. In this

column it is the depth of the �lter that is being increased.

� Cost of the technique:
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Direct evaluation of Box �lter
Plate 5.4

Direct evaluation of Gaussian �lter
Plate 5.5

{ Pre-processing cost:

The technique itself does not require any pre-processing of the texture. If the

quadrature rule chosen requires any pre-processing this will be the total pre-

processing cost required. In both the case of Simpson's adaptive quadrature

and Gaussian quadrature no pre-processing is required.

{ Evaluation cost:

The evaluation cost is dependent on the quadrature rule chosen.

With Simpson's adaptive quadrature rule used in all three dimensions the

minimumnumber of texture evaluations is 125 (5�5�5). The number of actual

evaluations performed depends on the fourth derivative of the product of the

�lter with the texture. This dependence exists because Simpson's adaptive rule

stops when its estimate of the fourth derivative falls below a predetermined

tolerance.

Gaussian quadrature provides the best approximation to the integral for a �xed

number of function evaluations3. In our implementation we used the cubic

3Gaussian quadrature optimizes the evaluation of the integral by carefully choosing the position of the sample

points. The Gaussian quadrature rule chosen here is the one which results from using the Legendre polynomials
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Gaussian quadrature rule. In this case the number of texture evaluations is 27

= (3� 3� 3). A direct comparison of the run times of the various algorithms

is presented in Table 5.2.

This technique allows the accurate computation of arbitrary �lters. By using an

adaptive quadrature rule we ensure that the computation of the �lter is performed to a

pre-determined tolerance. This expensive computation allows us to generate high quality

images when expense is not a concern. In the study of other �ltering techniques we have

found this technique useful as a means of comparison. It is also possible to use a �xed cost

quadrature rule for the evaluation of these �lters. Because in some sense the Gaussian

quadrature rule is optimal it makes sense to use this super-sampling technique rather

than other super-sampling techniques.

5-5 EWA �lters

� Class of �lters:

Discrete approximations to truncated two-dimensional and three-dimensional ra-

dially symmetric �lters. Greene and Heckbert [Gree86] used the Gaussian �lter

in their presentation of the EWA technique. The extensions presented here ap-

proximate a two-dimensional Gaussian �lter applied on the tangent plane of the

object, and a three-dimensional Gaussian applied in a volume near the surface of

the object.

� Class of textures:

All textures, whether procedural or discrete.

� Fidelity measures:

In Table 5.4 we present the cost and resulting quality of using the EWA �ltering

technique. In order to illustrate the cost of this technique we present the results of

using this technique with a maximum of 33,53,73, and 113 sample points. As can be

seen from the results in Table 5.4, increasing the sampling of this technique does

not signi�cantly improve its performance.

[Burd81].
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Marble blocks, with box, Bartlett, and volume �lters.

Plate 5.6
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Box �lter Bartlett �lter Volume �lter

� = 0:01 � = 0:01 � = 0:025

spread = 1:0 spread = 1:0 spread = 1:0

� = 0:01 � = 0:01 � = 0:100

spread = 2:0 spread = 2:0 spread = 1:0

� = 0:01 � = 0:01 � = 0:200

spread = 4:0 spread = 4:0 spread = 1:0

Parameters for the displays of the marble block in Plate 5.6

Table 5.3

Technique Time (min:sec) MSE SNR (dB)

Point sampled 0:11 115(5) 27.5

EWA 3d (3) 1:33 196(6) 25.2

EWA 3d (5) 4:47 193(6) 25.3

EWA 3d (7) 8:38 193(6) 25.3

EWA 3d (11) 24:18 192(6) 25.3

Direct Simpson's (box) 13:29 { {

EWA times and performances

Table 5.4
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� Visual quality:

In areas of the image where the sampling rate is insu�cient there is still some

aliasing.

EWA �lter. Max samples = 3

Plate 5.7

EWA �lter. Max samples = 11

Plate 5.8

� Cost of the technique:

{ Pre-processing cost:

Independent of texture size or class. The cost of the pre-processing is n evalu-

ations of the �lter and n memory locations for the results, where n is the size

of the linear array being used to store the pre-computed �lter values.

Technique Pre-processing time (min:sec)

NIL M=4 0:6.8

NIL M=1 0:0.1

NIL map pre-processing times for sample cosine texture (4� 4 � 4).

Table 5.5
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{ Evaluation cost:

The cost of evaluating an EWA sample is 
(n3), where n is the number of

samples taken along one of the axes of the ellipsoid.

Given a box which encloses the ellipsoid centered at po we compute the number

of samples, n3, which must be taken in this box. The result is then computed

as a weighted sum of the texture over these n3 points. Thus the cost of a

single evaluation of an EWA �lter is 
(n3).

The use of a pre-computed �lter for the evaluation of these radially symmetric func-

tions removes the cost of approximating the �lters at each step. This approximation of

the �lter performs well when the volume over which the �lter is being evaluated is small.

When the �lter volume is large the number of samples required makes this approximation

very costly. This high cost requires us to limit the number of samples taken per �lter.

The simplicity of the technique makes it attractive, however, this simplicity comes at the

price of restricting the class of �lters that can be used.

5-6 NIL maps

� Class of �lters:

Arbitrary �lters. Approximation quality depends both on the order of the approx-

imating patches and the number of patches chosen to represent the �lter.

� Class of textures:

Procedural textures de�ned by a set of basis functions or discrete textures.

� Fidelity measures:

The results of approximating a Gaussian �lter with NIL maps are presented in

Table 5.6. In order to give an overview of the performance of the performance of

NIL maps we present several images. The �rst three were computed using constant

patch NIL maps (M=1), and the remaining three images were computed with tri-

cubic patches (M=4). The number of trigger points for all of the images is constant

(53). The number of trigger points allowed per NIL cell is shown in column 2.
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NIL map �lter. M=1, tol=5

Plate 5.9

NIL map �lter. M=4, tol=5

Plate 5.10

NIL map �lter. M=1, tol=2

Plate 5.11

NIL map �lter. M=4, tol=2

Plate 5.12
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Technique Tolerance Time (min:sec) MSE SNR (dB)

Point sampled { 0:15.2

NIL, M=1 10 1:04 6416(4) 10.2

NIL, M=1 5 1:38 255(4) 24.0

NIL, M=1 2 1:12 165(4) 26.0

NIL, M=4 10 5:57 238 (6) 24.3

NIL, M=4 5 13:35 138 (6) 26.7

NIL, M=4 2 17:42 117 (6) 27.5

Direct Simpson's (Gauss) { 13:31 { {

NIL times and comparisons.

Table 5.6

� Visual quality:

A number of anomalies were seen in the images computed using NIL maps. Many

of these are attributable to an inadequate sampling of the �lter function. When

many of the control point weights are small the scaling value is also small. Small

variations in this value can cause large variations in the computed value because

the scaling factor is the denominator. An extreme example of this e�ect can be

seen in Plate 5.9, where the scaling factor evaluated to zero in a few spots (the

white pixels). By forcing the subdivision to proceed further these gross artifacts

are removed. This is shown in Plate 5.11.

When the one-dimensional, or constant, NIL maps are used a blockiness is intro-

duced. This is not completely unexpected because we are approximating the �lter

with constant patches.

� Technique Cost:

{ Pre-processing cost:

For textures de�ned by a set of basis functions the storage cost for each positive

level is M3R3 . For a particular texture de�ned this can be reduced to M3 by

computing the



C ijk terms.
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For a discrete texture with resolution x = y = z = 2
max the storage cost per

positive level of the NIL map is 23(
max�gamma)M3. Thus the total cost for

storing the positive levels of the NIL map is M323(
max)
P
max

i=0
1

23i
.

{ Evaluation cost:

In order to approximate a �lter with NIL maps two steps must be followed.

The �rst generated the hierarchy and the second evaluates the approximation

to the �lter by computing the weights for the control points of the patches.

The number of patches which can be generated for an approximation depends

on the number of trigger points Nt, the tolerance tol, and the minimum depth


min. In fact the cost of generating the hierarchy is O
�

Nt

tol+1

�
and the size of

the hierarchy is also O
�

Nt

tol+1

�
.

The proof of this is a simple extension of the proof presented by Fournier and

Fiume [Four88a] in their original NIL map paper.

The smallest number of patches for an approximating hierarchy will be gen-

erated when tol > Nt and all of the trigger points lie in one NIL cell.

The largest number of patches which can be produced occurs when the subdi-

vision starts at 
max and proceeds to the lowest level 
min. In order for this to

occur we must have tol+1 trigger points clustered together in such a way that

they force a subdivision at each level. Because each subdivision caused by this

of cluster trigger points removes one patch and adds eight patches the number

of patches generated by this control patch is at most 7(
max � 
min). Notice

that no other set of tol + 1 trigger points can add as many patches to the

approximating hierarchy, because the �rst subdivision is already attributed to

the �rst tol + 1 trigger points. We can thus use 7(
max � 
min) as a coarse

upper bound for the number of patches which each tol + 1 trigger points will

generate. This results in an upper bound of

7(
max � 
min)

�
Nt

tol + 1

�

patches for the approximating hierarchy. Thus the number of patches approx-

imating a �lter is O
�

Nt

tol+1

�
.
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The cost of constructing this hierarchy is also O
�

Nt

tol+1

�
. This follows because

each patch produced in the above process is only executed once.

The approximation of the �lter is then computed using the following sum.

I =
X
patch

M�1X
i=0

M�1X
j=0

M�1X
k=0

b
patch
ijk C

patch
ijk

The cost of evaluating the �lter is then O
�

Nt

tol+1
M3

�
.

Thus we see that the cost of evaluating a single �lter with NIL maps in not

dependent on the �lter's size, position, or shape, but rather is dependent on

tolerance parameters set by the user.

One could argue that the use of NIL maps for the approximation of a Gaussian �lter

is somewhat excessive. A better example of the power of NIL maps is the case of motion

blur �lters.

First let us assume that a Gaussian �lter is being used as the �lter over the area on

the viewing plane which maps onto a pixel. If the texture is moving across the screen in

a linear fashion then the required �lter is a Gaussian extruded along a line. If the texture

is on a plane which is rotating about the origin then the �lter can be approximated by

a Gaussian stretched along the corresponding arc. In order to model this �lter with

NIL maps we lay down the trigger near this arc. The hierarchy is found using these

trigger points. The weights for the control points are taken from the rotated �lter.

The implementation of this �lter required that less than 50 lines of C code be written.

Appendix B shows the code written for this example.

In Plate 5.13 we present a point-sampled view of a textured plane. If this texture is

rotated about the origin and the exposure time of a camera is large enough motion blur

will occur. This motion blur occurs because the texture moves relative to the viewing

plane. Motion blur can be modeled by spreading a �lter over the area of the texture

which passed in front of a pixel area. Using NIL maps we were able to quickly model

and implement such a motion blur �lter. In Plates 5.14, 5.15, and 5.16 we see the plane

displayed with motion blur �lters. The rotation used in these Plates is �=24, �=12, and

�=6 respectively.
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Texture for motion blur example

Plate 5.13

Motion blur caused by a rotation of

�=24

Plate 5.14

Motion blur caused by a rotation of

�=12

Plate 5.15

Motion blur caused by a rotation of

�=6

Plate 5.16
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5-7 Wrapup

The four �ltering techniques compared here allow the evaluation of three-dimensional

�lters. Each of these techniques has its strengths and weaknesses. In Tables 5.7 - 5.11

we present a summary of our evaluation.

Clamping provides the lowest cost method for the removal of aliasing frequencies

from an image. The artifacts which this technique can introduce and the requirement

that the texture be expressed in terms of its frequency spectrum make this technique

somewhat limited in application. EWA �lters allow the evaluation of radially symmetric

�lters without the overhead of computing an expensive �lter. When this technique is

used with expensive textures the high cost of evaluating large �lters can force the user

to place an upper bound on the number of samples taken. If this is the case, EWA

�lters will not perform well when the �lters grow large. By using a pyramidal data

structure NIL maps provide a constant cost (per pixel) �lter evaluation technique. The

quality of the approximation is controlled by the order of the approximating basis and

the number of patches generated to approximate the �lter. Even though the per-pixel

cost of NIL maps is �xed it is still quite high. This makes NIL maps impractical for the

evaluation of simple �lters such as elliptical Gaussians. However, the ease with which

new �lters can be developed makes NIL maps a powerful tool in the study of �lters

for three-dimensional texture mapping. As expected the direct evaluation of the �lters

using adaptive quadrature rules yield the best results. The evaluation of odd shaped

�lters (such as motion blur) may required the evaluation of the integrals to be over

large volumes or over irregular volumes. Computing these integrals is expensive, but the

control over the quality a�orded by this technique may make it the only option in some

applications.
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Technique Filter class

Clamping Polynomial approximation in Fourier space.

Direct Arbitrary �lters over rectangular volumes.

EWA-2 �xed Radially symmetric

EWA-2 adaptive �lters, centered in ellipse or

EWA-3 �xed ellipsoid.

EWA-3 adaptive

NIL Maps Arbitrary �lters approximated

by patches.

Filters approximated

Table 5.7

Technique Texture class

Clamping Procedural with frequency information.

Discrete with frequency information.

Direct Procedural and discrete.

EWA-2 �xed Procedural and discrete.

EWA-2 adaptive

EWA-3 �xed

EWA-3 adaptive

NIL Maps Procedural de�ned by a set of basis functions.

Texture class allowed
Table 5.8
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Technique Pre-processing cost

Clamping Negligible if frequency known, otherwise

cost of �nding frequency information.

Direct None.

EWA Evaluation of n samples of one-dimensional �lter.

Storage is n 
oating point numbers.

(This is why radial symmetry required.)

NIL Maps O(M3x3log2(x))

x: Resolution of data set

Pre-processing cost

Table 5.9

Technique Evaluation cost

Clamping Fixed

Direct Fixed Fixed

Direct adaptive o(F)

EWA-3 O(n3) (n� n� n) samples in box

NIL Maps Storage O
�

Nt

tol+1
M3

�
Storage O

�
Nt

tol+1
M3

�
(M: Order of approximating patches.)

(Nt:Number of trigger points.)

(tol: Tolerance.)

Evaluation cost
Table 5.10
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Technique Visual evaluation.

Clamping Abrupt changes possible

Direct Depends on �lter used

EWA Aliasing still possible

when sampling restricted.

NIL Maps Truncated �lter can lead to normalization

problems. (Scale factor goes to zero)

For N=1, Discrete blocks aligned with axis.

Visual evaluation
Table 5.11
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Chapter 6

Filters for volume rendering

.

The goal of volume rendering is to display objects and structures that are not normally

visible. Because of this it is impossible to apply a reality measure to the resulting images.

This means we are free to choose an arbitrary display model, such as a medium that

absorbs light, or a medium that absorbs and emits light for instance. Once this display

model is chosen then we must ensure that we display the data set accurately according

to the model chosen. By choosing new display models and display methods new tools

can be developed to display volumetric data.1

As we have shown in Chapter 3, the evaluation of these volumetric �lters is quite

costly. Not only is this evaluation costly, it may also be the case that the implementa-

tion of a �lter requires a large amount of specialized code to be written. In this chapter

we three examples to show that by using NIL maps we were able to prototype volume

rendering �lters. The �rst set of examples shows how NIL maps can be used to approx-

imate traditional volume rendering techniques. The second example shows how slices

of the data can be extracted using a Gaussian �lter approximated by NIL maps. The

third example shows how NIL maps were used to �nd a technique for highlighting the

wind-passage in our example MRI data set. This example uses a modi�cation of a cur-

rent volume rendering technique [Sabe88] to select a sample position. Once the point of

interest is found a �lter is evaluated in its neighbourhood. The value resulting from the

application of this �lter is used as the pixel intensity. In particular, if a surface-detection

�lter is used, the surface of the wind-passage is more clearly displayed.

1The relationship between the display model and the display technique for volume rendering is similar to

the relationship that exists between illumination models and shading techniques. The illumination model is

used to model the interaction of light with a surface element and the shading technique is used to evaluate the

illumination model. Usually the shading technique introduces a simpli�cation to the illumination model. It is in

this sense that the display technique in volume rendering applications is used to evaluate the display model.
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6-0.1 Data set for examples

The examples in this chapter all use a 128�128�21 sub-sampled version of a 256�256�21
8 bit per voxel MRI (Magnetic Resonance Imaging) data set. This smaller subset of the

data was used due to the high memory overhead of the NIL map �ltering technique.

This data set was obtained as part of a sleep apnea study at the UBC faculty of

dentistry. Hannam2 de�nes sleep apnea as follows:

Sleep apnea is a disorder caused by an upper airway obstruction during

sleep. It is not evident in the waking state. The soft tissues of the upper

airway change shape and result in a constriction of the airway. Diagnosis

of the disorder is currently made by a combination of bio-medical imaging

and polysomographic readings made in a sleep disorder clinic. Treatment

includes surgical correction of soft tissues, the use of intra-oral appliances to

control tongue posture during sleep, and positive airway maintenance with

continuous air
ow.

Image resolution

The images in Plates 6.1, 6.2, and 6.15 were computed at a resolution of 640 � 480. The

remaining plates were computed at a resolution of 320 � 240.

6-1 Conventional display

Previously we showed (in Chapter 3) that the display of volumetric data under a partic-

ular display model can be formulated

I =
Z u1

u0

Z v1

v0

Idudv =
Z u1

u0

Z v1

v0

Z tb

ta

e��(t�to)�(x(t); y(t); z(t))dtdudv; (6.1)

where � is a user parameter that controls the strength of the scattering e�ect. This

equation models a medium where the scattering e�ect is only dependent on the optical

depth. As we noted this is the evaluation of the application of a �lter to the volumetric

data. In this case the �lter is de�ned as the product of an exponential decay �lter

2Dr Alan Hannam, Professor of Oral Biology, Faculty of Dentistry, University of British Columbia, Personal

communication.
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(e��(t�to)) and a box �lter applied over the pixel area on the viewing screen. By rewriting

this equation as,

I =
Z u1

u0

Z v1

v0

Z tb

ta

F (u; v)e��(t�to)�(x(u; v; t); y(u; v; t); z(u; v; t))dtdudv;

we see how this three-dimensional �lter can be de�ned as the product of a two-dimensional

�lter and a one-dimensional �lter.

In the following examples we use NIL maps to display this data set using a Gaussian

screen �lter and an exponential decay �lter along the line of sight. In Plates 6.4, 6.5, and

6.6 we use the transfer functions illustrated in �gure 6.23.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1

Output �

Input �

Transfer functions used in NIL examples

red(t)
green(t)
blue(t)

Transfer functions used in NIL map examples. These transfer functions are de�ned in

terms of Lagrange polynomials.

Figure 6.23

In Plates 6.1 and 6.2 we see the image displayed using Sabella's [Sabe88] method

using a super-sampling rate of 16 rays per pixel and 256 sample points per ray. The

320 � 240 versions of these images required 15 minutes of CPU time. In Plate 6.3

we present the display of the data from the same point of view using a constant patch
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Side view of the data set used in examples. This 128 � 128 � 21 8 bit MRI data set is

used throughout the chapter. This image was computed using Sabella's [Sabe88]

technique. The value for the � parameter in this image is 3. The red channel contains

the computed intensity, and the green channel contains the max value encountered

along the ray.

Plate 6.1
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Front view of data set used in examples.

Plate 6.2
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Patch order Trigger points 2 4 8 16

0 2 3 5 10

1 4 7 13 32

2 13 20 40 {

NIL map volume rendering timings (Min).

Table 6.1

approximation. The tolerance for subdivision in these images was set to 2 and the number

of trigger points used was 4, 8, 16, and 32. This means that the level of approximation

was 2 � 2 � 2, 4 � 4 � 4, 8 � 8 � 8, and 16 � 16 � 16, respectively. Plate 6.4 presents

the display using a linear patch approximation. These two sets of images (Plates 6.3 and

6.4) illustrate the results which can be generated using a very coarse approximation to

the �lters with NIL maps. The high cost of evaluating these images discouraged further

investigation in this direction. The techniques which directly evaluate the display �lters

using ray-marching are much better suited to the task than NIL maps are.

In Plate 6.5 we show the data set displayed using a quadratic patch approximation to

the �lter. Notice that for a 2�2�2 representation of the data there is quite a bit of detail

visible. When we contrast this with the display of the data using direct display (Sabella)

with reduced sampling we see that NIL maps allows the use of a low resolution version

of the data. In contrast lowering the sampling rate on the direct evaluation technique

would yield poor results. The display of the data using 2, 4, 8, and 16 sample points

with direct evaluation is presented in Plate 6.7. Even though the image in Plate 6.5

provides a good abstract display of the data for a 2 � 2 � 2 data set. It is hard to see

where such a simple display of a volumetric data set would prove useful. In table 6.1 we

present the time required to produce the NIL map renderings. By increasing the number

of approximating patches a fairly good display (Plate 6.6) of this data set was generated.

As expected NIL maps do not perform particularly well in this application. The high

overhead cost associated with �nding the approximation to the �lter is the main cause of
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Constant patch approximation using tolerance = 2, and trigger 4, 8, 16, 32. The images

are ordered left to right and top to bottom.

Plate 6.3
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Linear patch approximation using tolerance = 2, and trigger = 4, 8, 16, 32. The images

are ordered left to right and top to bottom.

Plate 6.4
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Quadratic patch approximation using the 2� 2� 2 level of the NIL map

Plate 6.5
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Linear patch approximation of general �lter for 128� 128� 21 data set. The number of

trigger points is 512. The tolerance is 3.

Plate 6.6
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Direct rendering with 2,4,8,16 samples per ray.

Plate 6.7

105



6{FILTERS FOR VOLUME RENDERING

this. If a smaller representation of the data is required then the use of the top levels of

the NIL map will provide the required abstraction. This property of NIL maps is more

useful in texture mapping applications than it is in volume rendering applications.

6-2 Slicing the data

Often a slice of the data is required. This slice is a two-dimensional sample set taken

from the original data set. The position and orientation of these slices is arbitrary. By

using NIL maps we show how a �ltered slice of the data can be constructed. The slice is

speci�ed by specifying a distance from the eye. For each pixel a Gaussian reconstruction

�lter is placed at the pre-de�ned point along the ray that goes through the centre of the

pixel. The resulting image is the slice. By varying the width of the �lter we can obtain

slices that represent di�erent widths of the data. In Plates 6.8 and 6.9 we illustrate slices

obtained with a slice width of 0.1 and 0.01 respectively.

Another possible application is the extraction of the slices as required in the Fourier

domain rendering of the data [Tots93, Levo92, Malz93]. In this approach a slice of the

data must be extracted from the Fourier representation of the volume. The possibility

of using NIL maps for this slice extraction is currently being investigated. The uniform

size of the reconstruction �lter seems to indicate that the pyramidal aspect of NIL maps

will not be as important as when variable size �lters are being approximated.

6-3 Maximum revisited

The initial display of the data with NIL maps did not really display the wind-passage as

well as expected. Using the slice method we could extract a variety of slices to highlight

the constriction in the wind-passage. In this section we show how the combination of

a simple search technique with a surface-detection �lter can be used to highlight the

wind-passage.

One of the simplest tools for the display of volumetric data is to compute the max-

imum along a line of sight and use this as the intensity of the resulting pixel [Sabe88].

Unfortunately this technique does not help us in the task of displaying the wind-passage
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Thick slice of the data
Plate 6.8
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Thin slice of the data
Plate 6.9
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for the sleep apnea study as can be seen in Plates 6.1 and 6.2. We can use a variation

of this technique to position a �lter that highlights surfaces in the volumetric data. The

density near the wind-passage lies roughly between 0.14 and 0.183.

Given a user de�ned search density we choose the position of the �lter by searching

along the ray for the point with the closest density to this search density. If we use these

densities as the intensity values for the pixels4 a image with almost uniform intensity is

produced. If one looks at the image carefully the outline of the wind-passage is faintly

visible. By positioning a di�erence of Gaussians (DOG) �lter at this point we were

able to clearly highlight the wind-passage. In Plates 6.11{6.14 we illustrate the results

obtained using this combination of techniques.

The wind-passage outline is quite easy to �nd in the images produced with a search

density of 0.14. In these Plates (6.11 and 6.12) there appears to be a complete constriction

of the wind-passage. Fortunately for the patient this does not represent his/her wind-

passage. By ranging the search density from 0.14 to 0.19 we were able to get a good idea

of the shape of the wind-passage. This process of �nding the correct search density can

be interactively controlled. In Plates 6.13 and 6.14 we see a front and a side view of the

data set corresponding to a search density of 0.18. If we compare this to the image in

Plate 6.155 we see that we have a close match in the shape of the wind-passage. The

irregularities in these images (Plates 6.11-6.14) are due to the simple search method and

not to the �lter. When our simple search method �nds a location which is not near the

wind-passage6 the application of a DOG �lter will produce a low response.

The images presented in this section are the original images that were produced

during the initial implementation and experimentation step. Because the intention of

this chapter is to illustrate how NIL maps can be used in the investigation of �lters we

did not spend any additional time trying to improve the pictures.

It is interesting to note that the compact shape of the �lters allowed a much faster

3The original data is an 8 bit unsigned data set. In the current NIL map implementation this data is stored

in a 
oating point representation with the density in the range [0,1].
4Either the density values or a function of the density values can be used. In either case the image contains

little useful information
5This image was obtained using a Marching Cubes implementation[Lore87]. The iso-surface is de�ned by

thresholding the data at a density of 0:18 � 46

255
.

6Or the ear passages.
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Search and display of volumetric data. The search density (�o) is 0.14. The outline of

the wind-passage is faintly visible.

Plate 6.10
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Pre-processing Subdivision Control point Placement of Patch integration

evaluation trigger points

3.79 64.73 23.22 2.11 1.59

Percentage of time spent by the di�erent NIL map components

Table 6.2

approximation of the �lter to be used. Typically nine NIL cells were used to approximate

each �lter. This means that the computation of each these images required about �ve

minutes.

The examples in this Chapter illustrate how NIL maps can be used as a tool for the

investigation of volume rendering �lters. The three examples presented in this chapter

were implemented by altering the trigger point placement code and the �lter-weight

evaluation code. In particular, the implementation of the last technique was done in the

course of an afternoon.

6-4 Comments on NIL maps for volume rendering

NIL maps have allowed us to implement quickly and experiment with a number of �lters.

The three examples presented here highlight the main disadvantages and advantages

of NIL maps in the context of volume rendering. The cost of using NIL maps as a

conventional volume rendering technique is high. This high cost is primarily due to the

cost of evaluating the approximating hierarchy. In the current implementation a major

portion of the execution time ( � 87%) is spent �nding the approximating hierarchy

and the weights of the control points. In table 6.2 we present a typical set of statistics

gathered by a standard UNIXtm pro�ling tools7.

This problem is partially addressed if we store the �lter-approximating hierarchy for

each pixel. If a new display of the data set is required and the current hierarchies are

still valid this will signi�cantly reduce the cost of the display. In particular this is true

7Pixie and prof on a Silicon Graphics workstation.
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Side view of data set. Display of the data using the sample and �lter display. The

search density (�o) is 0.14, and the display �lter is a di�erence of Gaussians (DOG)

�lter.
Plate 6.11
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Front view of data set. The search density (�o) is 0.14.

Plate 6.12
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Side view of data set. The search density (�o) is 0.18.

Plate 6.13
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Front view of data set. The search density (�o) is 0.18.

Plate 6.14
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Iso-surface generated using Marching Cubes technique. The threshold used to generate

this was 0.18.
Plate 6.15
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when transfer functions are being altered.

If the view of a data set is changed then we have no choice but to recompute the

hierarchy for each pixel. However, there are situations where this hierarchy need not

be completely recomputed. These include transfer function manipulation, tolerance in-

crease/decrease, and slight changes in viewing position. When either the number of

trigger points or the tolerance that sets the subdivision is altered the hierarchy that ap-

proximates a �lter can be modi�ed by further subdividing it or by collapsing NIL cells

into higher representations. In the case of a slight change in the point of view the old

hierarchies may be examined in order to determine their validity.

There are a number of situations where we may wish to extract a slice from the data.

NIL maps can be used to approximate the interpolation �lters. This allows higher quality

�lters such as Gaussian �lters to be used. The hierarchical aspect of NIL maps does not

seem be so important for this application.

The main advantage of NIL maps is seen in the last example presented above. The

ability to rapidly implement �lters encourages research into alternate �lters for volume

rendering. Once an interesting �lter is found it can be implemented in a more e�cient

manner. We believe this to be one of the more important contributions of NIL maps for

volume rendering.

There is one small remaining problem with the current implementation of NIL maps.

If we know that the �lter can adequately be approximated using a linear approximation,

but we have computed the NIL map using a higher order approximation we must either

re-compute the NIL map using the appropriate basis or use a higher order polynomial

to approximate the �lter. Both of these alternatives can be avoided if we choose a

polynomial basis set fBi(t)g with the property that the degree of the polynomial Bi(t)

is i. Two examples of such a basis are the power basis

B0(t) = 1

B1(t) = t

B2(t) = t2

B3(t) = t3
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and the Chebyshev polynomials

B0(t) = 1

B1(t) = t

B2(t) = 2t2 � 1

B3(t) = 4t3 � 3t:

When a basis with the above property is chosen we can evaluate a lower order ap-

proximation without having to compute the M control points. If such a basis is chosen

for the NIL map representation we must perform a control point transformation between

the approximating basis functions, and the internal basis functions.

6-5 Wrapup

The display of volumetric data using �lters is and will continue to be an important tool

for the study of these data-sets. By developing new �lters as display tools we are able to

provide more sophisticated tools for this study. In order to develop these display �lters

we need a tool with which �lters can be quickly developed and tested. NIL maps is such

a tool. The use of NIL maps for the evaluation of these �lters allows preliminary study

into the use of �lters for volume rendering with out requiring the generation of large

amounts of `specialized' �lter code to be written. Considered in this way the use of NIL

maps is a middle step towards the development of more complex �lters for the display of

volumetric data. The 
exibility of the NIL maps technique comes with a high cost. This

suggests that �lters found using NIL maps as an exploratory tool need to be implemented

directly if they are to be used in a production system. The use of NIL maps allows us

to delay this specialized code development step until we are sure of the usefulness of a

particular �lter.
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Chapter 7

Conclusions

The end

This dissertation studied the display of volumetric data in computer graphics. In both

texture mapping and volume rendering this display can bene�t from the application of

three-dimensional �lters. These �lters range from simple anti-aliasing �lters to more

complex �lters designed to produce a particular e�ect. The evaluation of these �lters

requires the computation of an expensive triple integral. This high cost motivated the

search for approximating techniques for �lter evaluation.

Four �lter evaluation techniques were presented, direct evaluation, NIL maps, EWA

�lters and clamping. Direct evaluation uses numerical quadrature rules to evaluate the

integrals. NIL maps and EWA �lters are extensions of their two-dimensional counter-

parts proposed by Fournier and Fiume [Four88a] and Greene and Heckbert [Gree86]

respectively. The use of clamping [Nort82] for anti-aliasing three-dimensional textures

was proposed by Perlin [Perl85].

7-0.1 Three-dimensional texture map �ltering

The implementation and application of these four �ltering techniques allowed us to com-

pare their relative performance for texture mapping. The evaluation criteria included a

variety of objective and subjective items. Based on this evaluation it is di�cult to present

any of these techniques as the `best' one. Each of these techniques has clear advantages

and disadvantages. One possible ranking is based on the generality of the techniques.

Direct evaluation places no constraints on the class of textures that can be used.

The class of �lters that can be evaluated using direct evaluation is limited only by the

quadrature rule chosen. In most cases this means that the �lter is evaluated over a

rectangular parallelepiped. Even though this approach is quite costly, it does provide us

with the ability to evaluate these �lters within a pre-determined tolerance.

The development and study of new �lters with NILmaps is easily done. This 
exibility

119



7{CONCLUSIONS

allows the quick prototyping of �lters for both texture mapping and volume rendering.

Once interesting �lters are developed it is probably wise to implement them using more

e�cient methods. It is also possible to use a di�erent basis set for approximating the

�lters, as was done in two dimensions for Gaussian �lters by Gotsman [Gots93].

EWA �lters are restricted to the evaluation of radially symmetric �lters over ellipsoidal

volumes. This restriction allows the use of a pre-computed one-dimensional sample of

the �lter. This technique is useful when the cost of evaluating the �lter function is high

compared to the texture evaluation cost. When EWA �lters are being considered two

issues must be considered. First, EWA �lters approximate a �lter centered in the ellipsoid

that, as we showed, can introduce quite a large error when the perspective distortion is

large. Second, the �xed point Gaussian quadrature rule provided a better approximation

than EWA �lters do. If EWA �lters are being used for procedural textures then the

sample points can be placed at the same positions as the sample points generated by the

�xed point quadrature rule. This is not an option when discrete textures are being used

unless a reconstruction �lter is being used to generate a continuous signal. In this case

the reconstructed signal can be treated in the same manner as a procedural texture.

The least general of these techniques is clamping. It requires some information about

the Fourier spectra of the texture. The �lter is approximated by a low order polynomial

approximation to its Fourier transform. In most of the applications of clamping that we

have encountered the cost of evaluating a �ltered sample is lower than that of evaluating

an un-�ltered sample. If simple anti-aliasing is required and the cost of more sophisticated

�ltering cannot be a�orded, then clamping is an option that should be considered.

7-0.2 Filters for volume rendering

The display of volumetric data allows us to see that which is not normally visible. In

other areas of computer graphics we can apply some sort of reality measure; this is not

an option for volume rendering. Rather than striving to produce pictures of a certain

realistic quality, volume rendering research has concentrated on producing a variety of

display tools with which volumetric data sets can be studied. The use of �lters for volume

rendering extends this set of tools in a signi�cant way.

A popular display model for volumetric data is to consider the data measurements as
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the local density of a volume of gas that either absorbs or emits light. By simplifying this

model it is possible to formulate the display of these data sets as a �ltering operation.

This investigation was prompted by the similarities between the display of volumetric

textures near the surfaces of objects and the direct display of volumetric data. The

initial investigation of �lters for volume rendering was done using NIL maps as the �lter

evaluation method. By using this method we were able to quickly study di�erent �lters

for volume rendering.

This research lead to the incorporation of �lters with a more conventional display

technique. In this hybrid method a ray marching method is used to locate a point of

interest. The display of this point does not provide much information, however, the

neighborhood of the point may be interesting. By placing a �lter at this point and using

the result of its application a more interesting display was generated.

The simplicity of this approach and the results achieved thus far highlight the potential

of this approach. The properties of the data that need to be highlighted di�er between

volume rendering applications. By allowing the display �lters to be designed by the users

we hope to provide a more sophisticated set of tools for the display, study, and analysis

of volumetric data sets.

7-0.3 NIL maps

NIL maps provide a general �lter evaluating tool for volume rendering and texture map-

ping. The overhead of the technique is quite high, but it allows for the rapid prototyping

of three-dimensional �lters. In texture mapping it allows a wide range of procedural tex-

tures to be used. The only limitation is that the textures be de�ned by a �nite (hopefully

small) set of functions. In volume rendering NIL maps incorporate transfer functions.

These transfer functions are also restricted to be de�ned by a set of basis functions.

The ease with which �lters can be implemented and studied using this technique

makes it an attractive one for the preliminary study of �lters in both of these applications.

Once a particular �lter is selected for a task it is probably the case that a more e�cient

evaluation scheme can be found.
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7-1 Contributions

The contributions of this thesis are:

� An overview of the computer graphics literature relevant to the �ltering of volu-

metric data. This included an overview of the two-dimensional �ltering literature

from which two techniques were selected for extension to three dimensions.

� It was shown that the display of three-dimensional textures, the anti-aliasing of

three-dimensional textures, and the display of volumetric data can all be formulated

as �ltering operations.

� Three new �ltering techniques for three-dimensional textures were developed:

{ Direct evaluation:

The development of a three-dimensional �lter evaluation technique based

on Simpson's adaptive quadrature rule. Allows the accurate evaluation of

three-dimensional �lters to within a pre-de�ned tolerance.

{ NIL maps:

This technique is an extension of the two-dimensional version. The extension

includes methods for procedural textures and transfer functions. The 
exi-

bility of this technique makes it a good method for the rapid prototyping of

�lters both in the context of three-dimensional texture mapping and volume

rendering.

{ EWA �lters:

Again, an extension of the two-dimensional version. This technique is easy to

implement but is restricted in the class of �lters that it can approximate. The

performance of this technique is easily matched by a �xed point quadrature

rule. If the cost of evaluating the �lter is high we could still use the EWA

technique to reduce the cost of computing the �lter-weight function.

� These three �lter evaluation techniques were evaluated in the context of three-

dimensional texture mapping. A comprehensive criteria was used that allows the

correct technique to be chosen depending on the application.
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� Examples of the application of �lters to volume rendering were presented. In partic-

ular the combination of �ltering and other display techniques was shown to produce

a innovative display of the data.

7-2 Future work

In this thesis we have provided a set of tools for approximating the evaluation of three-

dimensional �lters when they are applied to volumetric data. A number of issues arise

out of this research:

� If we wish to use �lters for volume rendering it is reasonable to allow the user to

tailor these �lters for a particular task. The de�nition and manipulation of these

�lters is not an intuitive task. Several questions arise:

{ In what ways can these �lters be de�ned and controlled?

The mathematical de�nition of the �lter does not provide an intuitive feel

for the function1 of the �lter. Other methods for describing or de�ning these

�lters must be found.

{ How can these �lters be displayed? In one and two dimensions we can display

by plotting their function, this is not so easy for three-dimensional �lters

because their display requires the display of a surface in four dimensions.

{ What queries of the data can be formulated as a �lter operation? By combining

a ray marching search method with a �lter display we were able to display more

information about the neighborhood of a point of interest. The application of

�lters to both the search step and the display step merit investigation. There

are many properties of the data, such as surfaces de�ned by a sudden density

change, whose location can be determined by the application of a �lter.

� The range of textures that we can generate using the procedural textures is far

richer than the colour textures we have studied. As we indicated earlier there is

research on the �ltering of such textures in two dimensions [Four93]. The extension

1No pun intended
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of these techniques to three-dimensional textures should prove to be an interesting

and challenging study.

� We have shown how many volumetric data display techniques can be formulated as

a �ltering operation. A study of the various uses and/or sources of volumetric data

may highlight other situations where a �ltering approach will help in the display

of this data.

� There are a variety of properties of the data that are used in volume rendering

that cannot be expressed as a linear �ltering operation. One such example is the

maximum density along a viewing ray. This property has been used extensively for

the display of volumetric data. An investigation of such problems from the point

of view of hierarchical data structures, and/or pyramidal data structures may yield

interesting results.
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Notation

Bi(t) One-dimensional basis function.




C
m
i NIL map cell from 
 level derived from basis function Bi(t). The super-script

m indicates the cell's o�set in the 
 level of the NIL map.




D
m
il NIL map cell from 
 level which incorporates a transfer basis function. The l

sub-script indicates which transfer function basis function (Bl(t)) the NIL cell

is derived from. The super-script m indicates the cell's o�set in the 
 level of

the NIL map.

I Place holder for the integral result.

T (t) Texture function.

T�(t) Transfer function, the � sub-script indicates what channel the data is mapped

into. In the context of NIL maps this transfer function is de�ned in terms of a

basis set bl(t).

T�(t) =
N�1X
l=0

blBl(t)

T () Signal resulting from a reconstruction of a discrete data set.

Xr(t) Procedural texture basis function. The texture function is then de�ned by

T (t) =
R�1X
r=0

xrXr(t)

u; v; w Texture space coordinates.




X ri NIL map cell from 
 level which incorporates a procedural texture basis func-

tion. The r sub-script indicates which texture basis function (Xr(t)) the NIL

cell is derived from.

x; y; z Object space coordinates.
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Glossary

Aliasing:

Introducing a signal component that should not be there.

CAT:

Computer Aided Tomography.

DC:

Constant term in a signal. In a Fourier transform of a signal the DC component is

the coe�cient of the zeroth term.

Discrete texture:

A discrete representation (usually sampled) of a texture.

EWA:

Elliptical Weighted Average �lters. A �lter approximation technique designed to

accelerate the computation of radially symmetric �lters. Primarily of interest when

a Gaussian is being used.

Filter:

A weighting function.

Modelling:

Building an abstract (usually mathematical) representation.

MRI:

Magnetic Resonance Imaging.

NIL map:

A pyramidal data structure used for storing pre-integrated basis functions. NIL

stands for nodus in largo. Roughly translated this means knot large.

Pixel:

Picture element, or frame bu�er element.

Procedural texture:

A continuously de�ned texture implemented in some programming language.

Reconstruction:

Generating a continuously de�ned signal from a discrete sample set.
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Rendering:

Using a model and a display technique to assign values to pixels in a frame bu�er.

Sampling:

Taking a �nite number of samples of a signal.

Texture:

A high frequency (usually) surface characteristic.

Texel:

Texture element

Transfer function:

A function T (t) which maps a scalar data-set or scalar function into another do-

main.

Voxel:

Volume element.
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Appendix A

NIL innards

Get it running!

In Chapter 4 we overviewed the NIL map �lter approximating technique. This overview

was followed by a discussion of the extension of NIL maps to allow the use of Transfer

functions, and procedural textures de�ned by a texture basis function set.

In one dimension we showed that the evaluation of the convolution of a �lter F (t)

positioned at to and a texture signal T (t)

I(to) =
Z 1

�1

F (t� to)T (t)dt (A.1)

could be approximated by �rst approximating the �lter by a set of curves. This set of

curves is piece-wise de�ned by basis functions Bi(t). If these basis functions are pre-

integrated with the texture function,

Cm
i =

Z
1

0

Bi(t)T (m+ t)dt (A.2)

the above convolution can be approximated by

I(to) =
K�1X
m=0

M�1X
i=0

bmi C
m
i : (A.3)

The Cm
i coe�cients are known as the NIL map cell entries. By spreading the basis

functions and integrating these with successively larger intervals of the texture a pyra-

midal NIL map can be constructed. In this case the NIL map cells are de�ned by




Cm
i =

Z
1

0

Bi(t)T (2

m+ 2
t)dt; (A.4)

where 
 indicated the level of the pyramid to which the NIL cell belongs. In this appendix

we discuss some of the optimizations which were employed in our implementation of NIL

maps.
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A{NIL INNARDS

A-1 Speeding up the computation of Cijk for discrete textures

The process that we are trying to approximate is that of the convolution of a three-

dimensional �lter with a continuous three-dimensional signal. Unfortunately, in many

of our applications we do not have a continuous three-dimensional signal, instead we

have a sampled version of the signal. Before we can apply any �lters to this signal we

must reconstruct the signal. There are many reconstruction �lters that could be chosen,

however, in practice one of two reconstruction methods are used: sample and hold or

tri-linear interpolation. When we know the reconstruction �lter we can speed up the

computation of the NIL maps.

A-1.1 Sample and hold

The sample and hold reconstruction is computationally the simplest of the reconstruction

�lters available. The computation of the value of a particular point is found by applying

the 
oor function to each of the coordinates. In the following discussion we will use

T (x; y; z) to denote the reconstructed texture and T (x; y; z) to denote the discrete texture.

T (x; y; z) = T (bxc; byc; bzc)

Using this reconstruction �lter a�ords us two optimizations. The �rst is in the computa-

tion of the di�erent levels of the NIL maps. The second optimization allows the inclusion

of an arbitrary number of negative levels to the NIL map with out any storage cost.

Speeding up the computation of



C mno
ijk

First lets look at this problem in one dimension. The texture T is sampled at �t = 1

intervals 1 so the equation for
0

Cm
i is

0

Cm
i =

Z
1

0

T (a+ t)Bi(t)dt (A.5)

1We can assume WLOG j�tj = 1, if this is not so a change of variables will su�ce to ensure the condition.
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A{NIL INNARDS

since

T (m+ t)
���t2[0;1) � T (m)

we rewrite A.5
0

Cm
i = T (m)

Z
1

0

Bi(t)dt

Now in general for any level 
 we have

Z
1

0

Bi(t)T (2

m+ 2
t)dt =

2

�1X
a=0

Z a+1

2


t= a

2


T (2
m+ a)Bi(t)dt (A.6)

so that



Cm
i =

2
�1X
a=0

Z a+1

2


t= a

2


T (2
m+ a)Bi(t)dt (A.7)

Since the texture function is now constant in every integral interval we rewrite




Cm
i =

2

�1X
a=0

T (2
m+ a)
Z a+1

2


t= a

2


Bi(t)dt (A.8)

Following this argument in three dimensions we �nd that for a texture T (u; v; w)




C
mno
ijk =

2

�1X
a=0

2

�1X
b=0

2

�1X
c=0

Z a+1

2


u= a

2


Z b+1

2


v= b

2


Z c+1

2


w= c

2


T (2
m+ a; 2
n+ b; 2
o + c)

Bi(u)Bj(v)Bk(w)dudvdw (A.9)

When we examine equations A.9 and A.7 we notice that the integrals are always

performed between constant sections of the texture and some �xed interval of the basis

functions. This means that we can rewrite A.9 as follows:




C
mno
ijk =

2
�1X
a=0

2
�1X
b=0

2
�1X
c=0

T (2
m+ a; 2
n + b; 2
o+ c)

Z a+1

2


u= a

2


Z b+1

2


v= b

2


Z c+1

2


w= c

2


Bi(u)Bj(v)Bk(w)dudvdw (A.10)

Thus the computation of the Cijk values should be done by precomputing for each
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level 
 the various integrals of the form




B
abc
ijk
��������������
a 2 [0; 2
)

b 2 [0; 2
)

c 2 [0; 2
)

=
Z a+1

2


u= a

2


Z b+1

2


v= b

2


Z c+1

2


w= c

2


Bi(u)Bj(v)Bk(w)dudvdw (A.11)

This is a separable integration so we can rewrite




B
abc
ijk
��������������
a 2 [0; 2
)

b 2 [0; 2
)

c 2 [0; 2
)

=
Z a+1

2


u= a

2


Bi(u)du
Z b+1

2


v= b

2


Bj(v)dv
Z c+1

2


w= c

2


Bk(w)dw (A.12)

Using these values equation A.10 becomes




C
mno
ijk =

2

�1X
a=0

2

�1X
b=0

2

�1X
c=0

T (2
m+ a; 2
n + b; 2
o+ c)



B
abc
ijk (A.13)

From this discussion two methods suggest themselves for helping the computation of

Cijk, one memory intensive and the other less so.

The �rst method requires the computation of all the values for Babc
ijk for each individual

level 
. Since these arrays increase exponentially with the depth of the NIL map we must

allocate enough memory to store the highest level of the Bijk coe�cients. The memory

required at this level is

n3 �M3

where the dimension of the data is n� n� n.

Noticing that these integrals are symmetric over any permutation of the indices a; b; c so

we can make further computation and storage optimizations.

n(n+ 1)(2n + 1)

6
�M3
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This can be shown by examining the levels of the array. If we set the �rst index to 1 then

we see that [1; b; c] = [1; c; b] is the symmetry that de�nes the �rst level. The storage

required for this level is therefore
n(n + 1)

2
:

We no longer have to consider any triple that contains a 1 in it. Setting the �rst index

to 2 and again using [2; b; c] = [2; c; b] the storage required is

n(n+ 1)

2
� 1 =

n(n+ 1)

2
� 2(2 � 1)

2

Now setting the �rst level to i and noticing that we now do not consider any triple

containing a number less than i the storage for level i then becomes

n(n+ 1)

2
� (i� 1)i

2
:

Where the
(i� 1)i

2 factor accounts for those triples that contain a value less than i. The

total required memory is the sum

Storage =

"
nX
i=1

n(n + 1)

2
� (i� 1)(i)

2

#

Using the identities

nX
i=1

i =
n(n+ 1)

2
nX
i=1

i2 =
n(n+ 1)(2n + 1)

6

we have

Storage =

"
nX
i=1

n(n+ 1)

2
� (i� 1)(i)

2

#

=
n2(n + 1)

2
� 1

2

"
n(n+ 1)(2n + 1)

6
� n(n+ 1)

2

#
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=
6n2(n+ 1)� n(n + 1)(2n+ 1) + 3n(n + 1)

12

=
n(n+ 1) [6n � 2n � 1 + 3]

12

=
n(n+ 1)(4n + 2)

12

=
n(n+ 1)(2n + 1)

6
(A.14)

The second method is a little bit more e�cient in its memory usage. However, this

e�ciency is achieved at an increased computation cost. When we examine equation A.12

we notice that the basis integrals can be computed independently in the variables u; v; w,

moreover because these integrals will be identical for each of u; v; and w. We need only

store one table of integrals of the form.




B
a
i
����� a 2 [0; 2
)

=
Z a+1

2


u= a

2


Bi(u)du (A.15)

Using these variables the computation of



C ijk then becomes.




C
mno
ijk =

2

�1X
a=0

2

�1X
b=0

2

�1X
c=0

T (2
m+ a; 2
n+ b; 2
o+ c)



B
a
i




B
b
j




B
c
k (A.16)

Negative levels for sample and hold

In many situations the required NIL map entry will be smaller than one of the voxels of

data. Since we are using the sample and hold �lter it is a simple matter to use negative

levels for the NIL map. This is accomplished by noticing that the value of the texture

over any of these negative NIL map entries is the same as that of the texture over the

parent NIL map entry at level 0. Thus if we need to use one of these negative level NIL

map entries we simply scale the value of the parent NIL map entry by the quantity.

�


C
mno
ijk = parent(

�


C
mno
ijk ) (A.17)
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A-1.2 Trilinear interpolation

When the reconstruction �lter is a linear interpolation �lter we can write the value of

the texture

T (m+ t) = (1� t)T (m) + tT (m+ 1) (A.18)

Using the above in equation A.5 we get.

0

Cm
i =

Z
1

0

T (m+ t)Bi(t)dt

=
Z

1

0

((1� t)T (m) + tT (m+ 1))Bi(t)Bi(t)dt (A.19)

This integral can be separated.

0

Cm
i =

�
T (m)

Z
1

0

Bi(t)� T (m)
Z

1

0

tBi(t) + T (m+ 1)
Z

1

0

tBi(t)dt
�

Noticing that the integrals
R
1

0
Bi(t)dt and

R
1

0
tB(t)dt are independent of the sampled data,

we de�ne the quantities.

Bi =
Z

1

0

Bi(t)dt (A.20)

and
tBi =

Z
1

0

tBi(t)dt (A.21)

Extending this to �t into the NIL map scheme these quantities can be de�ned for arbitrary

levels of 
.




B
a
i =

Z a+1

2


t= a

2


Bi(t)dt

t



B
a
i =

Z a+1

2


t= a

2


(2
t� a)Bi(t)dt (A.22)

So that the computation of Cm
i becomes




C
m
i =

2

�1X
a=0

�
T (2
m+ a)




B
a
i � T (2
m+ a)t




B
a
i + T (2
m+ a+ 1)t




B
a

i

�
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A-1.3 Three dimensions

For a given texture T sampled on a grid we can express the reconstructed signal T as a

weighted sum of the eight corners of the voxel.

T (m+ u; n+ v; o+ w) = (1 �w)[(1 � v)[(1� u)T (m;n; o) + uT (m+ 1; n; o)]

+v[(1� u)T (m;n+ 1; o) + uT (m+ 1; n+ 1; o)]]

+w[(1� v)[(1� u)T (m;n; o+ 1) + uT (m+ 1; n; o + 1)

+v[(1� u)T (m;n+ 1; o + 1) + uT (m+ 1; n+ 1; o + 1)]]

Or expanded

T (m+ u; n+ v; o+ w) =

T (m;n; o) + uT (m+ 1; n; o) + vT (m;n+ 1; o) + wT (m;n; o+ 1)

�uT (m;n; o)� vT (m;n; o)� wT (m;n; o)� uwT (m;n; o+ 1)

�uwT (m+ 1; n; o)� vwT (m;n; o+ 1)� vwT (m;n+ 1; o) � uvT (m+ 1; n; o)

�uvT (m;n+ 1; o) + vwT (m;n; o) + uvT (m;n; o) + uwT (m;n; o)

+uvT (m+ 1; n+ 1; o) + vwT (m;n+ 1; o+ 1) + uwT (m+ 1; n; o + 1)

+uvwT (m+ 1; n; o) + uvwT (m;n+ 1; o) + uvwT (m;n; o+ 1)

�uvwT (m+ 1; n+ 1; o) � uvwT (m+ 1; n; o + 1)� uvwT (m;n+ 1; o+ 1)

�uvwT (m;n; o) + uvwT (m+ 1; n+ 1; o + 1)

The calculation of Cmno
ijk then becomes

Cmno
ijk =

Z
1

0

Z
1

0

Z
1

0

T (m;n; o)Bi(u)Bj(v)Bk(w)dudvdw

+
Z

1

0

Z
1

0

Z
1

0

uT (m+ 1; n; o)Bi(u)Bj(v)Bk(w)dudvdw

+
Z

1

0

Z
1

0

Z
1

0

vT (m;n+ 1; o)Bi(u)Bj(v)Bk(w)dudvdw
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+
Z

1

0

Z
1

0

Z
1

0

wT (m;n; o+ 1)Bi(u)Bj(v)Bk(w)dudvdw

�
Z

1

0

Z
1

0

Z
1

0

uT (m;n; o)Bi(u)Bj(v)Bk(w)dudvdw

�
Z

1

0

Z
1

0

Z
1

0

vT (m;n; o)Bi(u)Bj(v)Bk(w)dudvdw

�
Z

1

0

Z
1

0

Z
1

0

wT (m;n; o)Bi(u)Bj(v)Bk(w)dudvdw

�
Z

1

0

Z
1

0

Z
1

0

uwT (m;n; o+ 1)Bi(u)Bj(v)Bk(w)dudvdw

�
Z

1

0

Z
1

0

Z
1

0

uwT (m+ 1; n; o)Bi(u)Bj(v)Bk(w)dudvdw

�
Z

1

0

Z
1

0

Z
1

0

vwT (m;n; o+ 1)Bi(u)Bj(v)Bk(w)dudvdw

�
Z

1

0

Z
1

0

Z
1

0

vwT (m;n+ 1; o)Bi(u)Bj(v)Bk(w)dudvdw

�
Z

1

0

Z
1

0

Z
1

0

uvT (m+ 1; n; o)Bi(u)Bj(v)Bk(w)dudvdw

�
Z

1

0

Z
1

0

Z
1

0

uvT (m;n+ 1; o)Bi(u)Bj(v)Bk(w)dudvdw

+
Z

1

0

Z
1

0

Z
1

0

vwT (m;n; o)Bi(u)Bj(v)Bk(w)dudvdw

+
Z

1

0

Z
1

0

Z
1

0

uvT (m;n; o)Bi(u)Bj(v)Bk(w)dudvdw

+
Z

1

0

Z
1

0

Z
1

0

uwT (m;n; o)Bi(u)Bj(v)Bk(w)dudvdw

+
Z

1

0

Z
1

0

Z
1

0

uvT (m+ 1; n+ 1; o)Bi(u)Bj(v)Bk(w)dudvdw

+
Z

1

0

Z
1

0

Z
1

0

vwT (m;n+ 1; o + 1)Bi(u)Bj(v)Bk(w)dudvdw

+
Z

1

0

Z
1

0

Z
1

0

uwT (m+ 1; n; o + 1)Bi(u)Bj(v)Bk(w)dudvdw

+
Z

1

0

Z
1

0

Z
1

0

uvwT (m+ 1; n; o)Bi(u)Bj(v)Bk(w)dudvdw

+
Z

1

0

Z
1

0

Z
1

0

uvwT (m;n+ 1; o)Bi(u)Bj(v)Bk(w)dudvdw

+
Z

1

0

Z
1

0

Z
1

0

uvwT (m;n; o+ 1)Bi(u)Bj(v)Bk(w)dudvdw

�
Z

1

0

Z
1

0

Z
1

0

uvwT (m+ 1; n+ 1; o)Bi(u)Bj(v)Bk(w)dudvdw
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�
Z

1

0

Z
1

0

Z
1

0

uvwT (m+ 1; n; o+ 1)Bi(u)Bj(v)Bk(w)dudvdw

�
Z

1

0

Z
1

0

Z
1

0

uvwT (m;n+ 1; o+ 1)Bi(u)Bj(v)Bk(w)dudvdw

�
Z

1

0

Z
1

0

Z
1

0

uvwT (m;n; o)Bi(u)Bj(v)Bk(w)dudvdw

+
Z

1

0

Z
1

0

Z
1

0

uvwT (m+ 1; n+ 1; o + 1)Bi(u)Bj(v)Bk(w)dudvdw

De�ning some short hand notations

Bijk =
Z

1

0

Z
1

0

Z
1

0

Bi(u)Bj(v)Bk(w)dudvdw

uBijk =
Z

1

0

Z
1

0

Z
1

0

uBi(u)Bj(v)Bk(w)dudvdw

vBijk =
Z

1

0

Z
1

0

Z
1

0

vBi(u)Bj(v)Bk(w)dudvdw

wBijk =
Z

1

0

Z
1

0

Z
1

0

wBi(u)Bj(v)Bk(w)dudvdw

uvBijk =
Z

1

0

Z
1

0

Z
1

0

uvBi(u)Bj(v)Bk(w)dudvdw

uwBijk =
Z

1

0

Z
1

0

Z
1

0

uwBi(u)Bj(v)Bk(w)dudvdw

vwBijk =
Z

1

0

Z
1

0

Z
1

0

vwBi(u)Bj(v)Bk(w)dudvdw

uvwBijk =
Z

1

0

Z
1

0

Z
1

0

uvwBi(u)Bj(v)Bk(w)dudvdw

and because the texture values are constant over the integrals we have

Cmno
ijk =

T (m;n; o)Bijk + T (m+ 1; n; o)uBijk + T (m;n+ 1; o)vBijk

+T (m;n; o+ 1)wBijk � T (m;n; o)uBijk � T (m;n; o)vBijk

�T (m;n; o)wBijk � T (m;n; o+ 1)uwBijk � T (m+ 1; n; o)uwBijk

�T (m;n; o+ 1)vwBijk � T (m;n+ 1; o)vwBijk � T (m+ 1; n; o)uvBijk

�T (m;n+ 1; o)uvBijk + T (m;n; o)vwBijk + T (m;n; o)uvBijk

+T (m;n; o)uwBijk + T (m+ 1; n+ 1; o)uvBijk + T (m;n+ 1; o + 1)vwBijk

+T (m+ 1; n; o+ 1)uwBijk + T (m+ 1; n; o)uvwBijk + T (m;n+ 1; o)uvwBijk

148



A{NIL INNARDS

+T (m;n; o+ 1)uvwBijk � T (m+ 1; n+ 1; o)uvwBijk � T (m+ 1; n; o + 1)uvwBijk

�T (m;n+ 1; o + 1)uvwBijk � T (m;n; o)uvwBijk

+T (m+ 1; n+ 1; o + 1)uvwBijk (A.23)

It is simple to show that

uBijk = vBjik =
wBkij

uvBijk = uwBikj =
vwBkij (A.24)

Using these identities equation A.23 becomes.

Cmno
ijk =

T (m;n; o)Bijk + T (m+ 1; n; o)uBijk + T (m;n+ 1; o)uBjik

+T (m;n; o+ 1)uBkij � T (m;n; o)uBijk � T (m;n; o)uBjik

�T (m;n; o)uBkij � T (m;n; o+ 1)uvBikj � T (m+ 1; n; o)uvBikj

�T (m;n; o+ 1)uvBkij � T (m;n+ 1; o)uvBkij � T (m+ 1; n; o)uvBijk

�T (m;n+ 1; o)uvBijk + T (m;n; o)uvBkij + T (m;n; o)uvBijk

+T (m;n; o)uvBikj + T (m+ 1; n+ 1; o)uvBijk + T (m;n+ 1; o + 1)uvBkij

+T (m+ 1; n; o+ 1)uvBikj + T (m+ 1; n; o)uvwBijk + T (m;n+ 1; o)uvwBijk

+T (m;n; o+ 1)uvwBijk � T (m+ 1; n+ 1; o)uvwBijk � T (m+ 1; n; o + 1)uvwBijk

�T (m;n+ 1; o + 1)uvwBijk � T (m;n; o)uvwBijk

+T (m+ 1; n+ 1; o + 1)uvwBijk (A.25)

Rearranging yields

Cmno
ijk = T (m;n; o) [Bijk � uBijk � uBjik � uBkji +

uvBkij +
uvBijk +

uvBikj ]

+T (m+ 1; n; o) [uBijk � uvBikj � uvBijk +
uvwBijk]

+T (m;n+ 1; o) [uBjik � uvBkij � uvBijk +
uvwBijk]

+T (m;n; o+ 1) [uBkij � uvBikj � uvBkij +
uvwBijk]

+T (m+ 1; n+ 1; o) [uvBijk � uvwBijk]

+T (m+ 1; n; o+ 1) [uvB
ikj � uvwBijk]

+T (m;n+ 1; o+ 1) [uvBkij � uvwBijk]

+T (m+ 1; n+ 1; o + 1) [uvwBijk] (A.26)
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So de�ning

000Bijk = [Bijk � uBijk � uBjik � uBkji +
uvBkij +

uvBijk +
uvBikj]

100Bijk = [uBijk � uvBikj � uvBijk +
uvwBijk]

010Bijk = [uBjik � uvBkij � uvBijk +
uvwBijk]

001Bijk = [uBkij � uvBikj � uvBkij +
uvwBijk]

110Bijk = [uvBijk � uvwBijk]
101Bijk = [uvBikj � uvwBijk]
011Bijk = [uvBkij � uvwBijk]
111Bijk = [uvwBijk] (A.27)

The computation of Cmno
ijk becomes

Cmno
ijk =

1X
x=0

1X
y=0

1X
z=0

xyzBijkT (m+ x; n+ y; o+ z) (A.28)

These integrals uvwBijk can be precomputed. In the case of sample and hold we found

that computing the quantities



B abc
ijk reduced the precomputation cost somewhat because

the integrals of the basis functions were not being evaluated more than once. The memory

cost associated with this was equivalent to the bottom most level of the NIL map. For

tri-linear interpolation the memory cost for the precomputed integrals is going to be eight

times that of the bottom most level of the NIL map so we evaluated the higher levels of

the NIL maps using the following de�nition.




C
mno
ijk =

2
�1X
a=0

2
�1X
b=0

2
�1X
c=0

Z a+1

2


u= a

2


Z b+1

2


v= b

2


Z c+1

2


w= c

2


T (2
m+ a; 2
n+ b; 2
o + c)

Bi(u)Bj(v)Bk(w)dudvdw (A.29)

A-1.4 Negative levels for tri-linear interpolation

The negative levels for the NIL map in this case are computed by using an altered version

of equation A.26. In the following equation T (mp; np; op) refers to the texture value in

the lower corner of the parent cell, and the references to T (mp + x; np + x; op + x) refer

to the interpolated texture value evaluated at (mp + x; np + x; op + x)
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�


C
mno
ijk =

T (mp +
m

2

; np +

n

2

; op +

o

2

) [Bijk � uBijk � uBjik � uBkji +

uvBkij +
uvBijk +

uvBikj]

+T (mp +
m+ 1

2

; np +

n

2

; op +

o

2

) [uBijk � uvBikj � uvBijk +

uvwBijk]

+T (mp +
m

2

; np +

n+ 1

2

; op +

o

2

) [uBjik � uvBkij � uvBijk +

uvwBijk]

+T (mp +
m

2

; np +

n

2

; op +

o + 1

2

) [uBkij � uvBikj � uvBkij +

uvwBijk]

+T (mp +
m+ 1

2

; np +

n+ 1

2

; op +

o+ 1

2

) [uvBijk � uvwBijk]

+T (mp +
m+ 1

2

; np +

n

2

; op +

o+ 1

2

) [uvB

ikj � uvwBijk]

+T (mp +
m

2

; np +

n+ 1

2

; op +

o + 1

2

) [uvBkij � uvwBijk]

+T (mp +
m+ 1

2

; np +

n+ 1

2

; op +

o+ 1

2

) [uvwBijk] (A.30)

Using this de�nition of the negative levels we can compute them on the 
y at the cost

of 8 texture evaluations and the above sum.

A-2 Non symmetric cases

In the preceding discussion we have assumed that the dimensions of the digitized data is

of the form 2p for some integer p. We have also assumed that in the three dimensional

cases xres = yres = zres. In this section we present solutions for these cases. First, we

present a solution to the problem of not having the dimension of the data as an integral

power of 2. Second, we extend this solution to solve the problem of not having three

dimensional data of equal dimensions.

A-2.1 Non integral powers of 2 in one dimension

Since the algorithm that we are using depends on halving the dimensions of the data for

each level of the NIL maps it becomes a problem when we try to use this technique on

data that has been sampled inadequately. One of the solutions is to reconstruct the signal
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and resample it. If we do not wish to do this we must extend the NIL map technique

to handle arbitrarily sized data as e�ciently as possible. The technique proposed here

allows the use of the NIL map technique on such data. We �rst extend the data structure

that we used for storing the NIL map values, by adding a bit value, valid, that indicates

whether the current entry in the NIL map is valid or not.

1

C
1

i

2

C
0

i

0

C 0

i

0

C 1

i

0

C 2

i

0

C 3

i

0

C 4

i

1

C
0

i

Building NIL maps with samples where n 6= 2p

Figure A.24

The construction of the NIL maps now requires a parity check on the size of each

level. If the level is odd we add a NIL map cell and mark it as invalid. The dimension

of the next level is then half of the size of this extended level. Each of the NIL cells on

this level is evaluated unless one (or both) of its children are invalid. If this is the case

then we simply mark this cell as invalid. The parity of this level is then checked and an

additional cell is added if necessary. This process continues until we have constructed a

complete NIL map. Such a NIL map is illustrated in Figure A.24. The NIL map in this

�gure corresponds to a NIL map constructed from �ve initial samples. The lowest level

(
 = 0) has had one NIL cell added to it. The second level (
 = 1) has two invalid cells.

The leftmost invalid cell is invalid because one of its children is invalid. The rightmost

invalid cell is invalid because it was added to ensure that this level had an even number

of cells. The third level has one invalid cell because both of its children are invalid, and

the fourth level has one invalid cell because one of its children is invalid.

The extra storage cost incurred by the above alterations is at most dlog
2
(n)e, because

at each level we can only add one additional cell and there are at most dlog
2
(n)e levels
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in this NIL map.

The process of generating the approximating hierarchy must now be altered slightly.

In the subdivision process that we described earlier we subdivided a NIL cell if there

were more trigger points in it that allowed by the tolerance. The new subdivision process

is similar to this except that when an invalid patch is encountered it is automatically

subdivided regardless of how many trigger points it contains. In this manner we ensure

that the subdivision produces a hierarchy of valid patches. This process will require some

additional subdivisions to be performed.

The upper bound on the number of additional subdivisions is easily derived. Consider

the case where a single trigger point is positioned so that it lies in an invalid NIL cell for

each level of the NIL map except for the lowest level. This trigger point will cause at most

dlog
2
(n)e subdivisions. No other trigger point will cause these subdivisions. This implies

that using the above extension to NIL maps will require at most dlog
2
(n)e additional

subdivisions.

A-2.2 Rectangular three-dimensional textures

In this section we will explore the case of a texture which has dimensions xres = 2px <

yres = 2py � zres = 2pz : We wish to develop a NIL map representation of these textures

such that for some level 
m there is only one entry in the corresponding level of the NIL

map. If we blindly apply the NIL map algorithm we will �nd that at level 
 = px the

number of NIL map entries in the x direction is one but because px < py � pz we have

2py�px NIL map entries in the y and z direction.

We wish to continue building the NIL map until there is 1 NIL map entry in the top

level of the NIL map. This means we must continue building for pz � px levels. This is

simply a matter of keeping track of these special levels. We must however modify the

equations we use for the calculation of the



B abc
ijk ;




C mno
ijk ; and




D mno
ijkl coe�cients. The

calculation of



B abc
ijk , detailed in equation A.12, becomes




B
abc
ijk =

�
1

2(px�min(px;
))

�Z a+1

2


u= a

2


Bi(u)du
�

1

2(py�min(py;
))

�Z b+1

2


v= b

2


Bj(v)dv
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�
1

2(pz�min(py;
))

�Z c+1

2


w= c

2


Bk(w)dw (A.31)

a 2 [0; 2min(px;
)); b 2 [0; 2min(py;
)); c 2 [0; 2min(pz;
))

Equation A.13 then becomes




C
mno
ijk =

2min(px;
)�1X
a=0

2
min(py;
)�1X

b=0

2min(pz;
)�1X
c=0

T (2min(px;
)m+ a; 2min(py;
)n+ b; 2min(pz;
)o + c)



B
abc
ijk

(A.32)

similarly the computation of



D mno
ijkl becomes




D
mno
ijkl =

2
min(px;
)�1X

a=0

2
min(py;
)�1X

b=0

2
min(pz;
)�1X

c=0

Bl(T (2
min(px;
)m+ a; 2min(py;
)n + b; 2min(pz;
)o+ c))




B
abc
ijk (A.33)
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Appendix B

High level view of NIL code

In this appendix we present the listing of the loop from our NIL map implementation

for volume rendering. Much of the book-keeping code has been removed to present a

cleaner view of the code. This code listing shows the inner-loops which compute the

pixel intensities.

=*

* For each pixel on the screen calculate the ray which it

* generates. Use this ray to lay the trigger points and=or �nd

* the closest density

*=

for (pix j = bottomY; pix j <= topY; pix j++) for

f
for (pix i = leftX; pix i<= rightX; pix i++) =* for I *=

f 10

ray = GenerateRay ((
oat)pix i,

(
oat)pix j, &up, &right);

=*

* Get the entry and exit points for the volume Use the

* voxel traversal stu� for going through the data and

* collect the 4 parameters.

*=

hits = get entry exit points(ray,&v1,&v2, &t1, &t2);

if (hits == 1) 20

f
hits = get entry exit points(ray,&v1,&v2, &t1, &t2);

hits = 0;

g
=* Hit detected *=

if (hits != 0)
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f
trigger points = lay down the sample points(v1,v2,

t1,t2,up,right,ray,selected trigger points, 30

slices required,samples per slice,length);

box = �nd the box which encloses the points(

selected trigger points,trigger points);

number of patches = �nd the required patches(

selected patches,box,

selected trigger points,trigger points,

max gamma);

=* 40

* First �nd the control weights of the control points

* for all the patches. Use the sum of their weights to

* normalize the display

*=

for(i=0; i< number of patches; i++)

f
scale += �nd the weight of the control points(

&selected patches[i],max gamma,x,y,

pix i,pix j,volume bottom, volume dx,volume dy,50

volume dz,center);

g

for(i=0; i< number of patches; i++)

f
patch total = �nd the integral under the patch(

&selected patches[i]) ;

total += patch total;

g
60

total = total=scale;

pixel=UNIT TO CHAR(total red);

(*current frame bu�er�>setpixel)(pix i,pix j,pixel);

g =* Hits != 0*=
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g =* for I *=

g =* for J *=

70
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Motion blur �lter

C code

The addition of motion blur to the texture map �ltering code required the addition of

the following code.

=*

* Return the value of the �lter at point.

* input:

* point Vector containing the control point.

* Box center length Radial distance of centre of �lter.

* Box width for rotate Width of �lter.

*

*=

double Filter(vector point, double Box center length, double Box width for rotate)

f 10

double l = sqrt(point.x*point.x + point.y*point.y);

double Q = (Box center length �l)*(Box center length �l);
return(exp(�Q=Box width for rotate));

g

=*

* Place points around the arc near which the �lter is de�ned.

* input:

* cB Texture coordinate for centre of pixel projection.

* a Long axis of projected ellipse 20

* points[] Array of trigger points.

* nil samples User parameter indicating how many samples.

* rotation Angle of rotation in radians

*=

int Lay Down Rotate Points(vector cB, double a, vector points[],

int nil samples,double rotation)

f
double rot delta=rotation=(double)nil samples;

double angle;
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double start angle; 30

double tmp length;

double o�set = rot delta=nil samples;

int number of points;

start angle = atan2(cB.y,cB.x);

Box center length = sqrt(cB.y*cB.y+cB.x*cB.x);

Box width for rotate = a;

for(i=0; i< nil samples; i++)

f
angle = start angle + i*rot delta; 40

for(j=0; j< nil samples; j++)

f
double tmp length = Box center length �a

+ 2.0*a=nil samples *j;

X.x = tmp length * cos(angle+j*o�set);

X.y = tmp length * sin(angle+j*o�set);

X.z = �0.01;
points[number of points] = X;

number of points++; 50

X.z = 0.0;

points[number of points] = X;

number of points++;

X.z = 0.01;

points[number of points] = X;

number of points++;

g
g

return(number of points);

g 60
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adaptive quadrature, 77

aliased signal, 9

aliasing, 28, 33, 72, 73

anisotropic re
ection, 25

anisotropy, 31, 69

anti-aliasing, 11, 33, 75, 111, 112, 114

architects, 25

automata, 34

band-limited noise, 73

Bartlett �lter, (See �lter, Bartlett)

basis set, 59, 65

blurring, 31, 69

box �lter, 41

CAT, 2

Catmull-Rom, 30

clamping, 17, 38, 41, 89, 111, 112

implementation, 41

technique evaluation, 72

clouds, 33

computer graphics pipeline, 3

conformal mapping, 30

convolution, 11, 21, 32, 37, 131

cosine textures, 61, 62, 75

DC, 64

direct evaluation, 43, 71, 89, 111, 114

implementation, 43

technique evaluation, 75

discrete texture, 70, 86, 132

discrete volumetric data, 19

de�nition, 19

display �lters, 16, 113

display model, 36

DOG, (See �lter, di�erence of Gaussians)

ellipse, 47

ellipsoid, 49, 83

EWA �lters, 23, 25, 30, 32, 38, 41, 46,

71, 89, 111, 112, 114

de�nition, 23

implementation, 46

technique evaluation, 79

�delity measures, 70

�lter, 21

surface-detection, 103

anti-aliasing, 4, 11, 14

approximating, 27

approximating hierarchy, 107

approximating techniques, 14

approximations, 5

Bartlett, 11, 28, 77

box, 29, 70, 71, 76, 77

bump maps, 13

clamping, 34

code development, 109

constant cost, 12

convolution, 27

de�nition, 21

depth of �eld, 11

design, 16, 27

di�erence of Gaussians, 104

direct evaluation, 34

DOG, 104
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edge detection, 31

evaluation, 16, 111

evaluation cost, 12

EWA, (See EWA �lters)

Gaussian, 11, 23, 30, 31, 47, 70, 76,

77, 79, 83, 95, 101, 108, 112

implementation, 93

motion-blur, 11

NIL map approximation, 8, 100

NIL maps, (See NIL maps)

optical 
ow, 31

prototyping, 93

pyramid, 28

rapid-prototyping, 107

reconstruction, 9, 14, 36

semantics, 14

sinc, 29

space invariant, 21

de�nition, 21

space-variant, 27

surface-detection, 93

three-dimensional, 14

two-dimensional, 26

visual properties, 31

�lters

space variant, 26

Fourier, 9, 27, 29, 35, 42, 72, 73, 75, 112

frame bu�er, 19

de�nition, 19

fur, 33

Gaussian �lter, (See �lter, Gaussian)

geology, 6

image �delity, 69

intarsia, 26

integral, 134

iso-surface, 36, 104

Lagrange polynomials, 63

marble, 77

marching cubes, 104

mean square error, 70

medical imaging, 6

MIP map, 22, 60

de�nition, 22

motion blur, 87, 151

MRI, 2

MSE, 70, 75

NIL maps, 8, 23, 25, 30, 32, 38, 41, 50,

71, 83, 89, 111, 113, 114

High level view of code, 147

Motion blur code, 151

de�nition, 23

implementation, 50

implementation details, 131

technique evaluation, 83

volume rendering, 95

noise, 32, 33, 73

band-limited, 33

normalization, 57

numerical integration, (See quadrature)

Nyquist frequency, 9

occlusion, 3, 7, 27

OMNIMAXTM, 46

optimal, 79

parametrization, 12, 26

perspective, 10, 27

pixel, 20, 27, 43, 70

de�nition, 20

pixel-based, 2, 7

point sample, 8

procedural, 3

procedural texture, 35, 60, 70, 73

procedural volumetric data, 19

de�nition, 19

prototyping, 112

pyramidal, 12, 50

pyramidal data structure, 22

162



INDEX

de�nition, 22

quadrature, 34, 43, 46, 75, 114

Gaussian, 46, 76, 78, 79, 112

Simpson's, 34, 46, 76, 78, 114

radially symmetric �lters, 47

ray marching, 22, 33, 34, 113

de�nition, 22

ray tracing, 21

de�nition, 21

reconstruction, 69

reconstruction �lter, 14, 112, 137

ringing, 31, 69

sample and hold, 35, 132

sampling, 26, 82

signal to noise ratio, 70

singularity, 26

sleep apnea, 94

SNR, 70, 75

solid textures, 1, 38

splatting, 7

step function, 74

super-sampling, 79

surface extraction, 35

symmetric �lters, 79

texel, 11, 20, 47

de�nition, 20

texture, 19

colour, 14

de�nition, 19

reaction di�usion, 32

solid, 12, 33

three-dimensional, 6, 12, 25

texture mapping, 111

texture models, 31

three-dimensional texture, 33

thresholding, 34

transfer functions, 8, 23, 38, 59

de�nition, 23

trigger point, 104

trigger points, 52, 66, 86, 108

trilinear interpolation, 137

turbulence, 73

two-dimensional texture mapping, 26

veneering, 26

visual characteristics, 31

volume rendering, 2, 25, 35, 112

direct display, 2

surface extraction, 2

volumetric data, 19, 35, 36, 111, 114

de�nition, 19

voxel, 20, 70

de�nition, 20

voxel splatting, 7, 22

de�nition, 22

voxel-based, 3, 7

white noise, 32
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