
PREDICTIVE RENDERING

By

Paul Fearing

B. Sc. (Computer Science) Queen's University

a thesis submitted in partial fulfillment of

the requirements for the degree of

Master of Science

in

the faculty of graduate studies

computer science

We accept this thesis as conforming

to the required standard

: :

: :

: :

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

j a n u a r y 1996

c
 Paul Fearing, 1996

In presenting this thesis in partial ful�lment of the requirements for an advanced degree at the

University of British Columbia, I agree that the Library shall make it freely available for refer-

ence and study. I further agree that permission for extensive copying of this thesis for scholarly

purposes may be granted by the head of my department or by his or her representatives. It

is understood that copying or publication of this thesis for �nancial gain shall not be allowed

without my written permission.

Computer Science

The University of British Columbia

201-2366 Main Mall

Vancouver, Canada

V6T 1Z4

Date:

Abstract

Computer graphics has always been concerned with increasing rendering speed. This thesis

introduces a new method to reduce the cost of the rendering pipeline. It uses fast, simple

transformations to predict scene motion some small number of frames in the future. Scene

primitives are grouped into nodes in a \plan tree" according to the predicted future motion

of their projected screen coordinates. Di�erent nodes in the tree are rendered at di�erent

frame rates. Nodes containing slowly moving or static primitives can be rendered many fewer

times than nodes containing quickly moving primitives. The rendered scene subsets are depth

composited together to form a �nal frame.

Predictive rendering draws graphics primitives only when they move. This contrasts with

usual rendering methods, where all primitives (moving or not) are drawn each and every frame.

Depending on the amount of temporal coherence between frames, predictive rendering reduces

the number of primitives sent to the graphics pipeline, allowing dramatic improvements in

overall rendering speeds.

In scenes with large amounts of temporal coherence, our implementation achieved speedups

ranging between 270% and 1; 850% of the normal rendering times. Analysis on several test

scenes (varying in polygonal complexity) showed worst-case prediction costs that ranged be-

tween 0:05% and 13:5% of the total rendering time. Actual implementation showed that worst

case costs varied between < 1% to 13%, depending on the scene. These costs indicate the

penalty that must be paid in scenes with absolutely no temporal coherence.

ii

Table of Contents

Abstract ii

List of Tables vii

List of Figures ix

Acknowledgments x

1 Introduction 1

2 Previous Work 4

2.1 Scan-Conversion Methods . 5

2.1.1 Compositing . 5

2.1.2 Overlay Bu�ers . 7

2.1.3 Binary Space Partitioning Trees and Precursors 8

2.1.4 Visibility Constraints . 9

2.1.5 Hierarchical Visibility . 11

2.2 Ray Tracing Methods . 14

2.2.1 Flood Fill and Reprojection . 15

2.2.2 4D Bounding Volumes . 15

2.2.3 Adaptive Temporal Coherence . 16

2.2.4 Spatio-Temporal Coherence . 16

2.2.5 Voxel Trees . 17

2.2.6 Frameless Rendering . 17

iii

3 Predictive Rendering 18

3.1 Algorithm . 19

3.1.1 Using the World Database . 20

3.1.2 Prediction Phase . 25

3.1.3 Clipping . 28

3.1.4 The Plan Tree . 30

3.1.5 The Rendering Phase . 34

3.1.6 Compositing . 34

3.2 Algorithm Considerations . 36

3.2.1 Extra Framebu�ers . 36

3.2.2 Prediction Range . 37

3.2.3 Motion Thresholds . 38

3.2.4 Using an Accumulation Bu�er . 39

3.2.5 Prediction Accuracy . 39

3.2.6 Secondary E�ects . 40

3.2.7 Related Hardware . 42

3.3 Variations on Predictive Rendering . 42

3.3.1 Predictive Rendering with On-the-Fly Depth Compositing 42

3.3.2 Predictive Rendering with Subdivision . 43

3.3.3 One-Pass Predictive Rendering . 44

4 Cost Analysis 45

4.1 Single Processor System . 48

4.1.1 Transferring Data to the Pipeline . 48

4.1.2 Vertex Transformation . 51

4.1.3 Normal Transformation . 54

4.1.4 Lighting . 55

4.1.5 Viewing Transformation . 58

iv

4.1.6 Clipping . 59

4.1.7 Projection . 60

4.1.8 Viewport Mapping . 60

4.1.9 Transferring Data from the Pipeline . 61

4.1.10 Depth Compositing . 62

4.1.11 Rasterization . 62

4.1.12 Single Processor Totals . 63

4.1.13 Analysis of Simpli�cations and Omissions 64

4.2 Multiprocessor System . 65

5 Implementation and Results 70

5.1 Design Decisions . 70

5.1.1 Organization of Scratch Framebu�ers . 70

5.1.2 Visibility of Scratch Framebu�ers . 71

5.1.3 Feedback . 72

5.1.4 Depth Compositing . 73

5.1.5 Selection of N . 74

5.2 Experimental Results . 74

5.2.1 Testing the Analysis Scenarios . 75

5.2.2 Testing a Scene with Changing Motion Thresholds 81

5.3 Future Improvements . 83

6 Conclusions 85

Appendices 87

A Experimental Conditions 87

A.1 Analysis Scenarios . 87

A.2 Delta Scenarios . 87

v

B Table of Variables 90

Bibliography 92

Glossary 95

vi

List of Tables

3.1 Example Assignment of Prediction Primitives . 24

4.2 Scenario Polygon and Vertex Count . 47

4.3 Rendering - Transferring to the Pipeline . 50

4.4 Prediction - Transferring to the Pipeline . 51

4.5 Rendering - Model Matrix Building . 52

4.6 Prediction - Model Matrix Building . 53

4.7 Rendering - Vertex Transformation . 53

4.8 Prediction - Vertex Transformation . 54

4.9 Rendering - Normal Transformation . 54

4.10 Rendering - Lighting (1 light) . 58

4.11 Rendering - Lighting (4 lights) . 58

4.12 Rendering - 2nd Phase Vertex Transformation . 59

4.13 Rendering - Clipping Comparisons . 59

4.14 Rendering - Viewplane Projection . 60

4.15 Prediction - Viewplane Projection . 60

4.16 Rendering - Viewport Mapping . 61

4.17 Prediction - Comparing Against Past Vertices . 61

4.18 Random Scenario - Rendering vs. Prediction . 64

4.19 Blocks Scenario - Rendering vs. Prediction . 65

4.20 Particles Scenario - Rendering vs. Prediction . 66

4.21 Molecules Scenario - Rendering vs. Prediction . 67

4.22 Multiprocessor Random Scenario - Rendering vs. Prediction 67

vii

4.23 Multiprocessor Molecules Scenario - Rendering vs. Prediction 68

5.24 Test Results - Random Scenario Raw Times . 75

5.25 Test Results - Random Scenario Speedups . 76

5.26 Test Results - Percentage of Random Scenario Polygons Skipped 77

5.27 Test Results - Random Scenario Speedups (50,000 Polygons) 77

5.28 Test Results - Blocks Scenario Speedups . 78

5.29 Test Results - Particles Scenario Speedups . 79

5.30 Test Results - Comparision of Particles Scenario Maximal Speedups 80

5.31 Test Results - Molecules Scenario Speedups . 81

5.32 Test Results - Blocks Scenario - delta = 0.01 . 81

5.33 Test Results - Blocks Scenario - delta = 0.5 . 82

5.34 Test Results - Blocks Scenario - delta = 1.0 . 82

A.35 Analysis Scenario Experimental Motion Properties 88

A.36 Delta Scenario Experimental Motion Properties 89

B.37 Description of Variables . 91

viii

List of Figures

2.1 Example of a Complex Background and Simple Foreground 6

2.2 (a) Faces in a cluster. (b) Priorities of visible faces. Scanned from Foley 90 . . . 9

2.3 Visibility Outline of a Polyhedra, scanned from Hubschman 81 10

2.4 Viewing Frustrum and Octree Cubes, scanned from Greene 93 12

3.1 Three Types of Prediction Primitives . 21

3.2 Prediction Pyramid with too short an Axis . 22

3.3 Examples of Incorrect Prediction Primitive Clipping 29

3.4 Assigning Prediction Primitives to the Plan Tree 31

3.5 Comparison of k-trees: k = 2, 4 with N = 16 . 32

3.6 Ine�cient Allocation to a Binary Plan Tree . 33

3.7 Determining When Next to Draw a Prediction Primitive 35

4.1 Analysis Scenario Components . 48

4.2 Single Processor Graphics Pipeline . 49

4.3 SGI GTX System Layout, adapted from Akeley 88 and Foley 90 69

5.1 Random Scenario . 76

5.2 Blocks Scenario . 78

5.3 Particles Scenario . 79

5.4 Molecules Scenario . 80

ix

Acknowledgments

\This material is based upon work supported under a National Science Foundation Graduate

Research Fellowship. Any opinions, �ndings, conclusions or recommendations expressed in this

publication are those of the author, and do not necessarily re
ect the views of the National

Science Foundation."

The following people and groups should be acknowledged for their help in the direction

and development of this thesis and the research behind it. Their contribution was greatly

appreciated.

� Funding support was provided by the US National Science Foundation (NSF), National

Science and Engineering Research Council (NSERC), the BC Advanced Systems Institute

(ASI), the University of British Columbia (UBC), and the Imager Computer Graphics

Laboratory.

� Technical support was provided by my supervisor, Alain Fournier, my second faculty

reader Kellogg Booth, my student reader Scott Andrews, and assorted Imager lab mem-

bers.

� Moral and emotional support was provided by my parents, and those Varsity Outdoors

Club members that made sure that I didn't get my tan from a computer monitor.

� Physical support was mainly provided by Maxwell House.

� And �nally, spiritual support was provided by the glorious physical beauty of Vancouver,

and the sunsets and beaches that made most of these ideas possible.

Thanks.

x

Chapter 1

Introduction

\Where shall I begin, please your Majesty?" he asked.

\Begin at the beginning," the King said, gravely, \and go on until you come to the end:

then stop."

- Lewis Carroll

Computer graphics has an important and growing impact on many areas of the modern

world. It is used in thousands of diverse applications, from visualization and design, to education

and entertainment. Common among the myriad of di�erent uses for computer graphics is

a desire for rendering speed. Faster rendering gives smoother animations and allow scene

databases with even greater complexity. It reduces \thumb-twiddling", freeing the user to

spend less time waiting and more time working on the next task.

Computer manufacturers have responded to the \need for speed" with an ever-improving

array of machines designed speci�cally for graphics. These computers make use of specialized

hardware, multi-processing and pipelining to increase rendering throughput. Rendering times

are reduced primarily by doing the same work, but at a faster rate than before.

One can also improve rendering times by maintaining the rate of work, but reducing the

overall quantity. Along the graphics pipeline, there are several opportunities for the hardware to

discard or ignore primitives that are deemed non-essential. Reducing the number of primitives

the system needs to render at any particular moment improves the overall graphics speed. This

becomes especially important as individual primitives have more and more realistic (and costly

to render) textures, lighting, and antialiasing.

Unfortunately, the algorithms used inside the graphics pipeline have little or no global

information about the complete scene model. This prevents the pipeline hardware and software

from making optimizations anywhere beyond the most local level. With only local knowledge,

1

Chapter 1: Introduction 2

we can only make local optimizations. For example, in a model consisting of many grouped

and related polygons, local optimizations can only exclude and test on a polygon-by-polygon

basis. Global knowledge allows us to simultaneously exclude large numbers of related polygons

over possibly more than one frame. In order to exploit more global optimizations, we must

expand the system's understanding of the complete scene model. This implies software culling

techniques working to preprocess data that eventually is sent to the graphics pipeline.

Software culling methods have great potential, because they are not restricted by limitations

in hardware size or speed. A 20-million polygon database could conceivably be culled to 20

polygons - a million time reduction practically impossible via improvements to the graphics

pipeline hardware or microcode. The hardest part of software culling is (obviously) determining

which polygons are important and which are not. This process is vastly complicated as objects,

lights, and the viewer move over time, changing the relative importance of a scene's components.

The dominant approach so far has been to identify and exploit common or coherent proper-

ties in an image, or even sequences of images. Properties generally vary smoothly across areas

and time. We can use this coherence to reduce the amount of work required to generate a

picture, allowing us to use information about one area to compute the results of other nearby

areas with little or no modi�cation. It might cost less to determine the changes to a previous

result than to compute everything again from scratch.

In this thesis we will introduce a new method that takes advantage of temporal coherence

to render polygons only when they move or change. Static polygons are rendered only once.

Moving polygons are rendered a number of times proportional to their screen motion. Because

slow-moving and static objects only need to be redrawn in a few percent of the total frames,

we can potentially achieve huge speedups in many common animation scenarios. The amount

of speedup depends on the amount of temporal coherence in an animation. The algorithm

produces correctly occluded pictures identical to traditionally rendered images.

In Chapter 2, we provide an overview of the few existing temporal coherence algorithms,

concentrating speci�cally on scan-conversion. Previous work in this area is tentative, at best.

Chapter 1: Introduction 3

We also describe a few ray tracing temporal coherence algorithms for contrast. In Chapter 3,

we introduce the predictive rendering algorithm and describe its requirements, operation, and

other considerations. Chapter 4 contains a theoretical analysis of the computational cost of

predictive rendering. Prediction costs are compared to total work, giving an indication of the

amount of temporal coherence required before speedups are achieved. Chapter 5 describes some

design decisions, special implementation concerns, and experimental proofs of the speedups

made possible by this new algorithm. Chapter 6 summarizes the algorithm and makes some

concluding remarks on its potential. Appendix A provides a list of experimental parameters

used during test. Appendix B lists and describes the variables used in this thesis. Finally, the

glossary provides de�nition of the new terms introduced in the text.

Chapter 2

Previous Work

History must not be written with bias, and both sides must be given, even if there is only

one side.

- John Betjeman

This chapter provides an overview of previous attempts to exploit temporal coherence in

image generation. Temporal coherence takes advantage of consistencies between consecutive

frames. If we do a certain amount of work for one picture, we should not have to do the same

amount of work for another image that di�ers only slightly.

Previous attempts to exploit temporal coherence have mostly been concentrated in ray trac-

ing, mainly because the cost per ray-traced frame is so high. Ray tracing methods generally

take advantage of the independence of individual pixel samples. Although it is useful to exam-

ine the temporal coherence methods used in ray-tracing, we are more interested in temporal

coherence for scan-conversion. Scan-conversion is one of the most popular rendering paradigms,

and is already very heavily supported (via hardware and software library calls) on most serious

specialized graphics systems.

Traditional scan-conversion has always been computationally simple, often fast enough for

time-critical applications. High rendering speeds make potential speedups from temporal co-

herence less critical and thus less researched. But, with the continual improvement of available

graphics features (more lights, more textures, more material properties) the average cost per

scan-converted primitive is quickly rising. This makes it increasingly worthwhile to research

how we can avoid having to deal with a large part of the total primitive database.

We begin by discussing existing methods of temporal coherence for scan-conversion. We

will then move on to touch brie
y upon ray tracing temporal coherence, to give us a further

perspective on the scan-conversion approach. We will ignore radiosity temporal coherence for

4

Chapter 2: Previous Work 5

the purposes of this thesis, because previous work is su�ciently di�erent from scan-conversion

to shed no real insight on our problem.

2.1 Scan-Conversion Methods

Temporal coherence methods for scan-conversion have at once been sparsely studied and ex-

haustively used. Compositing methods have been used in hand-drawn animations as early as

1915 [Halas 59]. Yet, the few fully automatic solutions with real potential for use have only

been proposed in the last few years.

2.1.1 Compositing

In traditional cel-based animation, the artist draws hundreds of sequential frames of a scene.

Moving objects are varied a tiny bit on each frame, giving the illusion of continuous motion

when viewed at fast enough frame rates. Animation artists realized almost immediately that it

was too time consuming to redraw the entire scene for each frame. First, constant components

of scenes had to be redrawn again and again for each and every frame - a signi�cant amount

of extra work. Additionally, the artist was required to exactly duplicate large portions of the

previous frame, including brush stroke texturing, precise coloring e�ects, tiny surface details,

etc. Small variations between frames caused unpleasant
ickering.

To solve these problems, animation artists quickly moved to transparency-based methods.

A scene is separated into layers, and then recomposited during �lming. Separation into layers is

done by hand, and depends on several factors. The amount of object motion is a prime criteria.

The more an object moves, the more e�cient it is to place it on its own layer. The background

often gets at least one layer, to allow a single, detailed drawing. Unfortunately, the scene cannot

be separated totally using only motion as a criteria; it must also be grouped into logical objects

that a human animator can draw. A
uttering background leaf and the upper lip of the prime

character may need to be updated at the same frame rate, but are unrelated enough to give a

human pause when required to draw them as a group. A much more likely grouping is a tree

Chapter 2: Previous Work 6

(with
uttering leaves), and the prime character (with an entire moving mouth). Grouping by

objects helps the animator, but can increase the amount of work needed, as static parts of the

moving group must be redrawn each frame.

Figure 2.1 shows a frame [Halas 90] scanned from Asterix in Britain by Pino van Laam-

sweerde. The simple foreground characters are on a di�erent layer than the complex and

carefully shaded and colored background.

Figure 2.1: Example of a Complex Background and Simple Foreground

This �lm technique has migrated easily to computer graphics. Image parts are rendered

separately and then recomposited, sometimes with the use of a compositing or depth comparison

algorithm such as [Porter 84] or [Du� 85]. This can greatly reduce the amount of work to draw

static, complex backgrounds. However, just as in cel-based animation, computer compositing

requires a great deal of human intervention. Modelled objects must be segregated onto layers

by hand, based upon planned motion. The separation into planes is arti�cial and ine�cient. A

Chapter 2: Previous Work 7

partially occluded, moving object that suddenly stops must be moved by hand into the static

background layer. The layering selection is based upon total scripted knowledge of the future

motion. Because a human is required to decide upon the layering, compositing is almost always

performed at the object level. It is very hard to determine that, given a certain object's motion,

a particular component polygon (potentially one of thousands) does not change between two

consecutive frames. This reduces the area of a picture that we can reuse between frames.

To recap, computer compositing has several major
aws. First, there is too much human

intervention. An ideal compositing system should automatically place primitives on the correct

layers based upon the absolute minimal redraw rates. Secondly, layering should not be based

on objects. An algorithm that can predict correct layer placement for entire objects should also

be able to predict layer placement for object components. Finally, layering should not need an

entire script's worth of advance knowledge about a scene's motion. An ideal compositing system

should separate object parts into layers based only on a small amount of future knowledge.

2.1.2 Overlay Bu�ers

Computer manufacturers have recognized the usefulness of compositing, and have tried to build

in hardware and software support. Some systems support block memory compares, where an

image (with depth values) is composited with another image (also with depth values). Because

the scan-conversion pipeline already involves compositing (submission to the depth bu�er on

a primitive-by-primitive basis), compositing features can draw heavily on the existing system

capabilities.

One particular type of compositing support is an overlay bu�er, designed to allow an ex-

tremely simple version of compositing. Static scene elements are rendered once and \frozen"

into an overlay (underlay) bu�er. Subsequent moving objects are then rendered over or under

the frozen layer. For example, a
ight simulator program might render a complicated instru-

ment panel into the overlay plane. As the scene changes, the program only needs to render the

panel dials and needles to update the controls, without having to redraw the static dial labels.

Chapter 2: Previous Work 8

Like multi-layer compositing, the separation into foreground and background must be done

by a human with knowledge of the scene's expected motion. Usually, this means that objects

do not migrate between the framebu�er and the overlay bu�ers. As well, depth comparisons

are �xed. The overlay bu�er will always obscure anything behind it. This prevents consistent

occlusion between moving and static objects if the relative depths change. Most overlay planes

have a limited number of bits, precluding full RGB images.

2.1.3 Binary Space Partitioning Trees and Precursors

An algorithm developed by Schumacker et al. [Schumacker 69], as described in [Sproull 74],

attempts to determine a depth ordering for a scene that is primarily viewpoint independent.

Central to the algorithm is the idea that a scene can be segmented into \clusters", where a

cluster is a group of faces (polygons) separated by partioning planes. These planes break up

the world space into regions, each potentially containing the viewpoint. The division of the

world space into regions suggests a priority ordering of the clusters within the various regions.

A cluster \A" on one side of a plane can obscure a cluster \B" on another side of the plane,

if cluster \A" is on the same side of the partitioning plane as the eyepoint. Region separation

results in a binary tree, where internal nodes represent the partitioning planes, and the leaves

represent the cluster regions. Each of the leaf nodes contains a priority ordering of all clusters,

where priority ordering is determined as if the viewpoint were contained within that particular

leaf's region. Within a cluster, faces are assigned a priority order that determines the relative

occlusion order, given any viewpoint (as shown in Figure 2.2). Priority orders cannot always

be assigned, nor assigned automatically.

Figure 2.2 shows backfaced polygons removed. To actually render the image, the algorithm

determines the leaf node containing the viewpoint, and draws the clusters. Clusters can be

drawn in order of their priority, where a high priority cluster always obscures a lower priority

cluster. Within a cluster, the highest priority face is drawn before lower priority faces.

Schumacker's initial work lead to Fuchs et al. 's binary space-partioning trees [Fuchs 79],

Chapter 2: Previous Work 9

Figure 2.2: (a) Faces in a cluster. (b) Priorities of visible faces. Scanned from Foley 90

which are a generalization of the cluster ordering process. A BSP tree essentially consists of

polygons that divide the world space into half-planes.

Because these algorithms perform a good deal of a priori work, they both have some ap-

plicability to temporal coherence. Once a BSP tree has been created, the viewpoint can be

moved around without requiring a full depth-order recalculation. This amortizes the initial

set-up work across a sequence of frames. However, BSP-type algorithms are not quite general

enough for our purposes. As soon as a polygon moves, the BSP tree must be readjusted and

recomputed. In a large database, this can be a costly process. Non-planar surfaces are not

supported. Finally, BSP trees do not take advantage of the depth bu�er for visibility computa-

tion. This is a problem on those systems that have invested signi�cant hardware and software

resources to provide fast depth bu�ering (i.e. almost all modern high-end graphics hardware).

2.1.4 Visibility Constraints

Hubschman and Zucker [Hubschman 81] attempted to address scan-conversion temporal co-

herence at a global, algorithmic level. They started by assuming a moving viewpoint circling

around a static world. The world consists only of stationary, closed, convex, non-intersecting

polyhedra. The goal of their work was to identify areas in the picture that changed between

Chapter 2: Previous Work 10

frames, based upon geometric analysis. Two types of constraints were important: changing

self-occlusion of a single polyhedra, and changing occlusion between pairs of polyhedra. For a

small change in the viewing position, one can use object edge properties to determine which

polygons have appeared or disappeared. Partly visible polygons are subdivided into visible and

non-visible areas. As the viewer moves around the scene, the visible polygon list is updated

and sent to the graphics pipeline.

Figure 2.3: Visibility Outline of a Polyhedra, scanned from Hubschman 81

Unfortunately, the initial constraints are far too strict for most applications. Stationary

objects preclude animation, while closed, convex, non-intersecting polyhedra prevent many

interesting types of object modelling. Even worse, this approach cannot by combined with

other types of drawing primitives, preventing a mixed-method solution for the di�erent types

of objects in the world.

In addition to the motion and object constraints, the algorithm is almost too complex to

implement. It requires a signi�cant amount of extra work to determine visibility, including

the projection of edges onto polyhedra. This algorithm also does not use the depth bu�er.

The limited applicability of this algorithm is supported by the lack of subsequent commercial

Chapter 2: Previous Work 11

applications.

2.1.5 Hierarchical Visibility

Greene, Kass and Miller [Greene 93] describe a hierarchical visibility algorithm that uses both

object space and image space coherence, with extensions to allow for temporal coherence.

Object space coherence allows a single object-space visibility computation to determine if a

group of nearby local objects are visible. For example, deciding that a closed box is not visible

in the scene allows one to determine that the contents of the box are also not visible.

Image space coherence allows a single visibility computation to determine if a number of

local pixels are visible. By grouping pixel depth values into a hierarchical tree, a higher level

depth comparison can determine the occlusion of depth values in descendents. The algorithm

is in image space because it operates to the maximal precision of pixels in the frame bu�er.

Greene et al. start by assigning the geometry of the scene model to cubes in an octree. The

octree encompasses the entire modeling space. Individual polygons are placed in the smallest

octree node that can completely contain the primitive. The algorithm starts at the root node

of the octree and works recursively down through the root's children. The basic idea is to scan-

convert the individual faces of an octree cube, and then compare the faces with the existing

depth bu�er, computed for a particular viewpoint. If all of the faces of the octree cube are

obstructed, then all primitives contained within the cube are also obstructed, and there is no

need to submit any contained geometry to the graphics pipeline. If the octree cube is outside

of the viewing area, then the entire cube's contents can again be ignored. If some part of

the cube's face is visible, then the algorithm draws any immediately enclosed primitives, and

then recursively operates on the octree node's children. Figure 2.4 shows the viewing frustrum

divided into octree frustrums. The clusters near the apex are areas of high octree density.

Using an octree allows large numbers of polygons to be cut out of the rendering pipeline.

If a parent octree node is totally obscured, then all descendent nodes are obscured and do not

need to be rendered or processed. This can lead to huge savings in the case where very complex

Chapter 2: Previous Work 12

Figure 2.4: Viewing Frustrum and Octree Cubes, scanned from Greene 93

geometry is blocked out by (for example) a wall close to the viewpoint.

In order to determine if an octree cube face is completely occluded, Greene et al. use a form

of hierarchical depth bu�er. Starting with an initial depth bu�er, the algorithm recursively

combines four previous depth bu�er values into a new (furthest) depth value. This forms a

multi-level, multi-resolution depth bu�er pyramid - essentially a quad-tree with \max" as the

operator that yields a parent from four children. The root of the tree contains the furthest

depth value in the entire image.

When drawing a polygon (or octree cube), the algorithm �rst determines the polygon's

screen bounding box. The depth pyramid is checked to �nd the node and level that contains

enough depth bu�er area to cover the entire bounding box of the polygon. If the pyramid's

depth value is closer than than the polygon's nearest depth value, then the polygon is occluded

and can be ignored. If the polygon cannot be culled, then the algorithm descends a level into

the hierarchical depth bu�er tree. The polygon is chopped to the corresponding subrectangles

and then compared with each of the four quadrant depth values. At the limit, individual pixels

Chapter 2: Previous Work 13

in the polygon are submitted to the depth bu�er hierarchically.

The octree and the hierarchical depth bu�er are primarily used for culling out unnecessary

polygons from a single frame. However, Greene et al. also claim their algorithm is useful across

multiple frames. Temporal coherence can be performed by keeping track of the last frame's

visible octree cubes. These are drawn �rst, with the hope that they will occlude most of the

subsequently drawn octree nodes.

This method provides impressive speedups, especially for large models with a lot of depth

complexity. It also nicely combines several methods of coherence. Its main strength is in

drawing static images, or moving viewpoint images with static objects. However, there are a

number of important disadvantages that make this algorithm less than perfect. Even though

the idea is fairly simple, there is still a signi�cant amount of extra code required, including

two major data structures. The object geometry must be assigned to octrees. Because the

octrees are �xed with respect to the model space, there is no guarantee that objects will be

distributed nicely throughout the tree. Primitives can also be distributed ine�ciently across

octree boundaries. The authors use the example of a triangle crossing the root node's center;

the triangle must be rendered any time any part of the entire model is visible. This algorithm

also requires some additional work to render the octree faces. In the worst case, the extra

work results in no savings. In any case, the code required to determine octree assignments

adds additional cost and complexity. Greene et al. had trouble implementing the object-space

octree, because commercially available platforms did not support (or at least quickly support)

calls to determine whether a particular pixel would be visible if it were scan-converted. This

made it di�cult to submit polygon fragments to the hierarchical depth bu�er. Eventually, the

authors ended up using an unusual graphics platform, and partial software implementation.

The hierarchical depth bu�er also involves some additional costs. The depth bu�er tree must

be constructed and maintained. Every time the depth bu�er changes, depth values must be

propagated down throughout the depth bu�er tree. For each rendered polygon or octree face,

the algorithm must determine both the screen space bounding box node, and the polygon's

Chapter 2: Previous Work 14

closest depth. The authors point out that it can be expensive to repeatedly determine the

closest depth of a polygon quadrant in order to compare it with a hierarchical depth bu�er

quadrant. They suggest using the closest depth of the entire polygon, although this now prevents

a completely determined visibility test. The polygon can be shown to be completely hidden, or

it can end up as undecided, at which point it must be rendered normally.

The authors' concept of temporal coherence works much better for viewpoint changes than

for object motion. With only a moving eyepoint, the objects can be statically allocated to

octrees. As soon as objects start moving, they can cross octree boundaries, implying that the

octree assignment algorithm must be performed for each and every frame. Greene et al. do not

give any indication of the costs of this algorithm relative to the total frame drawing cost.

The algorithm �rst draws the visible octrees from the previous frame, in the hope that they

will block out most of the subsequently drawn octrees. However, as soon as objects can move

between octrees, the last frame's visible octrees have a much smaller coherence with this frame's

visible octrees, especially as a very small object space motion can cause a large change in octree

assignment. In fact, an object-space motion so small that it results in no change in projected

screen motion can still cause a switch in octree ownership. These
aws prevent the algorithm

from taking full advantage of a scene's temporal coherence.

2.2 Ray Tracing Methods

There have been a number of e�orts to introduce temporal coherence to ray tracing, mainly

because of the high cost per ray-traced frame. Because ray tracing and scan-conversion are

fairly di�erent paradigms, the ray tracing temporal coherence algorithms are of limited use to

us. Individual ray-traced pixels are a�ected by secondary e�ects, where the motion of an o�-

screen object could potentially change the appearance of all on-screen pixels. Ray tracing allows

image refreshing on a pixel-by-pixel basis, greatly reducing the granularity of the coherence.

Scan-conversion requires submitting an entire primitive at a time to the graphics pipeline.

However, these references have been included to show the relative sparsity of the temporal

Chapter 2: Previous Work 15

coherence literature.

2.2.1 Flood Fill and Reprojection

Badt [Badt 88] suggested two di�erent temporal coherence algorithms, one based on image

space sampling, and other on \reprojection". The image space algorithm starts by completely

computing base frame 1, and sequentially working on adjacent frames. A particular frame k is

sampled some number of times. Each sampled pixel is re-traced to compute an exact color. If

the recomputed pixel color is di�erent than the corresponding pixel in frame k � 1, then the

author assumes that \this pixel is just one pixel from an entire region of adjacent pixels that

are not the correct color". A
ooding algorithm is used to re-cast adjacent rays until recast

rays do not change the initial pixel color. The region of adjacent pixels also extends forwards

and backwards in time, sampling the selected pixel area until the recast rays do not change

between frames. This algorithm can introduce errors if the sampling rate is small. Badt did

not implement his image space temporal coherence algorithm.

Badt's second temporal coherence algorithm attempts to speed up ray-traced sequences with

a moving viewpoint. On frame 1, the algorithm keeps track of all �rst level object-space ray

intersections. On subsequent frames, the algorithm reprojects the hit locations onto the new

viewplane. The new image is computed by averaging the colors of all pixels that trace through

the new pixel locations. This method does not guarantee that every pixel in the new frame will

have an old pixel that projects to it. Nor does it account for new information at the edges. It

also assumes di�use objects that are completely static.

2.2.2 4D Bounding Volumes

Glassner [Glassner 88] attempts to utilize temporal coherence by creating 4D volumes out of

3D objects and complete knowledge of object motion along a time dimension. These 4D objects

are then bounded, in the same way that traditional 3D ray tracing uses bounding volumes to

reduce the number of ray intersection tests. These 4D objects are essentially boxes in both

Chapter 2: Previous Work 16

time and space. Testing against 4D volumes reduces the number of ray/volume intersection

computations for an animation. Bounding in 4D space also reduces the number of bounding

box computations from once per frame to once per animation.

2.2.3 Adaptive Temporal Coherence

Chapman [Chapman 90] developed a temporal coherence scheme similar to adaptive antialias-

ing. Chapman's algorithm renders every kth frame in an animation, checking to ensure that a

given pixel's color has not signi�cantly changed since the last rendered frame. If a pixel has

changed enough, then it is re-rendered using an interval of k
2
frames. The algorithm operates

recursively on the two new intervals until k = 1. Chapman's algorithm essentially performs a

binary search for the frame where a particular pixel changes color. Of course, if k is too large,

then fast-moving objects will not be properly noticed or rendered. The algorithm also performs

poorly in cases where a very small object motion causes a large di�erence in pixel colouration,

such as when object is textured with a checkerboard pattern. Chapman's method also does not

account for cases when a sampled pixel is actually a di�erent object with the same color.

2.2.4 Spatio-Temporal Coherence

Chapman [Chapman 91] produced another ray-tracing algorithm designed to take advantage of

temporal coherence. On the initial frame, the algorithm casts a number of primary rays. When

a primary ray hits an object, the algorithm then determines the parameterized path of the ray-

object intersections over some future time slice. These intersections may wander across (and

o�) the surface of the intersected object. This eventually leaves a group of intersection-paths

for all hit objects. The list of paths is sorted, and subsequent rays are spawned.

The speedup in this method comes from only having to intersect object bounding volumes

once per time sequence per ray, rather than once per ray per frame. Drawbacks include a fairly

complicated method of representing and determining the intersection paths - the implementers

were only able to implement a \translation only" example, where objects could translate through

Chapter 2: Previous Work 17

space, without changing orientation.

2.2.5 Voxel Trees

Jevans [Jevans 92] subdivides the object space into a voxel tree. Each voxel keeps track of all

intersecting rays cast during the �rst frame of the animation. When an object moves in space,

the enclosing voxels are tagged for update. On the next frame, only rays that passed through a

tagged voxel need to be updated (including secondary or higher rays). Jevans' method requires

a static camera and a good deal of voxel overhead space.

2.2.6 Frameless Rendering

Bishop [Bishop 94]et al. developed an interesting twist on temporal coherence. Instead of

completely redrawing the scene on each pass, the algorithm continually redraws a random

sampling of individual pixels. The number of pixels drawn depends on allocated time. When

the frame rate is slow, a complete redrawing of the scene each time results in jerky \tearing",

as one picture is replaced with another at a relatively low update rate. Continuously updating

some of the pixels allows a smoother transition, at the cost of some erroneous blurring. This

method is primarily aimed at ray tracing, where pixels are rendered individually. The authors

discuss some future possibilities of this approach, including sampling the updated pixels based

on object motion.

Chapter 3

Predictive Rendering

You can only predict things after they've happened.

- Eug�ene Ionesco

In many common animation scenarios, we notice there is a great deal of variation in the

amount of motion present. Some scene objects move continually, others are stationary, and

still others move at infrequent intervals. Even within a single moving scene element, there may

be some areas that remain stationary with respect to the background. No matter how slow or

fast the component scene motion is, traditional algorithms always render the complete scene

for each and every frame. This is ine�cient, as the static and slow moving parts of the scene

are redrawn many more times than is absolutely necessary.

We would like to render scene parts only when they move, potentially avoiding a large

amount of computational e�ort. In order to do this, we need a way to segregate objects into

groups that can be rendered at di�erent rates. We also need a way to recombine parts drawn

at di�erent times back into a complete, consistent image.

In this section, we introduce a new algorithm to reduce the number of polygons rendered

on each frame. The algorithm predicts which polygons will move for some small set of future

frames. These predictions are used to render polygons only for a subset of the total frames.

The algorithm can be easily extended beyond simple polygons to other, higher levels of graphics

primitive.

The main innovation behind this algorithm is the realization that modern rendering hard-

ware is slowly reducing the cost of world-to-screen projection, relative to all the other work

required to render a polygon. This realization is supported in Chapter 4, where we compare

the relative costs of these operations. We can use a fast, simple world-to-screen projection to

18

Chapter 3: Predictive Rendering 19

predict if and when we need to render fully transformed, clipped, lighted, depth-cued, textured,

scan-converted, antialiased, depth bu�ered polygons. The world-to-screen projection is one of

the �rst parts of the graphics pipeline, and is usually supported by specialized hardware.

We can conceptualize a prediction as drawing a polygon in wireframe. We can use these fast

predictions to determine the set of moving polygons for any particular frame. If we look a few

frames into the future, we can identify polygons that are stationary over a particular period of

time. These polygons only need to be rendered once during that entire frame interval. For each

�nal frame, the single rendered image of the static polygon set is depth composited with any

of the (redrawn) moving polygon images that need to be updated at that moment. The �nal

depth composited image contains a correctly occluded picture generated with potentially far

fewer polygons sent through the graphics pipeline. If we can throw out even a few of these \full

cost" polygons, we can more than pay for the additional prediction costs. Chapter 4 discusses

the break-even point of the prediction method.

3.1 Algorithm

This section describes the predictive rendering algorithm. Predictive rendering is composed

of three distinct phases. The grouping phase decides how to segregate related world objects

into sets that can be tracked over time. Grouping objects allows the entire set's motion to

be determined with a single prediction. The grouping phase executes once, before any other

predictive rendering phase.

We then need to choose a time slice, consisting of a number of frames N to predict. Sec-

tion 3.2.2 describes some of the tradeo�s associated with various sizes of N . During the pre-

diction phase, a fast prediction test is performed on each primitive, for each of the N frames.

The results of the prediction allow objects to be drawn together depending on their minimal

redraw rates. After predicting N frames in advance, the rendering phase actually draws the N

frames. Objects are rendered at di�erent redraw rates, and depth composited together to form

a �nal correct image. The prediction phase and the rendering phase then alternate on groups

Chapter 3: Predictive Rendering 20

of N frames until the animation is complete.

3.1.1 Using the World Database

At the heart of any rendering system is the world database. A user creates this database,

compiling objects, lights, material, cameras, textures, etc. to form a 3D model that can be

subsequently drawn. The majority of the world database consists of objects, usually constructed

out of a few system-supplied graphics primitives, such as spheres, cubes, ellipsoids, and objects

of revolution. Objects are often given motion, which can be user-controlled, speci�ed directly,

derived via known rules, or even completely random.

We want to predict the future motion of world objects in order to determine when we can

avoid unnecessarily redrawing them. Before making any guesses about motion, we must decide

how to separate world objects into sets that can be tracked. We de�ne a \prediction primitive",

which is the lowest level graphics element that we wish to check for motion. An obvious

�rst choice is the polygon. Choosing this prediction primitive implies that all world objects

must be ultimately decomposable into polygons. This restriction is not particularly strenuous;

many other common graphics algorithms can only handle polygons. Hardware graphics engines

are usually forced to break down curved surface primitives into polygons to take advantage

of specialized rendering abilities. Whatever our choice of prediction primitive, if there is a

particular object that cannot be broken into primitives, then it is easy to just render it each

frame. No speedups are possible for this primitive, but no extra prediction work is required

either.

There are number of other possible types of prediction primitives, generally in the form

of volume-bounding shapes. The simpler the prediction primitive, the greater the number

of predictions, and the higher the overall prediction cost. Simultaneously, as the number of

predictions increases, the more we can take advantage of factoring out small subsets of moving

elements.

Prediction overhead is proportional to the number of vertices in the prediction primitive.

Chapter 3: Predictive Rendering 21

For example, we can use a block (with eight vertices) as our prediction primitive. To determine

if we can avoid drawing all six faces, we only need to check eight vertices. If we represent the

same cube with six copies of a four-vertex polygonal prediction primitive, we need to check four

vertices for each of six sides. This is a three-fold increase in prediction time, which must be

balanced against the ability to factor out individually moving sides.

In general, if a graphics primitive consists of parts that never move in relation to each other,

it is usually faster to group them into a new prediction primitive, up until the point where the

number of di�erent types of prediction primitives becomes too complex to handle. For the

purposes of this thesis, we only use three prediction primitives: the polygon, the block, and the

octahedron (or double pyramid). The prediction primitives are shown in Figure 3.1.

octahedronblock

prediction vertices

central axis

polygon

Figure 3.1: Three Types of Prediction Primitives

The block prediction primitive can be used for any six sided, eight vertex world object,

such as a cube or block. The block prediction primitive and world primitive have a one-to-one

vertex correspondence, i.e., each world vertex is matched with one and only one prediction

vertex, and vice versa. Because the prediction and graphical vertices are the same, no extra

space is required to keep track of the block prediction primitive locations.

The octahedron is essentially a simpli�ed bounding volume placed around the object. In

order for the octahedron prediction primitive to work, the axis lengths must be chosen so that

Chapter 3: Predictive Rendering 22

the bounding pyramid completely encloses the object (i.e. the bounding octahedron must ac-

tually bound the entire object). This is necessary because prediction is based on the projected

di�erence of the axis vertices. Without this constraint, a static pyramid vertex does not nec-

essarily imply a static object, as shown in Figure 3.2. This ensures that under rotation, the

axis vertices always have more projected motion than any internal vertex. Conversely, if the

axis lengths are too large compared to object size, a very small rotation will predict object

motion based on axis di�erences, even though the actual object moved very little. This is not

erroneous, just ine�cient. The octahedron's point of origin is placed on the object's axis of

rotation.

than the bounding pyramid’s projection, preventing a

when rotated, the object’s projection changes much more

enclosing scene object

double pyramid incorrectly

double pyramid

projection of the

u axis

correct motion prediction based on the change in the

pyramid’s projected vertices.

v axis

eyepoint

image plane

Figure 3.2: Prediction Pyramid with too short an Axis

The octahedron primitive can be used for any grouping of world primitives where all world

primitives are guaranteed to remain constant with respect to all other world primitives in the

group. Then, the entire group's motion can be predicted using six vertices, instead of the entire

set of world primitives. The more complex the world primitive, the more e�cient its prediction

Chapter 3: Predictive Rendering 23

becomes.

The octahedron primitive is most useful for complex higher order primitives consisting

of many, many sides, such as spheres, or snow
akes. It can reduce the prediction overhead

considerably. In the case of a static sphere approximated by 400 polygons, our prediction

overhead is reduced from 1600 vertex predictions to six vertex predictions. Note that polygon

and block objects can also be predicted with an octahedron, but are separated out specially

because they are so common. The octahedron does not necessarily need to be aligned with the

object axis, nor do the horizontal and vertical dimensions need to be equal.

The octahedron uses only six vertices to bound an object, and is most e�cient for objects

of approximately the same X, Y, and Z dimensions. We can also use the block primitive,

with prediction vertices not necessarily in a one-to-one correspondence with any enclosed world

vertices. The extra two vertices require more prediction e�ort, but may provide a tighter

geometrical bounding volume. Because the octahedron is not in a one-to-one correspondance

with its bound graphical primitives, we require some extra space to keep track of the prediction

vertices.

It is easy to assign world objects to prediction primitives, mostly because they are similar to

the (already existing) world primitives created to make model building easier. Table 3.1 shows

some example assignments.

We can be fairly haphazard assigning world primitives to prediction primitives, as long

as prediction and world vertices are the same. If, for example, we assign a block prediction

primitive to a world cube where one side continually moves, we lose some potential speedup

(factoring out the non-moving sides), but we do not introduce any errors. The only place where

errors can actually be introduced is when the world primitives do not have a one-to-one vertex

correspondence with the prediction primitive. The octahedron is the only one of our chosen

prediction primitives to do this. If the any of the enclosed vertices move relative to each other

while the prediction vertices remain stationary, prediction will (erroneously) decide the object

remains static. Thus, it is very important to only bound graphical primitives that will always

Chapter 3: Predictive Rendering 24

Graphical Primitive ..that is static ..that might change

size or shape between frames

point polygon polygon

line polygon polygon

polygon polygon (� 6 vertices)

or octahedron (>6 vertices) polygon

pyramid octahedron many polygons

cube block or octahedron block

block block or octahedron block

sphere octahedron many polygons

torus octahedron many polygons

polygon mesh octahedron many polygons

hydrogen molecule octahedron many polygons

Table 3.1: Example Assignment of Prediction Primitives

remain stationary with respect to each other.

It is possible to separate moving and non-moving parts of the object into di�erent prediction

primitives, but we hesitate to do this because it removes some of the prediction e�ort from the

computer and places it on the human. Assigning prediction primitives should be as easy and

automatic as possible, taking advantage of static, non-moving groups of polygons only when

it is obvious and easy to do so. The whole point of this algorithm is to determine motion

automatically. World primitives should not be reassigned new prediction primitives during

execution.

Note that any prediction primitive with a one-to-one vertex correspondence can be changed

in shape between single steps of a prediction range, and still remain correct. This allows correct

prediction even when polygons are mutating. We assume that a one-to-one prediction primitive

maintains the same number of vertices throughout. Prediction primitives without a one-to-one

correspondence to graphical vertices can only be changed between prediction ranges.

Of course, the most conceptually straightforward way is to assign every world polygon to

a prediction primitive polygon. This avoids having to do any work to compute bounding axis

lengths. This also may be the only answer if prediction eventually extends to changing material

properties, such as a cube with a live video image texture mapped onto each side.

Chapter 3: Predictive Rendering 25

In later sections, we will examine expected and experimental performance increases assuming

that we only use the polygon prediction primitive. We show that we can gain speedups even

using the simplest type of prediction primitive. We will also compare a few speci�c examples

of more complex prediction primitives.

3.1.2 Prediction Phase

In the prediction phase, the algorithm looks up to N frames into the future. This allows it to

decide how often a particular prediction primitive moves. The prediction method is essentially

the same for all prediction primitives over all frames.

We begin by assuming we are doing a prediction for a frame f . The algorithm starts by

traversing the database by its natural ordering (linear or hierarchical, depending on the ordering

of the model), forecasting future motion for each prediction primitive. For any given prediction

primitive, we check each of the vertices in �xed order, transforming from object coordinate

space into screen space. This transformation consists of several steps. The prediction primitive

starts o� in object space, where all vertices of the primitive are described relative to a local

origin. The primitive vertices must be transformed into the world coordinate system, where all

vertices are described relative to a single global origin. We can achieve this by multiplying all

vertices by an object-to-world transformation matrix MO 7!W as such:

MO 7!W =

��������������

r1x r2x r3x tx

r1y r2y r3y ty

r1z r2z r3z tz

0 0 0 1

��������������

(3.1)

In a linear traversal of the database, elements r and t describe the rotational and trans-

lational motion of the primitive with respect to the world coordinate system. If the database

is traversed hierarchically, r and t will instead describe primitive motion relative to the pre-

vious coordinate system. MO 7!W must be concatenated with the the previous level's MO 7!W

to arrive at the true world coordinate points. These transformation are all the same (with

Chapter 3: Predictive Rendering 26

the omission of a number of steps) as the object-to-screen transformations performed by most

graphics pipelines, and are described in greater detail in any introductory textbook on computer

graphics [Foley 90] [Hill 90].

Once in the world system, the coordinates must be transformed into the eye coordinate

system, where the eyepoint is not restricted to the z axis. A common world-to-eyepoint viewing

matrix MW 7!E might look like:

MW 7!E = Rotz(�azimuth)Rotx(�inclination)Rotz(�twist)Trans(0; 0;�distance) (3.2)

for a (polar coordinate) eyepoint located distance from the origin, at (azimuth; inclination).

Once in the eye space, coordinates must then be projected onto the projection plane. Projection

is achieved by multiplying all eye-coordinate vertices by an eye-to-projection plane matrix

ME 7!P as such:

ME 7!P =

��������������

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1

d
1

��������������

(3.3)

where d is the projection plane normal to the z axis at z = d. The x and y components of a

homogeneous point must be divided by the 4th vertex element w. Note that there is no need to

transform into normalized clipping space, as would normally be done by the graphics pipeline.

Conceptually, we would like to plot the vertices into screen space, by scaling by the window

size and number of window pixels. These predicted screen coordinates give the location of a

vertex if we were actually bothering to draw completed polygons. However, we can skip a few

operations by keeping our vertices on an imaginary projection plane at z = d. This avoids

having to multiply transformed pixels by a projection plane-to-screen conversion factor, which

is a constant over all frames. Note that we have not clipped points anywhere, so that there

may be some number of vertices that lie outside the screen space area.

We can reduce the amount of work required for prediction by concatenating the MW 7!E

Chapter 3: Predictive Rendering 27

and ME 7!P matrices into a general transformation matrix M3D 7!2D where

M3D 7!2D =MW 7!EME 7!P (3.4)

Concatenating the two transformation matrices into a single matrix reduces the number

of matrix-vector multiplies needed when predicting individual primitive vertices. Because the

viewing and projection parameters are constant for a given moment, the concatenation only

needs to be performed once per frame. Thus, the predictive coordinates (x; y) of the mth vertex

~V 0

m(p; f) of a particular prediction primitive p for frame f are ~Vm(p; f)

~Vm(p; f) = ~V 0

m(p; f)MO 7!WM3D 7!2D (3.5)

where

x =
~Vm;x(p; f)

~Vm;w(p; f)
(3.6)

and

y =
~Vm;y(p; f)

~Vm;w(p; f)
(3.7)

We have described the minimal number of steps required to predict a vertex. Note that

many of the matrices described above are already maintained and updated by the graphics

pipeline. We only really need to modify the motion matrix MO 7!W . In Chapter 4, we walk

through the viewing pipelines, comparing the number of operations required for the prediction

phase and the actual rendering phase. Chapter 4 points out the actual rendering steps that can

be avoided during the prediction.

Predicting an individual vertex gives the location of a point in viewing space, at frame f .

By looking at how all vertices of a predictive primitive change over time, we can determine if

the primitive changes. For any given frame f , a primitive p has one of two states: \static", or

\changing", represented by 0 and 1 respectively. A static primitive is de�ned as one where the

di�erence between all m-component predicted vertices ~Vm(p; f) and ~Vm(p; f � 1) are within a

speci�c constant tolerance. We can determine the motion state S(p; f) for an entire prediction

primitive p on frame f as such:

Chapter 3: Predictive Rendering 28

S(p; f) =

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

1 if (f = 0)

or
���~V1;x(p; f)� ~V1;x(p; f � 1)

��� > �

or
���~V1;y(p; f)� ~V1;y(p; f � 1)

��� > �

or
���~V2;x(p; f)� ~V2;x(p; f � 1)

��� > �

or
���~V2;y(p; f)� ~V2;y(p; f � 1)

��� > �; etc : : :)

0 otherwise

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

(3.8)

Section 3.2.3 discusses an appropriate size for �, and how it a�ects the prediction. For the

moment, we assume that � is equivalent to some constant subpixel distance (in the appropriate

viewplane, not pixel, units). Practically, we do not need to store the predicted coordinates

~Vm(p; f) for each vertex m over all N . Instead, we keep a single ~Vm(p; last) for frame f � 1,

and use the current ~Vm(p; f) to compute the motion state S(p; f). The value ~Vm(p; last) only

needs to be updated when S(p; f) = 1 (i.e., changing). All vertices of a primitive are updated

at the same time. Frames are predicted in increasing order. Even though we can determine on

the �rst vertex if a primitive has changed, we must still predict the motion of all other vertices,

for use on the next frame. In the absolute worst case, we need a ~Vm(p; last) for each world

vertex, for both x and y components. In better cases, we need a ~Vm(p; last) for each prediction

primitive vertex, where the number of predictive vertices << the number of world vertices.

3.1.3 Clipping

In the prediction scheme described above, we do not do any clipping. Primitives are assigned

as static or changing, even if some or all of their components are outside the screen window. At

the cost of a little extra work, we can clip out some types of prediction primitives by assigning

them a static value if moving vertices are outside the viewing window. This prevents moving

(but unseen) primitives from being sent to the graphics pipeline. However, some care must

be taken to ensure that clipped prediction primitives truly do not a�ect the image. First, all

vertices must be outside the viewing window. If a single vertex is inside the viewing window,

a moving (outside the window) vertex will change the image. Secondly, all vertices must be

Chapter 3: Predictive Rendering 29

outside the viewing window on the same side of any of the viewing window boundaries. This

ensures that no part of the projected polygon crosses into the viewing window. Figure 3.3

shows two examples where all prediction primitive vertices are outside the viewing window, but

are not on the same side of a window edge. When any vertex moves, it a�ects the image, and

cannot be clipped.

prediction primitive projected outline of a polygon
prediction primitive

projected outline of a polygon

projected polygon vertex

projected polygon vertex

screen spacescreen space

Figure 3.3: Examples of Incorrect Prediction Primitive Clipping

Clipping ensures that primitives outside the window will be put through the rendering

pipeline once, and then not again until at least some part of the primitive wanders into the

screen window. We save the rendering pipeline work required to transform the real primitive,

and clip it to the viewing volume, for each of the frames the prediction primitive remains

outside the window. We can clip out primitives of the octahedron type (i.e. not in a one-to-one

correspondance), because we know that the projection of a bounding pyramid will contain the

projection of its contents.

It is not totally necessary to clip out the primitives, but it does save future work.

Chapter 3: Predictive Rendering 30

3.1.4 The Plan Tree

After a single prediction pass through the database, we are left with a complete set of states

S(p) and predicted positions ~V (p; last) for every prediction primitive. We continue to traverse

the database for each frame [0:::N � 1] within our future prediction range. At the end of

our prediction phase, we are left with a fully computed S(p; f) function, which remembers if

primitive p was changing or static on frame f . Practically, each element S(p) can be described

as an N -bit data word. The f th bit from the right is set to 0 if there is no change between

frame f and frame f � 1, i.e, S(p; f) = static. If S(p; f) = changing, then bit position f is set

to 1. Bit position 0 is always 1. This is exactly a right-to-left concatenation of all N frame

states.

We next need to group primitives together, in order to factor them out from some of the

frame-by-frame redraws. Our approach will be to construct a binary plan tree. The plan tree

has log2(N)+ 1 levels, and N leaves, where each leaf represents a frame from [0:::N � 1]. Each

node contains a record of prediction primitives. A prediction primitive is contained within the

lowest level (closest to the root) node l if it remains static for all descendant nodes of l. This

means that a prediction primitive p may be contained in multiple nodes in the tree.

This tree provides a plan to factor out primitives moving at similar speeds (as projected

on the viewplane). Primitives contained in level 0 do not move during the N frames, and only

need to be rendered once (on frame 0). Primitives contained in either of the two level 1 nodes

remain static for N
2
frames. They need to be rendered on frame 0 and frame N

2
. Primitives

on level log2(N) must be rendered each frame. Figure 3.4 shows how some example prediction

primitives are assigned to nodes in the plan tree. Note that any depth-�rst traversal of the tree

will pass through nodes containing a complete set of a frame's primitives - thus all elements are

drawn each frame.

It is important to note that we do not need to construct an actual tree in memory. An

individual prediction primitive's location in our conceptual tree can be determined solely by

examining the single N -bit word that keeps track of S(p). The idea of a tree is useful because

Chapter 3: Predictive Rendering 31

A
B
C
D
E

0000 0001
0110 0101
0001 0011
1101 0001
1111 1111

Prediction Primitive
1
5
4
4
8

Times Rendered

7 6 5 4 3 2 1 0 frames

DE DE BE BE E E CE CE

BBCDB

C

A

D

levels = 4
N = 8

level 0

level 1

level 2

level 3

Prediction

Figure 3.4: Assigning Prediction Primitives to the Plan Tree

we can think of nodes in the tree as the eventual contents of intermediate scratch framebu�ers.

To determine the set of primitives that must be rendered on each frame, we traverse the

conceptual tree in depth-�rst order, where each leaf represents a frame. The �rst time a node

is encountered, all contained primitives are rendered into a scratch framebu�er representing

a level l. Any subsequent traversals through that node do not cause anything to be drawn.

Section 3.1.6 discusses how primitives rendered at di�erent speeds can be combined to produce

the correctly occluded result for each and every frame.

We use binary plan trees because they are simple and easy to implement. However, there

are many other possible data structure choices for plan tree organization. The most notable of

the types of plan trees are k-trees, where k > 2. A k-tree has N leaves and logk(N) + 1 levels.

Given the same number of leaves, a k-tree with k � 2 will be
atter than a binary tree, with

fewer intermediate nodes. We can use this
atness to our advantage. In some applications, the

Chapter 3: Predictive Rendering 32

vast majority of primitives will be separated into two main categories - moving all the time,

and static all the time. The root node and the leaf nodes will all contain many prediction

primitives, but the internal nodes will be mostly empty. An empty, or nearly empty internal

node is ine�cient. We are depth compositing an entire framebu�er containing very little actual

data. Most importantly, we are using memory for a nearly empty framebu�er. With that

extra memory, we could instead expand our prediction range N , and gain potential speedups

by factoring out static polygons over a longer time. Figure 3.5 compares k = 2 and k = 4 for

the same �xed N . As k increases, the ratio of leaf to internal nodes increases, reducing depth

compositing overhead and factoring ability. A larger k also reduces the sensitivity of changing

N , as each slice must be a power of k.

nodes = 31

nodes = 21
levels = 3
N = 16

levels = 5
N = 16

Figure 3.5: Comparison of k-trees: k = 2, 4 with N = 16

In systems with very little frame bu�er space, we can increase the order of the plan tree

to reduce the amount of scratch space needed. At the limit, choosing a k-tree of size k = N

reduces the number of framebu�ers needed to two. One framebu�er is used for all primitives

that move over any of the N frames, while the other is used for all primitives that are static

Chapter 3: Predictive Rendering 33

over the N frames. Considering that one of the framebu�ers can be on-screen, we only need

one o�-screen framebu�er, which is clearly achievable by almost any graphics system of note.

Note that this is not similar to an overlay bu�er, because both components are correctly and

consistantly depth composited.

Of course, by reducing the number of internal nodes, we reduce the opportunity for factoring

out slow moving polygons. However, depending on the makeup of the motion, we can improve

things by looking a longer distance ahead. In Chapter 4, we experiment with the type of plan

tree in order to see how the speed is a�ected.

One of the problems with �xed k-trees is that they do not take advantage of any natural

grouping of the data. For example, a primitive that changes on frames 0, 1, 3, 5 and 7 will be

drawn on every frame, as shown in Figure 3.6.

8

A A A A A A A A

01234567

A 1010 1011

frames

levels = 4
N = 8

Prediction Primitive Prediction Times Rendered

Figure 3.6: Ine�cient Allocation to a Binary Plan Tree

One could use a more complicated tree that naturally groups primitives. We avoid this

approach because the �xed tree is easy to understand and implement (seeing as no tree is

actually required).

Chapter 3: Predictive Rendering 34

3.1.5 The Rendering Phase

After completing the prediction phase for a set of N frames, we move into the rendering phase.

Starting at frame 0, we traverse the database looking at S(p) values for each prediction prim-

itive p. The current frame and the S(p) indicate which level the primitive should be drawn

on. We can simultaneously determine how many frames we can skip before we have to draw

this primitive again. Figure 3.7 gives the decision algorithm. This algorithm handles S(p)

equivalences to maximize reuse in the state tree. For example, S(p) = 10000001 is treated as if

it were S(p) = 11010001, factoring out an additional frame at positions 4 and 5.

If the primitive needs to be drawn, we move it to the new location and then draw it into the

framebu�er representing level l. If primitive does not need to be drawn, it avoids the rendering

pipeline altogether. However, if the primitive is part of a hierarchical structure, we may need to

move the primitive so that a subsequent lower primitive (that is drawn) is in the correct place.

We can move a non-drawn primitive by manipulating the transformation matrices. The
atter

the hierarchical structure, the less overhead required. This is true for predictive rendering in

speci�c, and graphics rendering in general. After depth compositing a single frame, all of the

logk(N)+ 1 frame bu�ers are depth composited together to form the result, which can be then

displayed.

3.1.6 Compositing

During the prediction phase, we were able to determine future motion of primitives, and sub-

sequently group them into groups of approximately the same projected (apparent) motion. We

can draw these groups at di�erent frame rates. However, in order to produce a correctly oc-

cluded picture on each frame, we have to combine all of the groups. Every primitive, moving or

not, must be included in each occlusion calculation. We do this with a straight depth compos-

ite of the multiple framebu�ers, using each framebu�er's depth bu�er for depth comparison.

Compositing provides the proper occlusion for all primitives, on all frames.

This is essentially the same method as used by the graphics pipeline. The graphics pipeline

submits rendered graphics primitives one at a time to the depth bu�er. Now, each framebu�er

Chapter 3: Predictive Rendering 35

int Next_Location(relative_frame, states, *next_frame)

{ /* predict_levels calculated elsewhere */

if (relative_frame == 0) and (states == 1)

{ /* we test specifically for the case where a p.p. is static for the entire

frame. These p.p. are drawn on level 0, and skipped for the next N frames. */

next_frame = N;

return 0;

}

/* we loop through each of the levels we are currently using and check for the

00000001, 0001, 01, etc. pattern in the right places. */

for (level = 1; level < predict_levels - 1; level++)

{ /* we need to compare N/2 bit places, then N/4 bit places, then N/8, etc.

as we descend the levels looking for a match. */

mask = (0x1 << relative_frame);

num_bits = N / (0x1 << level);

not_found_yet = FALSE;

/* look at an N/2 level if frame is evenly divisible by N/2 (etc) */

if (relative_frame % num_bits == 0)

{ /* we don't care if the 1st position is a 1 or not - still check to see

if the rest of the bit positions are 0 */

for (next_bits = 1; next_bits < num_bits; next_bits++)

{

mask = mask << 1;

if (mask & states) == mask

{ /* we found a 1 where there should be 0. Not this level */

not_found_yet = TRUE;

break;

}

} /* for */

/* if we've only found zeros, then it's on this level */

if (not_found_yet == FALSE)

{

*next_frame = relative_frame + num_bits;

return level;

}

} /* if */

} /* for level */

next_frame = relative_frame + 1; / no levels matched, goes on the lowest level */

return predict_levels - 1;

}

Figure 3.7: Determining When Next to Draw a Prediction Primitive

Chapter 3: Predictive Rendering 36

can be thought of as a single rendered primitive. Compositing speed is proportional to image

precision, and not object precision. It is essentially a straight memory draw from a level m

framebu�er into a level m + 1 framebu�er. Many graphics systems include speci�c library

commands for depth bu�er copy-and-compares, including correct handling of any � values. If

the leaf framebu�er is the display bu�er, we can avoid moving the �nal depth composited result

to a new location.

The scratch framebu�ers and depth bu�ers must be cleared appropriately during the ren-

dering phases. Because some scratch bu�ers maintain the same picture across several frames,

they cannot be cleared on each and every frame. Instead, the number of frame resets is a

function of how often a frame is redrawn completely. For a particular time slice, the level 0

bu�er will be cleared once, the level 1 bu�er will be cleared twice and the level l bu�er will

be cleared 2l (or kl) times. It is also possible to \clean when needed", where framebu�ers are

cleared at the appropriate times only if they contain some previous drawing.

3.2 Algorithm Considerations

This section discusses some of the additional considerations raised by this algorithm.

3.2.1 Extra Framebu�ers

This algorithm uses intermediate scratch framebu�ers to hold \factored out" polygons. This

extra space puts an implicit limit on the size of N . We can use k-trees to
atten out the plan

tree, reducing the number of framebu�ers for a given N considerably.

It might be possible to factor out even more coherence (and framebu�ers) by using structures

more involved than binary trees. For example, we could try to dynamically assign scratch

framebu�ers to frame intervals based upon the distribution of static predictions. The frame

intervals would be chosen based upon the maximal number of polygon-frames that could be

factored out for any particular interval.

Chapter 3: Predictive Rendering 37

3.2.2 Prediction Range

The algorithm requires advance knowledge of N future frames in order to predict polygon

movement. In many applications, this is not a problem. All motion is known a priori, or

can be determined using a simple set of repeatable rules. However, it can be argued that

knowing polygon motionN frames in advance is a heavy restriction for animations involving user

interaction. In practice, we are helped by the rule that users rarely interact on each frame. We

can use the analogy of a car: the driver intervenes every so often, but otherwise the car travels

according to its velocity and acceleration. In many cases, the system smoothly extrapolates

motion from the last user request. Motion prediction is fairly common in applications with

frequent user interaction, such as head tracking for virtual reality [Deering 92]. Besides linear

extrapolation, there are higher order �lters (such as Kalman �lters [Friedmann 92]) that provide

probabilistic predictions of future motion.

Predictions are done N frames in advance, but frames are drawn one by one. If the user

interrupts and demands an unexpected motion change, we can instantly respond by drawing

an entire frame. Thus, the user never gets a frame that does not match the user's input.

N does not need to remain constant over the entire animation. The prediction phase can

be changed dynamically according to the frequency of user input. As user interaction increases,

we reduce N . This means less predictive work is lost if the user interrupts. As user interaction

decreases, we can increase N . The longer the prediction phase, the greater chance there is to

exploit polygon coherence over time. This is especially true for objects that remain static over

the total animation.

In scenarios without user interaction, we can theoretically choose N to encompass all of the

frames. A large N increases coherence and reduces overhead. Practically, we are limited by the

amount of framebu�er space available. This depends on window size and system memory. We

expect N values to range between [2:::64] for 30 frame/sec (k = 2) animation. In cases with

user interaction, these sizes also minimize the amount of interrupted and lost predictive work.

However, it is not always the case that a larger N factors out more frames. The S(p) for

N1 and N2 can potentially be di�erent, because the algorithm automatically assumes a redraw

at a frame boundary, i.e., every N1 or N2 frames. Because predicted movements are computed

Chapter 3: Predictive Rendering 38

relative to the last update, motion patterns for moving prediction primitives can be di�erent

for di�erent N , and thus updates can also be di�erent. This only applies to moving objects -

for stationary objects, a larger N always means less work.

We can also split the object database into objects controlled by the user, and objects not

controlled by user. That way, we only do predictive work on objects we know have a well

behaved motion. Of course, we only get speedups on those objects, too.

It is conceivable to consider carrying prediction along between time slices. This provides us

with more opportunities to factor out static and slow moving objects. If the time slice is small

(i.e., N = 2), the static background will be still rendered a large number of times, although

half as many as before.

3.2.3 Motion Thresholds

There has to be a certain amount of change in the bounding polygon before we consider ren-

dering it again. We can compute a motion threshold, denoted by � and measured in terms of

screen pixels. This forms a measure of noticeable change. Practically, we convert the pixel

value into a viewplane value in order to do comparisons. Doing thresholding in the viewplane

prevents having to continually transform view coordinates into pixel coordinates in order to

compare with a pixel threshold.

In general, we set the movement threshold to subpixel values in order to catch all but the

tiniest movements. However, the movement threshold can be increased if a certain amount of

jumpiness can be tolerated. Thresholds of a pixel or two reduce the rendering work yet still

provide reasonably smooth movement.

The movement threshold can be varied between predictive slices, between individual frames,

and even between polygons. For example, if only the eyepoint is changed (in a VR application)

we could threshold movement depending on the velocity of the change.

Note that the size of � also somewhat a�ects the lighting and shading of the scene. Any time

a prediction primitive moves, it is a�ected by the lighting model, and may change in appearance.

The change in shading may be insigni�cant or quite noticeable, depending on the size of the

move, the lighting model, the viewing angle, and the type of primitive. With � = 0, objects

Chapter 3: Predictive Rendering 39

that move even the tiniest bit are redrawn, reproducing the lighting correctly. With � > 0,

some slightly moving objects are treated as static. This only approximates the exact object

motion and shading, and does not return a completely accurate result. For example, if � < 1

2

pixel, the �nal position of each projected polygon may be o� by up to 1

2
of a pixel, while the

shading will by o� by a similar amount. Polygon shading errors are harder to quantify, because

lighting changes depend on both world coordinates (to compute the appropriate directions) and

on screen coordinates (to interpolate between vertices). It has been our experience that any

� > 0 that nicely approximates motion also avoids any noticeable lighting errors, although this

is by no means guaranteed.

If the scene lights or object material properties change, we have to mark all a�ected polygons

as moving. Even though a polygon might remain �xed in space, it could have changed color and

thus require re-rendering. For the moment, we will pass over the idea of predictive rendering

for lighting changes. We can also simply turn predictive rendering o� while the user edits the

lighting properties.

3.2.4 Using an Accumulation Bu�er

This algorithm is especially useful for doing motion blur with the accumulation bu�er [Haeberli 90].

The accumulation bu�er averages the results of a sequence of individual frames containing ob-

ject motion to come up with a single motion-blurred frame. We need to average enough frames

so that fastest moving object does not appear \strobed". This means that slower or non-moving

objects in the scene are rendered many times more than they need to be. This problem becomes

worse the greater the speed di�erential between the slowest and fastest objects.

With predictive rendering, we only need to render objects proportional to their projected

speeds. Faster objects are rendered on each frame, while slower objects might be rendered in

only a few frames, or just once.

3.2.5 Prediction Accuracy

Predictive rendering depends upon a fast, accurate prediction of future polygon motion. The

algorithm's basic accuracy depends on closely following the steps of the graphics pipeline. We

Chapter 3: Predictive Rendering 40

know what a polygon will look like in the future, because we have actually completed the steps

to draw it. In this respect, there is no real chance to the prediction.

Prediction depends on knowing future motion. If objects move di�erently that we expect,

we can immediately render frames normally. This is a basic rule for predictive rendering: any

time some unexpected change occurs, revert to regular drawing. This is why the worst case

cost of predictive rendering is so important. We want to be able to continually perform the

prediction (and then throw it away) without much wasted computation.

However, there are several important cases where a prediction cannot be considered accurate.

The �rst (and most obvious) case occurs anytime � > 0. As � becomes larger, object motion

becomes jerkier. Objects appear stationary for longer than they actually are, and then are

suddenly updated. If the worst case (� = 0) is not computationally cheap enough to still get

speedups, then the user is free to twiddle � to reach a balance of more speed vs. visual error.

Note that a � > 0 will introduce errors in both shape and lighting, as slightly moving polygon

will have slightly varying lighting.

The second main case occurs when a user changes any of the properties used to shade and

light the polygon. This includes the viewer position, textures, material properties, lighting

intensities and light positions. For example, if all objects remain stationary, the motion of a

single light will still a�ect scene appearance, and will force a complete redraw. If the appearance

of a polygon is changed during a long stationary period, the new polygon will not be re
ected

until the object moves, or the time slice ends. This may be adequate if the changes are small,

or the time slice is short.

Prediction primitives cannot change shape or content during a time slice, unless this is

carefully handled by the prediction code (which will return a non-static result).

3.2.6 Secondary E�ects

Compositing methods do not work well when an individual polygon's appearance is a�ected by

other surfaces, i.e., re
ections or shadows. This is not a problem speci�c to predictive rendering.

In fact, the general purpose scan-line conversion rendering algorithm also has this defect, mainly

because individual primitives are submitted in order to the depth bu�er (essentially depth

Chapter 3: Predictive Rendering 41

compositing). However, the algorithms designed to address this
aw can usually be extended

to work with predictive rendering. Because predictive rendering produces a �nal image and

depth bu�er, it does not interfere with any other image precision algorithm that post-processes

the image. Algorithms that work on a primitive-by-primitive basis can be extended so that

scratch bu�ers contain intermediate work, which is then joined to form a �nal result.

Several algorithms have been proposed to add shadows [Appel 68] [Williams 78] [Crow 77].

We look at Williams' [Williams 78] [Reeves 87] shadow bu�er algorithm to see how predictive

rendering can improve shadow generation. The shadow bu�er algorithm uses the �nal depth

bu�er and image, so at the very least, shadows can be added using only the �nal result. If

desired, predictive rendering can be used on a per-light basis to create the light's view. This

allows for shadow calculation speedups, at the cost of a number of frame bu�ers proportional

to the number of lights. The speedups will not likely be as great, because the light views do

not need as much detail as the main view (i.e., textures and all the lighting can be avoided)

The number of extra framebu�ers required for the lights can be reduced by using k-trees (see

Section 3.1.4). In addition to reducing the number of framebu�ers, this nicely separates the re-

sultant light view into static and moving components. One sees the potential for an incremental

version of Williams' algorithm, where the shadowmap is only recomputed at locations where

something has moved in the main viewpoint. If something moves in the light's viewpoint, one

could follow pointers to any a�ected main viewpoint pixels (computed during the �rst pass),

and update them.

Another example is the shadow volume method, �rst described by Crow [Crow 77], and later

modi�ed by others [Bergeron 86] [Chin 89]. Individual polygons are given shadow volumes,

that bound the volume of space blocked from a particular light. The shadowing of a particular

polygon is a function of the (signed) number of shadows between the eye and a point in space.

If we compute shadow volumes for a particular scratch bu�er, we can create a master union

of all volumes when we depth composite to form the �nal image. The union of the shadow

volumes can then be used to post-process and shadow the image.

Chapter 3: Predictive Rendering 42

3.2.7 Related Hardware

Predictive rendering can be extended to several types of specialized hardware, especially parallel

image composition machines such as the PixelFlow [Molnar 92] architecture and Shaw et al.

's [Shaw 89] z-bu�er composition hardware. These types of machines split groups of image

primitives (from the same frame) among parallel rendering pipelines, compositing the results

to form a single image. This type of image composition architecture could be modi�ed to

distribute and composite primitives in both time and image-space.

On a smaller scale, we can place prediction and rendering tasks on di�erent CPUs. This

reduces lost e�ort if predictions are thrown away. An ideal predictive rendering machine would

contain a separate prediction pipeline, consisting of the �rst few vertex transformation steps.

3.3 Variations on Predictive Rendering

This section describes three variations on the basic predictive rendering method. These methods

can provide further speedups under certain conditions.

3.3.1 Predictive Rendering with On-the-Fly Depth Compositing

We have previously described a method of depth compositing where all of the logk(N) + 1

frame bu�ers were combined each frame, essentially by a depth-�rst traversal of the plan tree.

We chose this as our method of compositing because it is conceptually easy to understand.

However, we can use a di�erent compositing method to reduce the number of depth composites

over N frames.

The basic concept is to realize that as soon as any intermediate scratch bu�er is completely

rendered, it can be composited with all parental scratch bu�ers. Practically, we would composite

an intermediate node's contents with its immediate parent (which in turn has been previously

composited with its own parent higher up the tree).

This organization means that individual scratch bu�ers contain duplicate copies of the same

polygon. A level 0 bu�er (the root) contains all polygons that never move over all N . A level

1 bu�er contains all static polygons, and all polygons that are static over N
2
frames. A level

Chapter 3: Predictive Rendering 43

2 bu�er contains all polygons static over N , N
2
and N

4
, etc. When drawing a leaf node, this

method avoids recompositing two higher parents nodes more than once.

The �nal result is a reduction in the number of composites from (N)logk(N) to N �1. This

should produce a signi�cant improvement in systems where compositing is the main bottleneck.

3.3.2 Predictive Rendering with Subdivision

If object motion is relatively large compared to the predictive periods involved, we can gain

even further speedups by using an adaptive prediction phase, similar to that described for ray

tracing by Chapman [Chapman 90]. In doing so, we assume a large burden of potential error.

Instead of predicting all frames sequentially, we start with the �rst and last frames. Elements

that do not cross the motion threshold are placed on level 0 and removed from consideration.

We then subdivide N into two halves, and predict (for each N
2
) all primitives that have not

already been completely predicted. The frame intervals are subdivided recursively until all

polygon motion has been isolated to a speci�c level.

This scheme is very similar to adaptive antialiasing, except it is the temporal domain. If

there is little or no change between the internal frames, we can avoid doing predictive work on

the vast majority of prediction primitives. However, we can also miss changes that occur below

our temporal sampling rate. For example, an object might move from its starting position on

frame 0, travel around the screen, and return to its initial position on frame N � 1. The entire

motion will be missed, and subsequently not drawn. Because we are predicting vertex screen

motion rather than pixel color, subdivision prediction will properly draw any type of motion

where the start and end locations are not the same. The errors caused by insu�cient sampling

rate are di�erent than those caused by adaptive sampling or Chapman's adaptive temporal

coherence [Chapman 90].

This algorithm essentially smooths out jittery local motion in screen space. This smoothing

may be acceptable if N is small or polygon motion is large. However, it should be pointed

out that this method has a considerable potential for erroneously missing objects, and must be

used very carefully.

Chapter 3: Predictive Rendering 44

3.3.3 One-Pass Predictive Rendering

We can improve our prediction speed by combining the prediction and rendering phases. By

reducing the number of data traversal passes, we can reduce overhead. We can also use our

prediction as the starting point for continuing on to a complete, fully rendered polygon. If

this is done right, the prediction cost is contained completely within the rendering cost. This

variation requires one framebu�er for each node in the plan tree, so it is really only practical

for large memory sizes, large k, or small N .

The algorithm continues prediction as before, keeping track of unchanging runs. When we

encounter the last frame, or a frame where a polygon moves, we look back on the polygon's

history, and render the polygon into the appropriate frame bu�er. This builds a complete depth

compositing tree in a single pass, at the cost of many more framebu�ers. To draw the frames,

we composite the framebu�ers in depth-�rst order. Because all the frames are available, we can

avoid having to recomposite all levels on all frames.

Chapter 4

Cost Analysis

So little time, so little to do.

- Oscar Levant

In this chapter, we compare the costs of predictive rendering to the costs of traditional

rendering. Contrasting these numbers gives us an idea of how useful predictive rendering will

be. If the prediction costs are small compared to the total work required, then factoring out a

few static polygons will more than make up for our additional prediction work. If prediction

costs are large compared to the total work, then very signi�cant amounts of the picture may

need to be stationary before any savings are realized.

We will concentrate on two main architectural paradigms. The �rst architectural model is

the single processor system. This architecture uses a single processor to sequentially compute

all components of the rendering process for a single polygon. This does not necessarily imply

that a system has a single processing unit - only that there is a single processor working on

the complete graphics transformations of a single primitive at any one time. This encompasses

architectures where there is a main CPU and a specialized graphics board CPU. Note again

that this de�nition also encompasses multiprocessors containing potentially hundreds of CPUs,

as long as each CPU does all the work for a single primitive. Because a single processor must

do all the work, avoiding the latter parts of the pipeline can provide important savings. Thus,

this type of architecture bene�ts the most by predictive rendering. The costs of prediction are

balanced against the total amount of pipeline work that is avoided. The single processor model

encompasses a large class of machines, including the IBM PC, SGI Reality Engine series, and

Nintendo and Sega game systems.

The second type of architectural model is the multiprocessor system. Systems of this type

contain a series of specialized hardware modules, each designed to perform some small part of

45

Chapter 4: Cost Analysis 46

the rendering pipeline. At any one time, there are several CPUs working on di�erent parts

of the transformation for a single primitive. Multiprocessor systems can potentially gain less

bene�t from predictive rendering, because the extra prediction costs can only be balanced

against the slowest part of the pipeline, and not the entire amount of work done. Avoiding

the latter part of the pipeline might not save appreciable work, because later work is executed

nearly simultaneously with the initial stages. As we will show, the pipeline bottleneck can still

involve enough work to make predictive rendering savings signi�cant. The SGI GTX series is a

fairly well-documented example [Akeley 88] of the multiprocessor model.

The cost of predictive rendering depends very heavily on the type of input, i.e., number

of primitives, number of vertices, and the natural grouping of related primitives. The total

speedup of predictive rendering depends on the amount of temporal coherence present, and the

cost of the prediction required to factor out common elements.

Our analysis contains a number of assumptions about rendering costs. We will consistently

underestimate the computational e�ort required for traditional rendering, by simplifying the

graphics pipeline and assigning \free" costs to non-trivial operations. For example, we have

assumed that the entire traditional rasterization phase can be done for free. It would be possible

to develop a model of expected rasterization costs (based on a large number of assumptions),

but it is much easier to assume that the whole operation can be done in zero time. Prediction

costs are overestimated where described. This makes our prediction-to-rendering cost results

extremely conservative. Section 4.1.12 contains an overview of the omitted costs, which are also

detailed in discussions of the individual pipeline operations. We have also omitted the cost of

several common graphical features, such as texturing, that might be present in many scenarios.

This futher hedges our analysis. Section 4.1.13 describes these features further.

We will look at a number of di�erent scenarios, to show how predictive rendering works with

di�erent types of input. We assume that all scenarios have no temporal coherence, implying

that predictive rendering will cost us extra work. We hope to show that this extra work is

small, and can easily be recovered in scenarios with even a little temporal coherence.

The �rst scenario (\random") consists of a database of 1000 Gouraud shaded polygons,

each with four vertices. The polygons have no particular relationship with each other, and

Chapter 4: Cost Analysis 47

can be arbitrarily positioned in space. The scene is lighted with a local viewer, and four local

lights. Light strength is attenuated with distance. The e�ects of a local viewer, local lights and

light attenuation are described in Section 4.1.4. The polygon scenario (with di�erent lighting

conditions) is described in [Akeley 88], from which we will draw heavily.

The second scenario (\blocks") consists of 1000 blocks, where each block is a �xed, closed

object composed of six polygons with four vertices each. This approximates an indoor scene,

where the majority of objects are regular and man-made. It can also approximate any voxel

or space-�lled object. The scene is Gouraud shaded and lighted with a local viewer and four

local, attenuated, lights.

The third scenario (\particles") is composed of 1000 static spheres, where each sphere is

composed of 144 polygons with four vertices each. This is a �ne enough subdivision to avoid

noticeable irregularities in silhouette edges. This scenario models particle movement, where

the motion of wind or water might be displayed with streams of small spheres. The scene is

Gouraud shaded and lighted with a local viewer and four local, attenuated lights.

The �nal scenario (\molecules") is made up of 1000 �ctional, two atom molecules. Each

molecule consists of a two atoms joined by a cylindrical connector. Atoms are approximated

with 144, four vertex polygons, while the connector uses 12, four vertex polygons. For our

example, atoms do not change size, shape, or relative position, and globally rotate around the

center of the connector. The molecule scenario is lighted with a local viewer and four local

attenuated lights.

Figure 4.1 shows the components of the various scenarios. Examples of all scenes are shown

in Chapter 5.

The total number of components in each scenario are summarized in Table 4.2.

Scenario Components Polygons/Component Total Polygons Total Vertices

random 1000 1 1,000 4,000

blocks 1000 6 6,000 24,000

particles 1000 144 144,000 576,000

molecules 1000 300 300,000 1,200,000

Table 4.2: Scenario Polygon and Vertex Count

Chapter 4: Cost Analysis 48

Figure 4.1: Analysis Scenario Components

4.1 Single Processor System

In a single processor system, all steps of the graphics pipeline (for a particular primitive) are

carried out by the same processor. If we can avoid having to draw a primitive on a particular

frame, we can avoid all the work needed to send that primitive through the pipeline. Figure 4.2

shows the general steps of the single processor graphics pipeline.

4.1.1 Transferring Data to the Pipeline

In an immediate mode graphics system, the object database must be fed into the graphics

pipeline for each and every frame. This adds extra cost, but also gives the user programs a

great deal of
exibility, allowing easy addition, deletion and modi�cation of graphics objects.

The graphics database consists of vertex and normal information. Each vertex consists of an

(x; y; z)
oating point value. Some of the vertices and faces require three element (nx; ny; nx)

Chapter 4: Cost Analysis 49

display

database
traversal

modelling
transformation lighting

viewport
mappingclippingviewing

transformation

rasterization

Figure 4.2: Single Processor Graphics Pipeline

normals, used to compute polygon lighting. The \random" scenario can contain non-coplanar

polygons, and so requires a normal for every vertex. The \particles" and \molecules" scenarios

both contain curved objects approximated by
at surfaces, and so also require a normal for

every vertex. The \blocks" scenario can get away with only one normal per side, instead of one

normal per vertex.

The data transfer costs for the various scenarios are summarized in Table 4.3, assuming

four bytes per
oat. The data transfer cost is the expense of loading the information into the

system. The application program will usually store the object database much more compactly.

The prediction phase also requires transferring data into the graphics pipeline, because we

assume that both prediction and rendering are done with essentially the same code. Depending

on our particular scenario, we can dramatically reduce the amount of data sent into the pre-

diction pipeline. Ideally, we want to group large numbers of polygons into a single prediction

Chapter 4: Cost Analysis 50

Scenario Vertices Normals Floats Data

random 4,000 4,000 24,000 93.8 KB

blocks 24,000 6,000 90,000 351.6 KB

particles 576,000 576,000 3,456,000 13,500 KB

molecules 1,200,000 1,200,000 7,200,000 28,125 KB

Table 4.3: Rendering - Transferring to the Pipeline

primitive. Tracking a single primitive is much cheaper than tracking all of a primitive's com-

ponents. Luckily, polygons can be grouped naturally to model real-world things, even if only

to place six faces together to form a solid object.

The \random" scenario requires a polygon prediction primitive, where each graphics polygon

is predicted using all four vertices. The number of rendering and prediction vertices are the

same, providing no savings.

Each block in the \blocks" scenario can be predicted using a block prediction primitive. The

six sides and 24 vertices of the static block can be predicted with an eight vertex prediction

primitive. This reduces the number of prediction vertices to 1

3
of the rendering vertices. We

could also use an octahedron primitive, and reduce the cost even more.

We can gain an even greater data reduction in the \particles" scenario. Each particle can be

predicted with an octahedron prediction primitive. This reduces the 144 sides and 576 vertices

to six vertices - 1% of the original vertices.

The greatest data reduction can be achieved in the \molecules" scenario. The motion of

a molecule, with 300 sides and 1200 vertices, can be predicted with a six vertex octahedron.

The prediction requires about 0:5% of the original vertices. Note that the data transfer costs of

predictive rendering remain the same even if we dramatically increase the number of polygons

used to make up a molecule.

Each prediction primitive vertex requires a three
oat (x; y; z) value. We assume all points

have an implicit homogeneous coordinate w = 1. No normals are required for the prediction

phase. Table 4.4 shows the data transfer costs for the prediction, again assuming four bytes

per
oat.

Obviously, the more complex the graphical object, the greater the savings we can achieve by

Chapter 4: Cost Analysis 51

Scenario Prediction Primitives Predictive Vertices Floats Data

random 1,000 4,000 12,000 46.9 KB

blocks 1,000 8,000 24,000 93.8 KB

particles 1,000 6,000 18,000 70.3 KB

molecules 1,000 6,000 18,000 70.3 KB

Table 4.4: Prediction - Transferring to the Pipeline

predicting it with a few vertices. This means that prediction costs will stay constant as objects

are given even more detail. One could imagine a single feather, translating and rotating from

an axis at the base of the shaft. It would take one prediction primitive to model and track

this motion, for cases where the feather was made up of one polygon, one million polygons, or

one billion polygons. This data reduction extends to subsequent steps in the graphics pipeline.

This is an area where signi�cant savings in the prediction cost can be achieved. The worst

case prediction scenario requires 50% of the rendering phase data transfer, while the best case

scenario requires 0:25% of the data transfer.

4.1.2 Vertex Transformation

The �rst actual step of the graphics pipeline is to transform vertices and normals from object

coordinate space into world coordinate space. This requires multiplication by a modeling ma-

trix. The modeling matrix is composed (via concatenation) of a current transformation and

any previous transformations for objects higher up in a hierarchical structure.

Before transforming individual vertices, we must �rst generate the transformation matrix.

We assume a modelling matrix stack, where new matrices are multiplied with the top stack

matrix. In the worst case, polygons are part of a very deep hierarchical structure, where there

is a matrix concatenation for every polygon in the database. This is fairly unrealistic, because

it assumes that (for example) a block consists of a single side rotated and translated six times.

Realistically, there will be many fewer concatenations, depending on the database structure.

A very
at structure may have very few concatenations. In a completely
at structure, each

modelling matrix requires no concatenations at all. We will look at the worst case and a better

case, where each general object (molecule, block, etc.) is part of a tree, and requires a single

Chapter 4: Cost Analysis 52

concatenation. A concatenation takes 64 multiplications and 48 additions. These costs are

re
ected in the various scenarios as shown in Table 4.5. When we sum up the total costs of

rendering, we will assume the concatenation cost is zero. This is the most likely case for the

molecules and particles scenario, where each object is probably independent from other objects.

Of course, it is easy to think of counter-examples. For example, the position of of a single spark

in a �reworks shower might depend on the position of a tree of parent sparks.

Scenario Concats Mults Adds

random (worst) 1,000 64,000 48,000

random (better) 1,000 64,000 48,000

blocks (worst) 6,000 384,000 288,000

blocks (better) 1,000 64,000 48,000

particles (worst) 144,000 9,216,000 6,912,000

particles (better) 1,000 64,000 48,000

molecules (worst) 300,000 19,200,000 14,400,000

molecules (better) 1,000 64,000 48,000

Table 4.5: Rendering - Model Matrix Building

The prediction phase also requires an appropriately concatenated modelling matrix. We

assume the same worst case as in the rendering phase, where prediction primitives are organized

in a deep hierarchy. We gain considerably by using more complex prediction primitives -

concatenation is per prediction primitive rather than per polygon.

It is also possible to take advantage of the concatenation to do some extra work. We can

load the multiplied viewing and projection matrices into the very bottom of the matrix stack.

As modelling matrices are concatenated onto the stack, they modify the viewing and projection

matrices. This essentially builds a single transformation matrix that takes vertices from object

coordinates into projected coordinates. The worst and best cases for predictive rendering are

now the same, where each modelling matrix requires one concatenation. Table 4.6 gives the

costs of building the matrices.

We could use this technique for the rendering phase as well. However, we will avoid it

in order to compute lighting attenuation. Light attenuation requires the distance between

the light and the vertex, computed in world coordinates. This means that vertices cannot be

transformed directly into projected coordinates; two transformations are required, with the

Chapter 4: Cost Analysis 53

Scenario Concats Mults Adds

random 1,000 64,000 48,000

blocks 1,000 64,000 48,000

particles 1,000 64,000 48,000

molecules 1,000 64,000 48,000

Table 4.6: Prediction - Model Matrix Building

lighting calculation performed as the middle step. Separating the object-to-world from the

world-to-projection transformations adds another step, described in Section 4.1.5. If we did not

compute light attenuation, we could avoid the step described in Section 4.1.5 by combining it

with the transformation matrix in the same way as predictive rendering. Of course, this would

increase the best-case concatenation cost - the viewing and projection matrix must always

be multiplied with a modelling matrix. Best-case costs would then be the \better" case in

Table 4.5.

After building the transformation matrices, we transform the vertices. Transforming a four

element vector by a 4� 4 matrix requires 16 multiplications and 12 additions. Given that the

4th element of each vector is always one, it is possible to just sum to �nd the new w, avoiding

any unnecessary multiplication by one. This shortcut removes four multiplications, leaving 12

multiplications and 12 additions per vertex transformation. The costs of the rendering phase

vertex transformations are shown in Table 4.7.

Scenario Polygons Vertices Mults Adds

random 1,000 4,000 48,000 48,000

blocks 6,000 24,000 288,000 288,000

particles 144,000 576,000 6,912,000 6,912,000

molecules 300,000 1,200,000 14,400,000 14,400,000

Table 4.7: Rendering - Vertex Transformation

Table 4.8 gives the costs for the object-to-projection space transformation for the prediction

phase.

Chapter 4: Cost Analysis 54

Scenario Prediction Primitives Prediction Vertices Mults Adds

random 1,000 4,000 48,000 48,000

blocks 1,000 8,000 96,000 96,000

particles 1,000 6,000 72,000 72,000

molecules 1,000 6,000 72,000 72,000

Table 4.8: Prediction - Vertex Transformation

4.1.3 Normal Transformation

In order to perform lighting calculations, each vertex normal must also be transformed from

object coordinate space to world coordinate space. Because normals are not position sensitive,

the normal transformation matrix can be shrunk to 3 � 3 size. A matrix of this size requires

nine multiplications and six additions to transform each normal. We assume (rather brashly)

that we can compute the normal transformation matrix for free. Normal transformation costs

are given in Table 4.9.

Scenario Polygons Normals Mults Adds

random 1,000 4,000 36,000 24,000

blocks 6,000 6,000 54,000 36,000

particles 144,000 576,000 5,184,000 3,456,000

molecules 300,000 1,200,000 10,800,000 7,200,000

Table 4.9: Rendering - Normal Transformation

We make an additional assumption that all normals are of unit length. If this assumption

is broken, we require another 22 multiplications and two additions per vertex to normalize. It

takes three multiplications and two additions to compute the sum of squares, with an additional

eight multiplications for the square root [Akeley 88] and eight multiplications for the inverse of

the length. There are three �nal multiplications to normalize the numerator.

The prediction phase does not need to predict normals, and so no cost is required. If

we count the multiplications required in vertex and normal transformation only, we see that

predictive rendering costs for our scenarios range between 57% and 0:3% of the rendering costs.

Chapter 4: Cost Analysis 55

4.1.4 Lighting

Given our assumption of Gouraud shading, we need to compute lighting values for each of the

polygon vertices. Lighting values are interpolated across the interior of each �nal projected

polygon.

We have assumed a local viewer, and a number of local lights. A local viewer implies that

the viewer is a �nite distance from all objects; thus the distances and directions between lights

and objects will all vary. An in�nite viewer implies that the distance and direction from an

object to the light is constant across all the objects.

A fairly common lighting model, found in [Foley 90] and originally developed by [Bui-Tuong 75]

is

~Cobject = ~Cambient +
X

Alight
~Clight[~Cdiffuse(~N � ~L) + ~Cspecular(~N � ~H)n] (4.1)

where ~Cambient, ~Cdiffuse, ~Cspecular and n are the ambient, di�use, specular and \shininess"

material properties of individual polygons. Alight is an attenuation factor that models light-

source fallo�. ~Clight is the intensity of the light, while ~N is the vertex normal, ~L is the light

direction from the vertex, and ~H is the vector halfway between the direction of the light source

and the viewer. All material and light properties except for shininess have three components

(either RGB or XYZ). This lighting model is supported by many graphics libraries, such as SGI's

GL. Indeed, GL supports even more lighting properties, such as emission and spotlighting.

Specular Term

Using local lights and local viewers adds a signi�cant additional lighting burden. When the

viewer is local, the halfway vector ~H varies across the polygon, and so the dot product (~N � ~H)

must be recomputed for each polygonal vertex, assuming a normal per vertex. The halfway

vector ~H can be computed as

~H =
~L+ ~V

k~L+ ~V k
(4.2)

where ~V is the vector from the object to the viewer, and ~L is the vector from the object to the

light.

Chapter 4: Cost Analysis 56

The denominator requires three additions to add the vectors, three multiplications and two

additions to compute the sum of squares, and an estimated 16 multiplications to compute the

reciprocal square root. The �nal result requires another three more numerator-denominator

multiplications, for a total of 22 multiplications and �ve additions. We assume ~L and ~V are

computed for free.

For comparison, we also tabulate the case with in�nitely distant lights and an in�nitely

distant viewer. When the viewer and light sources are in�nite, both ~L and ~V are constant

for a given light, and so ~H needs to be computed no more than once per frame. This is

computationally negligible.

Computing (~N � ~H) requires three multiplications and two additions. This must be computed

once per vertex in both the local and in�nite cases. We assume the power of n term can be

computed via table lookup. The power product only needs to be computed once per RGB

element, and requires an additional three multiplications to account for the ~Cspecular factor.

The total specular cost for a single light, local case is 28 multiplications and seven additions

per vertex, while the in�nite case is six multiplications and two additions.

Di�use Term

The di�use component requires 3 multiplications and 2 additions to compute the (~N � ~L) dot

product. This factor must then be multiplied once per RGB component for a total cost of 6

multiplications and 2 additions. The di�use component must be computed once per normal in

both the local and in�nite cases.

Attenuation

Energy from a point light source falls o� with the inverse square of the distance from the light

source. In order to model this energy fallo�, light intensity is often modi�ed by an attenuation

factorAlight. This attenuation factor is not always an inverse square model - it is often computed

in ways that are physically inaccurate for a point light source, but more pleasing aesthetically.

Attenuation does not apply to in�nite light sources. We will use the SGI GL library version of

Chapter 4: Cost Analysis 57

attenuation, where

Alight =
1:0

(Kconstant +Klinear �D +Ksquared �D �D)
(4.3)

where D is the distance between the vertex and a light, and Kconstant, Klinear and Ksquared are

parameters that model light attenuation dependent and independent of vertex distance.

To make our attenuation model simple (and to hedge our prediction costs even more), we

will assume that the Ksquared term is always zero. To compute the distance D, we require 3

subtractions, 3 multiplications, and 2 additions, with an additional 8 multiplications to compute

the square root of the distance sum of squares. We need another addition and multiplication

to compute the denominator, 8 more multiplications to compute the reciprocal, and 3 multipli-

cations to factor in the Clight product, for a total of 23 multiplications, and 6 additions. The

light attenuation cost is per vertex, per attenuated light.

Putting It Together

The ambient term does not require any additional computation. It takes 3 additions to add the

specular and di�use products, followed by 3 multiplications to factor in the Clight value.

Multiple Lights

The local case requires a total of 60 multiplications and 18 additions, while the in�nite case

requires 15 multiplications and 7 additions. The costs per scenario for the local case and in�nite

cases are shown in Table 4.10.

These costs are for a single light, and do not include any over
ow checking, or possible

optimizations.

Our test cases call for a scene with four local lights. Table 4.11 shows the �nite cases and

in�nite cases multiplied by four, with an additional 9 additions to per vertex to compute the

grand lighted sum.

Of course, the predictive phase does not require any lighting calculations.

Chapter 4: Cost Analysis 58

Scenario Polygons Vertices Mults Adds

random (local) 1,000 4,000 240,000 72,000

random (in�nite) 1,000 4,000 60,000 28,000

blocks (local) 6,000 24,000 1,440,000 432,000

blocks (in�nite) 6,000 24,000 360,000 168,000

particles (local) 144,000 576,000 34,560,000 10,368,000

particles (in�nite) 144,000 576,000 8,640,000 4,032,000

molecules (local) 300,000 1,200,000 72,200,000 21,600,000

molecules (in�nite) 300,000 1,200,000 18,000,000 8,400,000

Table 4.10: Rendering - Lighting (1 light)

Scenario Polygons Vertices Mults Adds

random (local) 1,000 4,000 960,000 324,000

random (in�nite) 1,000 4,000 240,000 148,000

blocks (local) 6,000 24,000 5,760,000 1,944,000

blocks (in�nite) 6,000 24,000 1,440,000 888,000

particles (local) 144,000 576,000 138,240,000 46,656,000

particles (in�nite) 144,000 576,000 34,560,000 21,130,000

molecules (local) 300,000 1,200,000 288,000,000 97,200,000

molecules (in�nite) 300,000 1,200,000 72,000,000 44,400,000

Table 4.11: Rendering - Lighting (4 lights)

4.1.5 Viewing Transformation

If we use a light model with light source attenuation, we need to transform object space vertices

to projection coordinates in two distinct phases. The �rst phase takes object coordinates into

world coordinates, where light-vertex distances can be computed for the attenuation calculation.

World coordinate vertices must then be further transformed into projection coordinates. This

transformation requires multiplying polygon vertices with a 4� 4 viewing matrix composed of

an eye matrix and a projection matrix. This would normally require 16 multiplications and 12

additions per vertex. We can take advantage of the sparseness of the viewing matrix to reduce

the number of multiplications to 8 and the number of additions to 6, as per [Akeley 88]. The

costs of the rendering-phase world-to-projection transformation are shown in Table 4.12.

The prediction phase can transform vertices in a single pass, and so does not require this

step.

Chapter 4: Cost Analysis 59

Scenario Polygons Vertices Mults Adds

random 1,000 4,000 32,000 24,000

blocks 6,000 24,000 192,000 144,000

particles 144,000 576,000 4,608,000 3,456,000

molecules 300,000 1,200,000 9,600,000 7,200,000

Table 4.12: Rendering - 2nd Phase Vertex Transformation

4.1.6 Clipping

The �rst few steps of the rendering pipeline can be characterized and measured fairly concretely.

Subsequent steps, starting with clipping, depend heavily on particular characteristics of the

object database. We are required to make some fairly large assumptions, keeping in mind how

easy it is for our assumptions to be violated.

In the clipping phase, primitives are clipped to a 3D viewing volume. Akeley describes a SGI

implementation of the Sutherland and Hodgeman [Sutherland 74] clipping algorithm that clip-

tests primitives to any one of the six possible bounding planes of the projection volume. Each

primitive requires one comparison per vertex per clipping plane. At a cost of 6 comparisons

per vertex, the clip-test costs for our sample scenarios are shown in Table 4.13.

Scenario Polygons Vertices Comparisons

random 1,000 4,000 24,000

blocks 6,000 24,000 144,000

particles 144,000 576,000 3,456,000

molecules 300,000 1,200,000 7,200,000

Table 4.13: Rendering - Clipping Comparisons

The clipping costs given above only determine if a primitive needs to be clipped or not;

there is additional cost if a primitive must actually be clipped. The cost for clipping is variable,

depending on the polygon. Akeley claims that it is common to assume that 10% or fewer of the

primitives require actual clip intersection work. If the number of polygons requiring additional

work is much greater than this, the total cost can increase dramatically. Clipping can introduce

additional vertices. To make things easy, we assume that no polygons need clip work - a very

generous allowance, indeed.

Chapter 4: Cost Analysis 60

Although we have described a clipping algorithm for the predictive rendering process, we

choose not to implement it for our analysis.

4.1.7 Projection

After vertices have been clipped in homogeneous space, they must be projected against the

viewplane. Projection is accomplished by dividing the x, y and z vertex components by w. This

costs 8 multiplications (per vertex) to compute 1

w
, and 3 additional multiplications (per vertex)

to project individual components. The rendering costs are shown in Table 4.14, assuming no

extra vertices have been introduced in the clipping phase.

Scenario Polygons Vertices Multiplications

random 1,000 4,000 44,000

blocks 6,000 24,000 264,000

particles 144,000 576,000 6,336,000

molecules 300,000 1,200,000 13,200,000

Table 4.14: Viewplane Projection

The predictive rendering phase also requires projection to the viewplane. In the rendering

phase, the z value is needed to compute interpolated z values for the depth bu�ering phase.

There is no such requirement for predictive rendering, so projection requires only 10 multipli-

cations per predictive vertex. Costs are shown in Table 4.15.

Scenario Prediction Vertices Multiplications

random 4,000 40,000

blocks 8,000 80,000

particles 6,000 60,000

molecules 6,000 60,000

Table 4.15: Prediction - Viewplane Projection

4.1.8 Viewport Mapping

Before scan converting and doing depth comparison, the projected vertices must be converted

into screen space. The x and y coordinates must be multiplied by a scale factor, and added to

Chapter 4: Cost Analysis 61

an o�set. Costs are shown in Table 4.16.

Scenario Polygons Vertices Mults Adds

random 1,000 4,000 8,000 8,000

blocks 6,000 24,000 48,000 48,000

particles 144,000 576,000 1,152,000 1,152,000

molecules 300,000 1,200,000 2,400,000 2,400,000

Table 4.16: Viewport Mapping

The predictive phase keeps all vertices in viewplane coordinates, choosing to instead convert

the \motion �" from screen to world viewplane coordinates, a negligible cost.

At this point, the rendering and predictive pipelines diverge. Up to now, the predictive phase

could be accomplished by using a selective subset of the regular pipeline. Now, the prediction

phase requires some small computations not currently supported by commercial libraries, while

the rendering phases needs signi�cant additional work before it can display polygons. We will

complete the additional costs of predictive rendering before �nishing the rendering pipeline.

4.1.9 Transferring Data from the Pipeline

The prediction data must be obtained from the pipeline, and compared against last frame's

positions. Technically, only the projected x and y components are required for each vertex.

The �nal z component is not used in the prediction. However, it is likely that any mechanism

to get at the data will provide the z component as well, giving costs as shown in Table 4.4.

After obtaining the data, each x and y component must be compared with a motion thresh-

old �. This requires two subtractions, two absolute values, and two comparisons per vertex.

We assume an absolute value can be computed with one comparison, giving a total of �ve

comparisons per vertex. Comparison costs are as shown in Table 4.17.

Scenario Total Predictive Vertices Subtractions Comparisons

random 4,000 8,000 20,000

blocks 8,000 16,000 40,000

particles 6,000 12,000 30,000

molecules 6,000 12,000 30,000

Table 4.17: Prediction - Comparing Against Past Vertices

Chapter 4: Cost Analysis 62

4.1.10 Depth Compositing

There are some additional costs to predictive rendering beyond the actual prediction. During

rendering, scratch framebu�ers must be depth composited together to form a �nal result.

For a scenario with a k-tree, andN frame lookahead, we need to depth composite logk(N)+1

individual bu�ers together. Given that the last bu�er is the target, we need logk(N) composites,

where each depth composite operates over a framebu�er of height H and width W . For each

pixel composite, we need to read a depth bu�er, and potentially write a depth bu�er and an

RGBA value, for a total of 6 framebu�er operations. Thus, the total depth compositing cost is

6HWlogk(N).

This cost is non-trivial, especially on systems with poor depth bu�er access support. How-

ever, the cost is �xed. As well, the extra framebu�er accesses required for depth compositing are

somewhat mitigated by a reduced number of framebu�er accesses required to rasterize incoming

polygons.

We can reduce our depth compositing costs with a few simple modi�cations. During the

rendering phase, we keep track of the number of polygons sent to each scratch bu�er. Scratch

bu�ers with no elements do not need to be composited (or cleared) on this frame. This does

not always ensure a speedup, but does prevent unnecessary depth compositing. Minimizing the

number of levels in the k-tree also helps.

We can also implement on-the-
y depth compositing (described in Section 3.3.1. This

compositing method reduces the total number of frame composites from (N)logk(N) to N � 1,

resulting in a fairly signi�cant improvement in cost.

4.1.11 Rasterization

We now return to the rendering pipeline. The rasterization phase converts clipped and projected

polygons into pixel values, and places them in the framebu�er. Rasterization requires sorting

polygon vertices by screen coordinates, breaking polygons into chunks, and determining object

boundaries by computing the location of edges between vertices. Pixel colors and z values are

interpolated between edges of a polygon, and all pixels are submitted to the z bu�er.

In the rasterization phase, it becomes much trickier to characterize the computational cost,

Chapter 4: Cost Analysis 63

so in true cavalier fashion we will not even bother.

4.1.12 Single Processor Totals

We can sum up the required totals for our simple scenarios, giving an approximate idea of the

cost of predictive rendering vs. the cost of actually rendering. We have assumed a case where

concatenations cost nothing, no primitives are clipped, normals are pre-normalized, and ~L, ~V

and inverse normal matrices are all computed for free. Rasterization costs are also magically

avoided, mainly because they are too hard to estimate accurately. Because of the signi�cant

underestimation of costs, any of these costs greater than zero improves the attractiveness of

predictive rendering.

We do not include depth compositing in the predictive rendering costs, because compositing

is not technically prediction; it is used during the actual rendering only if prediction is used.

Compositing costs are not related to the scene contents, except as this a�ects the depth of the

compositing tree.

Table 4.18 summarizes the costs for the random scenario. The total prediction cost (for

multiplications only) is about 13:5% of the total drawing costs, given our restrictions. Imple-

mented costs should be lower, with actual clipping and rasterization. Because there are the same

number of predictive and actual vertices, the transformation costs are nearly the same. Only

the lighting makes a signi�cant di�erence - an important consideration with a multiprocessor

architecture.

Table 4.19 summarizes the costs for the block scenario. The total prediction cost (for

multiplications only) is about 3:6% of the total rendering costs. The lighting component is less

of the total cost, because the number of predictive primitives and actual primitives are now

di�erent.

Table 4.20 summarizes the costs for the particle scenario. The total prediction cost (for

multiplications only) is about 0:1% of the total rendering costs. There is a signi�cant di�erence

between the number of actual and predictive vertices transformed.

Table 4.21 summarizes the costs for the molecule scenario. The total prediction costs (for

multiplications only) range about 0:05% (1

2000
) of the total rendering costs. In a scenario where

Chapter 4: Cost Analysis 64

Action Mults Mults Add Add Comps Comps Data Data

(rend) (pred) (rend) (pred) (rend) (pred) (rend) (pred)

transfer in 93.8 46.9

concatenation 64,000 48,000

vertex trans 48,000 48,000 48,000 48,000

normal trans 36,000 24,000

lighting 960,000 324,000

vertex trans 32,000 24,000

clipping 24,000

projection 44,000 40,000

viewport 8,000 8,000

transfer out 46.9

compare 8,000 20,000

totals 1,128,000 152,000 426,000 104,000 24,000 20,000 93.8 93.8

% of rendering 13.5% 24.4% 83.3% 100%

Table 4.18: Random Scenario - Rendering vs. Prediction

there is no lighting (or normals), the cost of predictive rendering is still about 0:5% of the total

cost to render a frame. When predictive rendering costs are this low relative to the complete

cost, it pays to run predictive rendering continuously, irregardless of how much frame coherence

is expected. Even a tiny bit of frame coherence will recoup the prediction costs.

4.1.13 Analysis of Simpli�cations and Omissions

We have skipped a number of elements that could easily be added to the pipeline. These

additional costs can more than compensate for savings due to code and calculation optimizations

that we have skipped over in the analysis. For example, lights supported by the SGI GL library

can also have distance squared attenuation and directional spotlighting. Materials can have

emission and transparency, as well as being textured and antialiased. Texturing alone adds

a very signi�cant resource drain on the pipeline. We also made a number of fairly strong

assumptions about costs (listed in the previous section), including quite of a bit of \free" work.

By skipping these extra costs, we make the analysis a great deal more conservative, at the

expense of reporting better prediction-to-drawing ratios.

This purpose of this section is to show that prediction is inexpensive compared to drawing;

Chapter 4: Cost Analysis 65

Action Mults Mults Add Add Comps Comps Data Data

(rend) (pred) (rend) (pred) (rend) (pred) (rend) (pred)

transfer in 351.6 93.8

concatenation 64,000 48,000

vertex trans 288,000 96,000 288,000 96,000

normal trans 54,000 36,000

lighting 5,760,000 1,944,000

vertex trans 192,000 144,000

clipping 144,000

projection 264,000 80,000

viewport 48,000 48,000

transfer out 93.8

compare 16,000 40,000

totals 6,606,000 240,000 2,460,000 160,000 144,000 40,000 351.6 187.6

% of rendering 3.6% 6.5% 27.8% 53.3%

Table 4.19: Blocks Scenario - Rendering vs. Prediction

thus we can predict almost all of the time. During periods of high frame coherence, the pre-

diction will pay o� in big speedups, while other times, the prediction cost will be essentially

wasted. The important point is that prediction can be performed as a very small fraction of

the total work required.

4.2 Multiprocessor System

Higher-end graphics hardware often uses more than one CPU to speed up computations. One

of the most common scenarios is hardware pipelining, where several special-purpose CPUs are

strung together in a row. Each CPU works on a single phase of the total transformation.

This can speed things up dramatically; as soon as the �rst primitive has made it through the

pipeline, all CPUs have something to work on in parallel. The total cost for the drawing process

(ignoring the lag while the pipeline �lls) is then the cost of the slowest phase in the pipeline.

Predictive rendering cost is now the slowest phase in the transformation, compared with the

slowest phase in general rendering. We need to look at the separation of the tasks into CPUs

to determine how a particular architecture a�ects predictive rendering.

In order to give a concrete example, we will look at the Geometry Engine hardware described

Chapter 4: Cost Analysis 66

Action Mults Mults Add Add Comps Comps Data Data

(rend) (pred) (rend) (pred) (rend) (pred) (rend) (pred)

trans in 13,500 70.3

concat 64,000 48,000

vertex trans 6,912,000 72,000 6,912,000 72,000

normal trans 5,184,000 3,456,000

lighting 138,240,000 46,656,000

vertex trans 4,604,000 3,456,000

clipping 3,456,000

projection 6,336,000 60,000

viewport 1,152,000 1,152,000

trans out 70.3

compare 12,000 30,000

totals 162,428,000 196,000 61,632,000 132,000 3,456,000 30,000 13,500 140.6

% of render 0.1% 0.2% 0.9% 1.0%

Table 4.20: Particles Scenario - Rendering vs. Prediction

in [Akeley 88]. The hardware diagram is shown in Figure 4.3, and forms the basis for the SGI

GTX series. The GTX is one of SGI's so-called \second-generation" workstations.

The GTX pipeline is divided into four main subsystems: the geometry subsystem, the scan-

conversion subsystem, the raster subsystem, and the display subsystem. Of the most interest

is the geometry subsystem, which consists of 5 \Geometry Engines", each with a speci�c task.

The �ve tasks are

1. Transforming vertices, normals, and matrices, maintaining matrix stacks, and normalizing

normals.

2. Lighting calculations.

3. Clip testing.

4. Perspective division, and clipping when required.

5. Viewport transformation, color range clamping, and depthcueing calculations.

We can group our single CPU totals by Geometry Engine tasks. The tasks are not equally

divided, partially because of our assumptions about clipping and lighting. Predictive rendering

Chapter 4: Cost Analysis 67

Action Mults Mults Add Add Comps Comps Data Data

(rend) (pred) (rend) (pred) (rend) (pred) (rend) (pred)

trans in 28,125 70.3

concat 64,000 48,000

vertex trans 14,400,000 72,000 14,400,000 72,000

normal trans 10,800,000 7,200,000

lighting 288,000,000 97,200,000

vertex trans 9,600,000 7,200,000

clipping 7,200,000

projection 13,200,000 60,000

viewport 2,400,000 2,400,000

trans out 70.3

compare 12,000 30,000

totals 338,400,000 196,000 128,400,000 132,000 7,200,000 30,000 28,125 140.6

% of render 0.05% 0.1% 0.4% 0.55%

Table 4.21: Molecules Scenario - Rendering vs. Prediction

can almost be completed entirely within the �rst Geometry Engine. We place the predictive

rendering comparison function in the viewport Geometry Engine. Table 4.22 shows the new

totals.

Action Mults Mults Add Add Comps Comps Data Data

(rend) (pred) (rend) (pred) (rend) (pred) (rend) (pred)

trans 116,000 128,000 96,000 96,000 93.8 46.9

lighting 960,000 324,000

clipping 24,000

perspective 44,000 40,000

viewport 8,000 8,000 8,000 24,000 46.9

% of b-neck 17.5% 32.1% 100% 50%

Table 4.22: Multiprocessor Random Scenario - Rendering vs. Prediction

Table 4.23 shows the totals for the molecular scenario.

We ignore the lag caused by the �rst primitive working its way through the pipeline, and

assume that all hardware elements are always busy. Then, the total cost for rendering is the

bottleneck of the system. As can be seen, the multiprocessor hardware paradigm bottleneck is

in the lighting. We have neglected clipping, texturing and rasterization as potential bottlenecks,

although they certainly are good candidates. To compute the ratio of prediction to rendering,

Chapter 4: Cost Analysis 68

Action Mults Mults Add Add Comps Comps Data Data

(rend) (pred) (rend) (pred) (rend) (pred) (rend) (pred)

trans 34,800,000 136,000 28,800,000 120,000 28,125 70.3

lighting 288,000,000 97,200,000

clipping 7,200,000

perspective 13,200,000 60,000

viewport 2,400,000 2,400,000 12,000 36,000 70.3

% of b-neck 0.07% 0.13% 0.5% 0.5%

Table 4.23: Multiprocessor Molecules Scenario - Rendering vs. Prediction

we must compare prediction and rendering bottlenecks. The cost of predictive rendering is

still very favorable, mainly because the lighting cost is so great. This implies that predictive

rendering should be useful in both single and multiprocessor systems, given our scenarios.

It is interesting to note that the SGI Reality Engine [Akeley 93] hardware, which forms

the basis for SGI's �rst \third-generation" workstation, is based on the single processor model.

Each (of potentially many) Geometry Engines works on a single polygon, starting at the initial

transformation and ending with the computation of slope and texture information. This means

that the new third-generation of SGIs should work well with predictive rendering.

It is important to realize that these cost approximations are abstract; that is, they are com-

puted by looking at a typical graphics pipeline, rather than a speci�c brand name's pipeline.

Individual manufacturers may add little hardware and software twists to the process that change

the estimations. For example, we assume that our prediction primitives are not sent needlessly

through extra steps, doing null clipping, null lighting, null texturing, etc. How many extra steps

we need depends on what sort of access we can get to the pipeline. However, several important

points should be clear from this section. First, predictive rendering allows signi�cant savings

if we can make single predictions to track objects composed of large groups of polygons. Sec-

ondly, predictive rendering is more e�ective for high-cost, high-work scenes. Finally, predictive

rendering and graphics rendering do almost all the same work, so that any modi�cations or

improvements to the pipeline will a�ect both drawing and prediction equally.

Chapter 4: Cost Analysis 69

Geometry

engine

Primitives

enter the pipeline

Geometry

engine

Geometry

engine

Geometry

engine

Geometry

engine

Polygon
processor

Edge
processor

engine
Image

VRAM

engine
Image

VRAM

engine
Image

VRAM

engine
Image

VRAM

Span
processor

Graphics
processor

Lookup
table

engine
Image

VRAM

engine
Image

VRAM

engine
Image

VRAM

engine
Image

VRAM

Span
processor

Graphics
processor

Lookup
table

engine
Image

VRAM

subsystem

engine
Image

VRAM

engine
Image

VRAM

engine
Image

VRAM

Span
processor

Graphics
processor

Lookup
table

engine
Image

VRAM

engine
Image

VRAM

engine
Image

VRAM

engine
Image

VRAM

Span
processor

Graphics
processor

Lookup
table

D-A converter Monitor

Geometric transformation PerspectiveLighting Clipping Conversion to integer

Display

Raster

Geometry
subsystem

Scan conversion
subsystem

subsystem

Figure 4.3: SGI GTX System Layout, adapted from Akeley 88 and Foley 90

Chapter 5

Implementation and Results

The essence of science: ask an impertinent question, and you are on the way to a pertinent

answer.

- Jacob Bronowski

In order to test the predictive rendering algorithm, we implemented it on SGI workstations,

running IRIX 5.3. The GL graphics language provided a good deal of software support.

5.1 Design Decisions

In this section, we describe some of the design decisions and problems that we encountered while

implementing predictive rendering. These design choices are speci�c to our hardware, and its

graphics software support. The discussion is included to give other prospective implementers

an idea of potential roadblocks when using the SGI system, or other similar machines.

5.1.1 Organization of Scratch Framebu�ers

There are several possible options for organizing the scratch framebu�ers. The two main com-

peting methods essentially either placed framebu�ers in separate windows, or grouped them

together into one large window. We eventually decided to open framebu�ers as a single, large

window and subsequently divide them up through the use of viewports. GL keeps separate

context information for each window, including a transformation stack. With multiple windows

(and stacks), a hierarchical data structure requires updating more than one matrix stack per

primitive. For example, if primitive A is transformed and drawn in framebu�er A, any child

primitive B must also be transformed by A's motion before being transformed and drawn into

framebu�er B. By keeping all the scratch bu�ers as a single window, we avoid having to main-

tain transformation stacks for individual windows. This is cleaner, quicker, and more intuitive.

70

Chapter 5: Implementation and Results 71

Using a single large window also reduces other types of overhead. Lights, textures, viewpoints,

and materials only need to be de�ned and changed once, rather than for each scratch bu�er.

5.1.2 Visibility of Scratch Framebu�ers

We should not need to show the scratch framebu�ers at all, except as an intermediate step for

understanding. Unfortunately, the SGI's framebu�er organization turns out to be the biggest

roadblock to the implementation of predictive rendering. The main problem is that the GL

library requires actual screen space for a depth bu�ered framebu�er. This means that all scratch

bu�ers (and the main window) must physically �t on the screen, without overlapping. It also

implies that all scratch bu�ers must always be open on screen.

Practically, this is an extremely annoying restriction. First, this means that predictive

rendering is constrained to window sizes that are small enough to all �t on the screen. Second,

N is now implicitly restricted by screen size. We can squeeze a little extra space out by using

the front and back bu�ers as separate scratch bu�ers, doubling the number of levels we need,

but the principal of framebu�er restriction remains. Thirdly, we would like to avoid having

the scratch bu�ers visible. A visible scratch bu�er is confusing, detracting, and breaks the

abstraction that predictive rendering is almost exactly the same as regular rendering. Even

more annoying - if we use both front and back bu�ers as scratch areas, we have to make sure

we don't draw anything else on top of a window that is not redrawn on each frame. Using only

the back bu�er for scratch protects against this, as long as the scratch bu�ers are not covered

with another doublebu�ered window.

There is nothing special about predictive rendering that prevents these problems from being

overcome. On some systems (not ours) solutions already exist. Some systems o�er additional

framebu�er hardware that allows more screens, and thus hidden scratch bu�ers. Higher-end

machines, such as the Reality Engine and Impact, also o�er quadbu�ering, allowing more

framebu�er space. Extra framebu�er space allows scratch bu�ers to be hidden. On systems

that perform depth bu�ering in software, one can easily expand framebu�er space by expanding

memory. Virtual framebu�ers can be added almost without limit, and can also be nicely hidden

from the user's view. This model matches a great many types of computers.

Chapter 5: Implementation and Results 72

The only real restriction is on systems where depth bu�ering is performed by a scarce amount

of specialized hardware. Unfortunately, this �ts the description of our current implementation

hardware. We attempt to get around this by restricting our window sizes to 1

4
of the screen

(about video size). Using one of the scratch framebu�ers as our master bu�er, this allows up

to four levels using single bu�ers, and seven levels using doublebu�ering (assuming the master

bu�er cannot be doubled up). In order to remove the scratch framebu�ers from the screen, we

set the overlay planes to block out everything but the master window. This removes most of

the unsightly temporary work, while still allowing temporary drawing.

5.1.3 Feedback

One of the big advantages of predictive rendering is that it very closely �ts existing graph-

ics pipelines. We initially hoped to use existing hardware to produce the prediction, taking

advantage of shortcuts and speedups built into the system.

The GL system provides direct access to the graphics pipeline through a \feedback" mech-

anism. In feedback mode, transformed vertices sent through the pipeline are placed in a bu�er,

rather than being drawn on the screen. We can look at this bu�er to determine how an initial

vertex was transformed. Unfortunately, the feedback mechanism sends each vertex through

the complete transformation pipeline - including all the steps that we hoped to avoid, such as

lighting and clipping. This makes feedback much slower than we would like. We don't need

or want the system to do as much work as it does. It is easy to envision a slight change to

feedback, where transformed vertices are sent through a very abbreviated pipeline before being

placed into the bu�er. The required hardware already exists completely; some
ag would be

required to tell the system to skip over certain steps.

GL's feedback mechanism clips out boundary points. In addition to being unnecessary

prediction work, it causes confusion when determining the past locations of a partially clipped

polygon. There is no way to tell if an o�-screen vertex has moved or not, because it is always

clipped out and not placed in the output bu�er. A vertex moving o�-screen requires the

rest of the on-screen vertices to be redrawn, because the polygon will have changed projected

shape. We can arti�cially expand the size of the clipping window, but the the system performs

Chapter 5: Implementation and Results 73

unneeded clipping tests that always fail to cull anything. If the clipping step is skipped, we

can determine if out-of-bounds points move or not, and nicely decide if the rest of the polygon

needs redrawing.

The feedback system also requires signi�cant pipelining of primitives - that is, we need to

send a large number of vertices into the feedback loop before looking for any results. Separating

the prediction input and results by a number of primitives makes the implementation harder.

If we had a short-circuited graphical pipeline, we would still have this problem, but the greatly

abbreviated number of steps would make it much less severe.

Instead of using feedback, we implemented the transformation steps in software. Prediction

is performed by the main CPU, avoiding the graphics pipeline altogether. This is not really very

satisfactory, because we cannot use the SGI's high performance graphics hardware. However,

it is really the only option without better access to the pipeline.

Thus, all our timing tests operate with the knowledge that we could do a lot better with

a few simple modi�cations that allow us to fully use the graphics pipeline. Unfortunately, it

also destroys any chance we have to con�rming our theoretical numbers, because we are now

comparing graphics CPU cycles vs. main CPU cycles. That is, the prediction is actually done

by the main CPU, while the rendering is sent into the pipelined, optimized, graphics subsystem.

5.1.4 Depth Compositing

The SGI supports a number of pixel copying mechanisms, allowing direct draws into both the

framebu�er and the depth bu�er. Unfortunately, there is no direct way to do an image-to-

image copy (with depth compositing) using built-in GL commands. This seems like something

of an oversight on the designers part, because of the wide number of uses for image depth

compositing.

The best way to actually do a depth composite is to use a GL construct called a \stencil".

A stencil is an entire bitplane that keeps track of the result of a previous draw. On the �rst

pass, we draw one image's depth values into the �nal depth bu�er. The stencil is set up to

mark every location where the new depth value is closer to the viewer than the old depth value.

On the second pass, we draw the color image, where pixels are drawn conditionally depending

Chapter 5: Implementation and Results 74

upon the results of the stencil. This depth compositing method takes only a few lines in GL,

and is faster than looping through both images, testing pixels individually.

Unfortunately, we did not implement the depth compositing method described in Sec-

tion 3.3.1. This would have signi�cantly reduced the overheads caused by depth compositing.

5.1.5 Selection of N

At the start of predictive rendering, we allocate the maximum number of framebu�ers allowable

for a given window size. Then, depending on the actual N and k the user chooses, we only

use some of the available framebu�ers. Allocating everything at once prevents dynamically

allocating framebu�er space on the
y. This makes implementation slightly easier, but reduces

the amount of free memory available during execution. In applications that use a wide range

of k it may be better to allocate framebu�ers on the
y.

5.2 Experimental Results

In this section, we tested the predictive rendering algorithm in a number of cases, with sev-

eral goals in mind. First, we wanted to con�rm that predictive rendering's actual strengths

and weaknesses matched our theoretical musings. Secondly, we wanted to quantify the cost of

predictive rendering based upon an actual (although not ideal) hardware and software con�g-

uration. Finally, (and perhaps most importantly) we wanted to show how predictive rendering

can improve rendering speeds dramatically.

It must be strongly noted beforehand that predictive rendering is ultimately based upon

the amount of temporal coherence between frames. We can easily make an arti�cial example

with little or no speedup, just as easily as we can create a million-times improvement. We test

our algorithm with several levels of detail and temporal coherence, so that the reader will be

left with an impression of the algorithm's potential, if not exact numbers. It is also important

to remember that timing results depend on parameters like the number of lights, texturing,

attenuation, and material property models. Thus, it is not particularly valid to predict an

experimental break-even point for anything but the most speci�c of cases.

Chapter 5: Implementation and Results 75

5.2.1 Testing the Analysis Scenarios

We start by testing out the scenarios described in the analysis section. Objects are given a

random motion within an enclosing volume. Objects leaving one volume edge \wrap around" to

the opposing edge. There are two important end cases. The �rst end case is the 100% situation

with no temporal coherence, simulated by giving all objects a very large motion component.

On each step, we expect all or almost all objects to move well beyond the movement threshold.

If we compare the timings with and without predictive rendering, we can get an idea of the

predictive penalty. This is the slowdown we must tolerate if we are checking for temporal

coherence in a scenario where there is none.

The other end case is the 1% case, where all but one percent of the objects remain stationary.

Although 1% is essentially arbitrary, it represents the other extreme - a very high temporal

coherence. Our timing tests will indicate how much speedup the predictive rendering provides

us.

There are a huge number of intermediate cases, with varying numbers of objects moving at

various speeds. We will choose three intermediate forms, where 75%, 50% and 25% of the total

number of objects remain stationary. The number of objects moving is not really as important

as the idea of gradual speedup as temporal coherence improves. Appendix A contains the

complete set of experimental conditions for each of the scenarios. Note that these parameters

directly a�ect the possible speedups. Timing tests were run on an unloaded system.

Table 5.24 shows the results for the \random" scenario variants. The \control" case shows

the timing cost without predictive rendering. Results are expressed in real-time seconds, and

are thus a�ected by slight load changes. Figure 5.1 shows the random scenario.

Variant 100% 75% 50% 25% 1%

control 66s 66s 58s 63s 61s

N = 2, k = 2 69s 65s 59s 52s 45s

N = 4, k = 2 67s 61s 51s 41s 31s

N = 8, k = 2 68s 60s 47s 37s 24s

N = 16, k = 2 68s 59s 47s 34s 22s

N = 32, k = 2 69s 60s 46s 34s 22s

Table 5.24: Test Results - Random Scenario Raw Times

Chapter 5: Implementation and Results 76

Figure 5.1: Random Scenario

Variant 100% 75% 50% 25% 1%

control 1.00 1.00 1.00 1.00 1.00

N = 2, k = 2 0.95 1.01 0.98 1.21 1.35

N = 4, k = 2 0.98 1.08 1.13 1.53 1.96

N = 8, k = 2 0.97 1.10 1.23 1.70 2.54

N = 16, k = 2 0.97 1.11 1.23 1.85 2.77

N = 32, k = 2 0.95 1.10 1.26 1.85 2.77

Table 5.25: Test Results - Random Scenario Speedups

These results are perhaps better shown as speedup factors, as shown in Table 5.25. As seen

from this Table, predictive rendering allows a best case improvement of 2:77� faster than before.

This is fairly low, given the large amount of temporal coherence. The main reason for this low

speedup is the one-to-one correspondence between prediction primitives and actual vertices.

This scenario contains the largest amount of prediction work of all the scenarios examined here.

Speedups aside, the most important numbers are really the worst cases. In situations where

there is absolutely no temporal coherence whatsoever, predictive rendering slows the system

down by at most 5%.

We can use the predictive rendering software libraries to keep track of how many polygons

Chapter 5: Implementation and Results 77

avoid the graphics pipeline. We can expresses this as as a percentage of the total number of

polygons sent to the pipeline, as shown in Table 5.26. Note that the number of polygons skipped

only equals the total percentage of stationary polygons when N is equal to the total number of

frames.

Variant 100% 75% 50% 25% 1%

control 100.00% 100.00% 100.00% 100.00% 100.00%

N = 2, k = 2 0.00% 12.50% 25.00% 37.50% 49.50%

N = 4, k = 2 0.00% 18.75% 37.50% 56.25% 74.25%

N = 8, k = 2 0.00% 21.75% 43.50% 65.25% 86.13%

N = 16, k = 2 0.00% 23.25% 46.50% 69.75% 92.07%

N = 32, k = 2 0.00% 24.00% 48.00% 72.00% 95.04%

Table 5.26: Test Results - Percentage of Random Scenario Polygons Skipped

The random case is the worst of all the test scenarios, because the cost of prediction is the

highest. The number of predictive primitives is the same as the number of actual graphical

primitives. Even so, we can obtain savings with a small amount of temporal coherence.

Due to the limitations of our implementation, the depth compositing costs are a fairly

high proportions of the total cost. We can show this by running the random scenario with

a much larger number of polygons (50,000). Now, the depth compositing cost is amortized

over a long time frame, and our speeds are increased. Table 5.27 shows the speed-up factors

for 50,000 polygons. The more polygons we use, the better the results will be. We have not

implemented on-the-
y compositing (described in Section 3.3.1) - a future improvement which

should signi�cantly reduce the depth compositing overhead.

Variant 100% 75% 50% 25% 1%

control 1.00 1.00 1.00 1.00 1.00

N = 2, k = 2 0.93 1.09 1.21 1.48 1.56

N = 4, k = 2 0.93 1.15 1.43 1.96 2.54

N = 8, k = 2 0.92 1.18 1.54 2.30 3.63

N = 16, k = 2 0.91 1.19 1.59 2.48 4.46

N = 32, k = 2 0.89 1.18 1.56 2.49 4.69

Table 5.27: Test Results - Random Scenario Speedups (50,000 Polygons)

Table 5.28 shows the speedup factors for the \blocks" scenario variants. The control time

Chapter 5: Implementation and Results 78

Figure 5.2: Blocks Scenario

Variant 100% 75% 50% 25% 1%

control 1.00 1.00 1.00 1.00 1.00

N = 2, k = 2 0.87 0.96 1.07 1.24 1.46

N = 4, k = 2 0.87 1.03 1.24 1.60 2.34

N = 8, k = 2 0.87 1.06 1.34 1.87 3.15

N = 16, k = 2 0.87 1.04 1.40 2.06 3.88

N = 32, k = 2 0.87 1.06 1.40 2.06 4.04

Table 5.28: Test Results - Blocks Scenario Speedups

was 101 seconds. Figure 5.2 shows the blocks scenario. The \block" case has a smaller number

of predictive primitives, and so performs better than the \random" case. Again, our worst case

is not particularly prohibitive compared to the possible best cases. The percentage of polygons

skipped is the same as the shown in Table 5.26.

Table 5.29 shows the results for the \particles" scenario. The control times are on the

order of 23-24 minutes. Figure 5.3 shows the particles scenario. The \particles" scenario starts

to show some extremely large speedups, mainly because a single culled predictive primitive

encompasses a non-trivial number of polygons. In the best case, we can draw a 23.6 minute

scene in a minute and a half - about 6:5% of the previous time. Table 5.29 shows the results for

Chapter 5: Implementation and Results 79

Figure 5.3: Particles Scenario

Variant 100% 75% 50% 25% 1%

control 1.00 1.00 1.00 1.00 1.00

N = 2, k = 2 0.97 1.09 1.22 1.54 1.80

N = 4, k = 2 0.96 1.16 1.45 2.17 3.47

N = 8, k = 2 1.06 1.20 1.67 2.75 6.45

N = 16, k = 2 0.95 1.24 1.67 3.13 11.27

N = 32, k = 2 1.00 1.25 1.72 3.33 15.11

Table 5.29: Test Results - Particles Scenario Speedups

the \particles" scenario. The control times are on the order of 23-24 minutes. Figure 5.3 shows

the particles scenario. We can compare the best case particle scenario with the theoretical

maximum improvement for N = 32, k = 2, and the absolute maximal improvement (where N

is the total number of frames). Results are shown in Table 5.30.

Table 5.31 shows the results for the \molecules" scenario. Control time was about 45

minutes. Figure 5.4 shows the molecules scenario. The \molecules" scenario shows how predic-

tive rendering can drastically and dramatically improve rendering costs for scenes with large

amounts of temporal coherence. The worst case costs are essentially negligible (< 2%) com-

pared to the potential improvements (13% - 1851%). This emphasizes how important it is to

Chapter 5: Implementation and Results 80

Variant 100% 75% 50% 25% 1%

N = 32, k = 2 1.00 1.25 1.72 3.33 15.11

best N = 32, k = 2 1.00 1.31 1.92 3.57 20.16

absolute 1.00 1.33 2.00 4.00 100.00

Table 5.30: Test Results - Comparision of Particles Scenario Maximal Speedups

Figure 5.4: Molecules Scenario

group complex objects into simple prediction primitives.

On our target system, the depth compositing is a real bottleneck. Thus, the speedup

depends partly on how many depth composites must be done. The number of composites

depends largely on our choices of N and k. We perform timing tests for our scenarios using

various N and k values. A �xed N and large k means fewer intermediate nodes. This is more

e�cient for cases where temporal coherence is largely separated into fast moving vs. stationary

objects. This basically describes our analysis scenarios, so we expect a large k and large N

to be the most e�cient. These improvements are not really re
ected in these scenarios very

well, because the code optimizations avoid depth compositing unused frame-bu�ers - basically

making all choices for k about the same. In this scenario, this means the k timing variations

will only re
ect other types of overhead.

Chapter 5: Implementation and Results 81

Variant 100% 75% 50% 25% 1%

control 1.00 1.00 1.00 1.00 1.00

N = 2, k = 2 0.98 1.13 1.29 1.76 1.85

N = 4, k = 2 0.99 1.25 1.70 2.25 3.69

N = 8, k = 2 0.99 1.40 1.74 2.73 6.80

N = 16, k = 2 1.06 1.33 1.72 3.31 11.43

N = 32, k = 2 1.02 1.29 1.88 3.86 18.51

Table 5.31: Test Results - Molecules Scenario Speedups

5.2.2 Testing a Scene with Changing Motion Thresholds

In this test, we vary the motion threshold � to give various levels of accuracy and speed. To

show o� the e�ect, we slow down the polygon speeds as described in Appendix A. This also

demonstrates the e�ectiveness of varying k. We use the blocks scenario and three di�erent

� = 0:01; 0:5; 1:0. Table 5.32 gives speedup factors for the � = 0:01 scenario. Table 5.33 gives

times for the � = 0:5 scenario. Table 5.34 gives times for the � = 1:0 scenario.

control 1.00 1.00 1.00 1.00 1.00

N = 2, k = 2 0.87 0.95 1.09 1.24 1.50

N = 4, k = 2 0.87 1.02 1.25 1.62 2.31

N = 8, k = 2 0.87 1.05 1.36 1.87 3.29

N = 16, k = 2 0.87 1.05 1.41 2.06 3.77

N = 32, k = 2 0.86 1.05 1.41 2.10 4.25

N = 4, k = 4 0.88 1.01 1.27 1.65 2.37

N = 8, k = 8 0.88 1.06 1.37 1.90 3.40

N = 16, k = 16 0.86 1.06 1.43 2.10 3.92

N = 32, k = 32 0.87 1.06 1.43 2.14 4.43

Table 5.32: Test Results - Blocks Scenario - delta = 0.01

When � = 0:01, the results are almost equivalent to those timed in Table 5.28. The � is too

small to exclude any moving polygons, so all speedups come from reducing the number of static

objects drawn. As � is increased to 0.5, the algorithm avoids drawing a few moving polygons.

However, the number of extra polygons skipped is barely enough to balance the extra depth

compositing costs now required by non-empty intermediate scratch bu�ers.

The real speed increase comes when � = 1:0. Now, a signi�cant number of moving blocks

can be occasionally treated as static. This is most noticeable in the 100% case, where the worst

Chapter 5: Implementation and Results 82

control 1.00 1.00 1.00 1.00 1.00

N = 2, k = 2 0.95 1.04 1.14 1.29 1.47

N = 4, k = 2 0.92 1.07 1.29 1.60 2.21

N = 8, k = 2 0.90 1.06 1.32 1.87 3.00

N = 16, k = 2 0.91 1.07 1.34 2.02 3.51

N = 32, k = 2 0.90 1.06 1.36 2.06 3.77

N = 4, k = 4 0.86 1.02 1.26 1.65 2.37

N = 8, k = 8 0.87 1.05 1.36 1.90 3.40

N = 16, k = 16 0.87 1.07 1.31 2.10 3.92

N = 32, k = 32 0.87 1.07 1.42 2.14 4.43

Table 5.33: Test Results - Blocks Scenario - delta = 0.5

control 1.00 1.00 1.00 1.00 1.00

N = 2, k = 2 1.46 1.46 1.48 1.46 1.57

N = 4, k = 2 1.31 1.46 1.62 1.83 2.24

N = 8, k = 2 1.29 1.48 1.74 2.06 3.15

N = 16, k = 2 1.26 1.40 1.68 2.24 3.60

N = 32, k = 2 1.23 1.38 1.68 2.34 3.88

N = 4, k = 4 0.88 1.04 1.27 1.65 2.34

N = 8, k = 8 0.86 1.05 1.38 1.94 3.36

N = 16, k = 16 0.87 1.07 1.40 2.10 3.88

N = 32, k = 32 0.87 1.06 1.42 2.14 4.20

Table 5.34: Test Results - Blocks Scenario - delta = 1.0

case predictive rendering is much better than the control case.

For the cases where k 6= 2, there are no intermediate scratch bu�ers. This removes any

potential for factoring out these slow moving polygons. Increasing N only adds to the additional

depth compositing costs, as most moving polygons are only considered static for a frame or two.

Because all polygons are updated every N frames, slow moving polygons are thresholded at

di�erent rates for di�erent N . Thus, the number of polygons factored out changes depending

on N .

Increasing the � value from � = 0:01 to � = 1:0 resulted in a signi�cant improvement in this

scenario's speedups. Of special note is the worst case (no temporal coherence), where predictive

rendering handily beat out the regular method. Users should decide for themselves if errors

of up to a pixel (for up to N frames in duration) are visually allowable in their particular

application.

Chapter 5: Implementation and Results 83

5.3 Future Improvements

Predictive rendering uses temporal coherence to gain speedups. We can combine this with

other types of coherence algorithms for even more speed. An obvious possible candidate is the

hierarchical depth bu�ering performed by Greene [Greene 93]. This algorithm performs object

space culling, taking advantage of depth coherence to avoid rendering already-occluded objects.

The easiest approach is to implement this culling on a level-by-level basis. Because each level

remains unchanged, we avoid having to worry about depth coherence changing across frames.

One of the predictive rendering algorithm's main strengths is its similarity to the algorithms

in the traditional graphics pipeline. As described in Section 5.1.3, we are currently not taking

advantage of this hardware support. With some fairly minor changes to the graphics pipeline,

we could perform prediction in hardware. This would reduce our measured prediction timings,

which are currently performed only in software.

Our algorithm currently does not perform on-the-
y compositing, as described in Sec-

tion 3.3.1. This is a fairly simple extension, and would greatly reduce the compositing costs.

As noted in Section 5.1.2, the practical implementation of predictive rendering requires extra

framebu�er space. This is currently handled less than satisfactorily for some SGI machines.

We expect this problem will go away with newer models of computers.

Our current implementation uses the plan tree to mark how frames change over time. The

�rst element in the plan tree is always \changing", because it always has been redrawn from

the previous set of N frames. It is possible to think of the plan tree as marking frame spaces,

rather than actual frames. Then, the �rst element in the plan tree determines if the second

frame has changed from the (implicitly always changing) �rst frame. This produces a slightly

more compact notation.

Predictive rendering takes advantage of prediction primitives to group large numbers of

related polygons into a single prediction test. The grouping is currently done a priori, and

requires some level of intelligence. In our current implementation, there is a signi�cant amount

of human intervention to determine prediction primitive groupings that are any more complex

than polygons. We could improve the grouping algorithm to make this more automatic. Ideally,

Chapter 5: Implementation and Results 84

an input �le of random polygons would produce an optimal predictive primitive grouping.

The predictive state is currently computed by looking at the motion of prediction primitives,

and the static or changing state of textures, lights and the viewpoint. At the moment, the

motion of the prediction primitives is the prime frame reuse criteria. It is interesting to think

of a system that consistently extends prediction to other graphical properties. Such a system

would base the static/changing decision on a number of \modules", each responsible for a

graphical feature, like texture, lighting, viewpoint, atmospheric properties, etc. For example,

we currently decide that a complete redraw is required for any texture pattern modi�cation, of

whatever magnitude. One might include a \texture predictor" that tracks a \texture �" and

watches to see if texture U and V coordinates have changed enough since some previous frame.

The results of the texture predictor would be integrated with the results of the \viewpoint

predictor", which determined if the e�ect of a viewpoint modi�cation was large enough to be

noticeable. Highlights could be tracked with a highlight predictor primitive, based upon light

motion in world space. It is likely that (initially, at least) many of these predictors would be

very simple: the predictor changes if the predictor's property changes. However, as algorithms

are developed to predict and bound new properties, they can easily be added to our prediction

paradigm.

Chapter 6

Conclusions

A conclusion is the place where you got tired of thinking.

- Arthur Bloch

This thesis describes a method to improve polygonal rendering rates through the use of

predictive rendering. The future behavior of polygons can be quickly predicted by using the

�rst part of the graphics pipeline. Using a polygon's future motion, we can factor out static

and slow-moving polygons. These polygons can be rendered less than once per frame. The

�nal result is created by depth compositing polygons rendered at di�erent rates. By avoiding

rendering expensive, detailed polygons, we more than compensate for our initial prediction cost.

Predictive rendering is most useful for scenes containing a high-proportion of slow moving

or static polygons, or very small polygons that change modestly when viewed from multiple

directions. A excellent example is a forest of trees blowing in the wind. Other uses include

particle systems, facial animation, or any animation that contains objects moving through a

complex static background.

The algorithm is simple to implement, and can be turned on or o� as required. It also

extends to parallel composition hardware. Predictive rendering is closely linked to the existing

graphics pipeline. With only a few minor changes, the actual hardware could be used to perform

predictive rendering, greatly improving the speed of our current implementation. Predictive

rendering becomes more advantageous as more features (such as displacement mapping, bump

mapping, more complex lighting functions, etc.) are added to the polygon rendering phase.

Disadvantages include extra framebu�ers, potentially irregular frame rates, and the cost of

unnecessary prediction work for rapidly changing databases. Predictive rendering is also less

useful for
y-throughs, where the eyepoint can change drastically between frames. We can

achieve some savings by reducing the number of times we render slowly moving distant objects.

Most close objects will change too much to be culled. However, predictive rendering is still

85

Chapter 6: Conclusions 86

useful. We can turn predictive rendering o� for active motion, and then re-activate it when the

user stops. Predictive rendering is cheap enough that it causes only a minor slowdown during

parts of the animation with no temporal coherence.

Human animators use temporal coherence to drastically reduce the total drawing work-

load. We hope that predictive rendering will similarly reduce the computational work-load for

graphics workstations. This will allow faster animations and graphical models of even greater

complexity.

Appendix A

Experimental Conditions

This section details the experimental conditions for the various timing scenarios. These con-

ditions are important because of the large number of variables involved in temporal coherence

speedup. We wish to be frank about what conditions provided what speedups.

A.1 Analysis Scenarios

All four of the analysis scenarios (\random",\block",\particles" and \molecules") are lighted

identically. Each scenario uses a local viewer, with four local, randomly positioned, lights.

Lights are randomly attenuated with distance, using SGI's linear model only. Objects are

as described in Chapter 4, and are Gouraud shaded with no texturing. Individual material

properties are assigned randomly.

Objects are given motion properties randomly chosen from the ranges shown in Table A.35,

and are allowed to move within a cube. As objects travel o� the edge of the cube, they are

transported to an opposite edge. All objects start at a randomly chosen location within the

cube. The movement threshold for these scenarios is � = 0:01 pixel. This non-zero value

prevents roundo� errors for otherwise identical results.

All scenarios ran for a total of 100 frames. A full list of properties is provided in Table A.35.

A.2 Delta Scenarios

These three scenarios used the \block" scenario, with three di�erent � values. A full list of

properties is provided in Table A.36.

87

Appendix A: Experimental Conditions 88

Property Value

computer IRIS 4DXG

processor 134 MHZ IP22

objects 1000

frames 100

window size 300 x 300 pixels

cube side 20.0 units

lights 4 random, local

viewer local

attenuation linear

num materials 50

X trans [-0.15 .. 0.15] units

Y trans [-0.15 .. 0.15] units

Z trans [-0.15 .. 0.15] units

X rot [-4.0 .. 4.0] degrees

Y rot [-4.0 .. 4.0] degrees

Z rot [-4.0 .. 4.0] degrees

� 0.01 pixels

particles p.p. radius 0.75 units

molecules p.p. radius 2.5 units

Table A.35: Analysis Scenario Experimental Motion Properties

Appendix A: Experimental Conditions 89

Property Value

computer IRIS 4DXG

processor 134 MHZ IP22

objects 1000

frames 100

window size 300 x 300 pixels

cube side 20.0 units

lights 4 random, local

viewer local

attenuation linear

num materials 50

X trans [-0.02 .. 0.02] units

Y trans [-0.02 .. 0.02] units

Z trans [-0.02 .. 0.02] units

X rot [-1.0 .. 1.0] degrees

Y rot [-1.0 .. 1.0] degrees

Z rot [-1.0 .. 1.0] degrees

� 0.01 pixels, 0.5 pixels, 1.0 pixels

particles p.p. radius 0.75 units

molecules p.p. radius 2.5 units

Table A.36: Delta Scenario Experimental Motion Properties

Appendix B

Table of Variables

90

Appendix B: Table of Variables 91

Name Description

� a threshold that decides if a transformed vertex has moved between frames

Alight light attenuation factor
~Cambient an RGB vector that models ambient lighting
~Cdiffuse an RGB vector that models material di�use re
ection properties
~Clight an RGB vector that models light color
~Cobject an RGB vector that models object color
~Cspecular an RGB vector that models material specular re
ection properties

d distance of the projection plane from the axis

f a single frame in the range [0:::N � 1]

H height of a screen, in pixels
~H the vector halfway between the direction of the light source and the viewer

k the number of children for each node in the plan tree

Kconstant constant parameter in the light attenuation equation

Klinear linear parameter in the light attenuation equation

Ksquared squared parameter in the light attenuation equation

l a level in the plan tree, where level 0 is the root
~L direction vector from a light to a vertex

m the number of prediction vertices in a prediction primitive

M3D 7!2D one-step world-to-eyepoint transformation matrix

ME 7!P eye-to-projection plane transformation matrix

MO 7!W object-to-world coordinate system transformation matrix

MW 7!E world-to-eyepoint coordinate system transformation matrix

n shininess material property

N a small sequence of frames predicted into the future
~N a vector normal to a surface

S(p) the motion state for a primitive primitive p for all N frames

S(p; f) the motion state for a prediction primitive p on frame f
~V the vector from an object to the viewer

~V 0

m(p; f) vector of XYZ world coordinates for the m-th prediction vertex

of prediction primitive p on frame f
~Vm(p; f) vector of XY screen coordinates for the m-th prediction vertex

of prediction primitive p on frame f
~Vm;x(p; f) the X screen coordinate for the m-th prediction vertex of

prediction primitive p on frame f
~Vm;y(p; f) the Y screen coordinate for the m-th prediction vertex of

prediction primitive p on frame f
~Vm;w(p; f) the fourth coordinate for the m-th prediction vertex of

prediction primitive p on frame f

W width of a screen, in pixels

Table B.37: Description of Variables

Bibliography

[Akeley 88] Akeley, K. and Jermoluk, T. \High-Performance Polygon Rendering". Com-

puter Graphics (Proc. SIGGRAPH), 22(4):239{246, August 1988.

[Akeley 93] Akeley, K. \Reality Engine Graphics". Computer Graphics (Proc. SIG-

GRAPH), 27:109{116, August 1993.

[Appel 68] Appel, A. \Some Techniques for Shading Machine Renderings of Solids". In

Proceedings of the Spring Joint Computer Conference, pages 37{45, 1968.

[Badt 88] Badt, S. \Two Algorithms for Taking Advantage of Temporal Coherence in

Ray Tracing". Visual Computer, 4(3):123{132, September 1988.

[Bergeron 86] Bergeron, P. \A General Version of Crow's Shadow Volumes". IEEE Com-

puter Graphics and Applications, 6(9):17{28, September 1986.

[Bishop 94] Bishop, G., Fuchs, H., McMillan, L., and Scher-Zagier, E. \Frameless Ren-

dering: Double Bu�ering Considered Harmful". Computer Graphics (Proc.

SIGGRAPH), 28:175{176, July 1994.

[Bui-Tuong 75] Bui-Tuong, P. \Illumination for Computer Generated Pictures". Communi-

cations of the ACM, 18(6):311{317, June 1975.

[Chapman 90] Chapman, J., Calvert, T., and Dill, J. \Exploiting Temporal Coherence in

Ray Tracing". In Proceedings of Graphics Interface, pages 196{204. Canadian

Information Processing Society, 1990.

[Chapman 91] Chapman, J., Calvert, T., and Dill, J. \Spatio-Temporal Coherence in Ray

Tracing". In Proceedings of Graphics Interface, pages 101{108. Canadian In-

formation Processing Society, 1991.

[Chin 89] Chin, N. and Feiner, S. \Near Real-time Shadow Generation Using BSP

Trees". Computer Graphics (Proc. SIGGRAPH), 23(3):99{106, July 1989.

[Crow 77] Crow, F. \Shadow Algorithms for Computer Graphics". Computer Graphics

(Proc. SIGGRAPH), 11(2):242{247, July 1977.

[Deering 92] Deering, M. \High Resolution Virtual Reality". Computer Graphics (Proc.

SIGGRAPH), 26(2):195{202, July 1992.

[Du� 85] Du�, T. \Compositing 3-D Rendered Images". Computer Graphics (Proc.

SIGGRAPH), 19(3):41{44, July 1985.

92

Bibliography 93

[Foley 90] Foley, J., van Dam, A., Feiner, S., and Hughes, J. Computer Graphics: Prin-

ciples and Practice. Addison-Wesley Publishing Company, Reading, Mas-

sachusetts, 1990.

[Friedmann 92] Friedmann, M., Starner, T., and Pentland, A. \Device Synchronization Using

an Optimal Linear Filter". In 1992 Symposium on Interactive 3D Graphics,

Computer Graphics, volume 26, pages 57{62. ACM, March 1992.

[Fuchs 79] Fuchs, H., Kedem, Z., and Naylor, B. \Predetermining Visibility Priority in

3-D Scenes". Computer Graphics (Proc. SIGGRAPH), 13(2):175{181, August

1979.

[Glassner 88] Glassner, A. \Spacetime Ray Tracing for Animation". IEEE Computer

Graphics and Applications, 8(2):60{70, March 1988.

[Greene 93] Greene, N., Kass, M., and Miller, G. \Hierarchical Z-Bu�er Visibility". Com-

puter Graphics (Proc. SIGGRAPH), 27:231{238, August 1993.

[Haeberli 90] Haeberli, P. and Kurt, A. \The Accumulation Bu�er: Hardware Sup-

port for High-Quality Rendering". Computer Graphics (Proc. SIGGRAPH),

24(4):309{317, August 1990.

[Halas 59] Halas, J. and Manvell, R. The Technique of Film Animation. Communication

Arts Books, Hastings House, New York, 1959.

[Halas 90] Halas, J. The Contemporary Animator. Focal Press, Boston, MA, 1990.

[Hill 90] Hill, F. Computer Graphics. MacMillan Publishing, New York, New York,

1990.

[Hubschman 81] Hubschman, H. and Zucker, S. \Frame-to-Frame Coherence and the Hidden

Surface Computation". Computer Graphics (Proc. SIGGRAPH), 15(3):45{54,

August 1981.

[Jevans 92] Jevans, D. \Object Space Temporal Coherence for Ray Tracing". In Proceed-

ings of Graphics Interface, pages 176{183. Canadian Information Processing

Society, 1992.

[Molnar 92] Molnar, S., Eyles, J., and Poulton, J. \PixelFlow: High Speed Rendering Us-

ing Image Composition". Computer Graphics (Proc. SIGGRAPH), 26(2):231{

240, July 1992.

[Porter 84] Porter, T. and Du�, T. \Compositing Digital Images". Computer Graphics

(Proc. SIGGRAPH), 18(3):253{259, July 1984.

[Reeves 87] Reeves, W., Salesin, D., and Cook, R. \Rendering Antialiased Shadows with

Depth Maps". Computer Graphics (Proc. SIGGRAPH), 21(4):283{291, July

1987.

Bibliography 94

[Schumacker 69] Schumacker, R., Brand, R., Gilliland, M., and Sharp, W. \Study for Applying

Computer-Generated Images to Visual Simulation". In AFHRL-TR-69-14.

U.S. Air Force Human Resources Laboratory, 1969.

[Shaw 89] Shaw, C., Green, M., and Schae�er, J. \Anti-Aliasing Issues in Image Com-

position". In Proceedings of Graphics Interface, pages 113{119. Canadian

Information Processing Society, May 1989.

[Sproull 74] Sproull, R., Sutherland, I., and Schumacker, R. \A Characterization of Ten

Hidden-Surface Algorithms". ACM Computing Surveys, 6(1):1{55, March

1974.

[Sutherland 74] Sutherland, I. and Hodgman, G. \Reentrant Polygon Clipping". Communi-

cations of the ACM, 17(1):32{42, January 1974.

[Williams 78] Williams, L. \Casting Curved Shadows on Curved Surfaces". Computer

Graphics (Proc. SIGGRAPH), 12(3):270{274, August 1978.

Glossary

coherence - Coherence is the amount of similarity between several or many objects
that are near to each other in time or space. There are many types of coherence

including depth coherence, area coherence, and temporal coherence. Things with

high coherence are closely related.

compositing - Combining several individual image layers into a �nal result image.

The term \compositing" is often taken to mean a straight one-over-the-other

layering, without occlusion testing between layers. To avoid confusion, we have

tried to use \depth compositing" to refer to compositing with occlusion testing.

depth compositing - Combining several individual image layers and their asso-

ciated depth values, so that the �nal image contains a consistantly occluded

image.

depth bu�er - A depth bu�er stores the depth values of individual pixels in a

rendered scene. As objects are rendered to the framebu�er, the depth bu�er

performs depth comparisons to determine to object visibility. The depth bu�er

is also commonly called a Z-bu�er.

feedback - In some graphics systems, the graphics library allows intermediate ac-

cess to the computations contained in the graphics pipeline. This intermediate

feedback data can be queried. This allows prediction to be performed using the

actual graphics pipeline hardware.

graphics pipeline - The graphics pipeline is the sequence of steps required to

transform a single graphics primitive from the user's database into a screen

image. It simultaneously refers to the process of transformation, and the special

purpose hardware often used to do the work faster.

graphics primitive - A graphics primitive is the general term for low-level geomet-

rical objects supported by the graphical drawing packages. Common graphics

primitives include points, lines, and polygons.

grouping phase - In the grouping phase, graphical primitives are grouped together

and assigned to prediction primitives. This allows large groups of polygons to

be tracked with a single prediction. The grouping phase occurs once, before the

animation begins.

k-tree - A k-tree is a plan tree with k branches per node. The most common type

of k-tree is a binary tree, with k = 2. The larger the value of k, the more e�cient

predictive rendering is at using scratch framebu�ers, and the less e�ective it is

at factoring out motion which is neither always moving nor always stationary.

95

Glossary 96

local viewer - A local viewer is used in the computation of many common lighting

models. It assumes that the viewpoint is a �nite distance away from the objects

being viewed. It is a more stringent and realistic viewing model than the in�nite

viewer, which assumes that the viewing position is in�nitely distant. The in�nite

model is faster than the �nite model, because it allows some lighting model

simpli�cations.

master framebu�er - The master framebu�er is the main viewing window. In a

truly seamless predictive rendering system, the user only sees the master frame-

bu�er window, and does not know that other types of framebu�ers exist in the

background.

motion threshold - A thresholding value, compared against the di�erences in a

vertex's position between sequential frames. A di�erence larger than the motion

threshold � means that the vertex is considering \moving" this frame. The

motion threshold is expressed in pixels, but converted to viewplane coordinates

to allow fast comparison in projection space.

multiprocessor system - A multiprocessor system is one where more than one

CPU works on a single graphics primitive during its time in the graphics pipeline.

Multiprocessor systems usually divide the pipeline into phases, and assign a

CPU per phase. Note that this a di�erent de�nition than is common in much of

computer science literature.

plan tree - A plan tree is a conceptual grouping of primitives by amount of pre-

dicted motion. The basic plan tree is essentially a binary tree, where objects

are placed within the plan tree nodes depending on the amount of predicted

motion. Objects that change between frames are placed on the leaves. Objects

that never change are placed at the root. Objects that remain stationary for

some sequence of frames are placed at an intermediate node as close to the root

as possible. Traversing the in-depth �rst order passed through all objects, for

each and every frame. The plan tree is a conceptual grouping - no actual tree

needs to be built.

prediction phase - The prediction phase of predictive rendering looks ahead some

small number of frames to predict the future motion of groups of polygons (pre-

diction primitives) that all move together. The resulting record of future motion

is used to factor out prediction primitives that need to be drawn at the same

time. The prediction phase and the rendering phase alternate.

prediction primitive - A prediction primitive is a grouping of some number of

polygons that all move along with a single origin. Prediction primitives are

either coincident with the graphics polygons, or completely bounding the objects.

Predicting the future motion of a prediction primitive implies that the motion

of all enclosed polygons can also be predicted.

prediction vertices - Each prediction primitive contains a number of prediction

vertices. Each vertex is transformed by the object's future motion, and compared

Glossary 97

against a previous position.

predictive rendering - Predictive rendering is a new method that reduces render-

ing times by taking advantage of frame-to-frame temporal coherence.

rendering phase - The rendering phase steps through a small set of frames, one by

one. Individual polygons are drawn into scratch bu�ers according to the results

of the rendering phase. After each frame is completed, all scratch bu�ers are

composited together to form a �nal result. The rendering and prediction phases

alternate.

scratch framebu�er - A scratch framebu�er is an extra framebu�er and z-bu�er

used to hold intermediately rendered results before compositing. Scratch frame-

bu�ers are updated at di�erent rates, and do not have to be visible.

single processor system - A single processor system is one where a single CPU

works individually on a single graphics primitive for the duration of that primi-

tive's time in the pipeline. Note that this de�nition includes multiprocessor and

massively parallel systems, as long as work is distributed one polygon per pro-

cessor. Note that this a di�erent de�nition than is common in much of computer

science literature.

time slice - A time slice is the number of frames used to predict the future motion

of prediction primitives. User interactions and framebu�er space often make a

time slice a fairly small set of frames, but this is not necessarily so. We assume

we know object motion over all of the frames in the time slice.

temporal coherence - Temporal coherence is the amount of visual similarity be-

tween consecutive frames in an animation sequence. Animations with a lot of

temporal coherence contain many adjacent frames that look very similar. Se-

quences with very little temporal coherence contain adjacent frames that look

almost totally di�erent.

