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Abstract

The motivation behind Computer Augmented Reality (CAR) is to effectively merge real

video images and computer generated images to enhance the usefulness of the two sources

of information. To fulfill this goal, we need to solve many related tasks which need exper-

tise both in computer graphics and computer vision. This thesis is focused on one impor-

tant aspect of CAR: establishing common viewing conditions between real video and

computer generated images, that is, recovering the camera extrinsic parameters (position

and orientation) as well as camera intrinsic parameters from real video images, so that the

computer generated objects can be inserted accordingly, and the combined environment

can be similarly rendered.

In this thesis, we assume that the camera is moving when the real video images are taken,

and we know nothing about the camera intrinsic parameters - the camera is uncalibrated.

First a corner detector is used to acquire some feature points in the image. With the knowl-

edge of Euclidean 3D measurements for six or more feature points in the image, the

matrix which transforms 3D coordinates into 2D coordinates can be acquired fairly accu-

rately, then the camera parameters can be recovered from this matrix. A system is built

which makes the whole process work as automatically as possible.

We tested our system with both synthetic and real images. We found that the system is

able to produce useful results in most cases. When applied in the context of CAR to insert

computer generated objects into real images, the results provide useful information about

the real camera, so the synthetic camera can be manipulated accordingly.
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Chapter 1

Introduction

1.1 Computer Augmented Reality

In the past twenty years, computer graphics has made great strides towards producing real-

istic images. Improved hardware and software has led to increased realism in modeling

shape and rendering lighting effects. But neither the hardware nor the software has devel-

oped to the level of producing realistic images of our everyday environment in real time.

The use of real video images eliminates the need to model complex environments in great

detail, and, by nature, provides a realistic image to the user. On the other hand, real video

images are not sufficient for many applications; sometimes it is necessary to insert com-

puter-modeled objects into a real existing environment, or insert real objects into a com-

puter modeled environment.
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Computer Augmented Reality (CAR) is the process by which real images can be

enhanced by superimposing additional, usually computer-generated, visual objects. In the

words of Alain Fournier [Fournier 93]: “The usefulness of the two sources of information,

real video images (RVI) and computer generated images (CGI) can only be enhanced by

the ability to merge them freely in real time on the workstation screen. By merging we

mean ideally in a way that appears “seamless” where one cannot distinguish between the

“real” part and the “synthesized” part. We call the ensemble of techniques to reach that

goal Computer Augmented Reality (CAR)”.

Computer Augmented Reality can be found in a wide range of applications such as

visualization (e.g. medical imagery, architecture design), and video production (movie

special effects, advertising, impact studies). In most cases, the main problem is to ensure

the accuracy of the superimposition between the real images and the synthetic one. When

mixing 3D synthetic and real objects in a same animated sequence for video applications,

one must insure the light and shadow consistency as well as the detection of the parts of

the virtual objects hidden by the real ones in the resulting images. This task poses many

challenges, and they can be partitioned into several groups of “determining scene geome-

try, establishing common viewing conditions, and establishing common illumination in

addition to rendering” [Fournier 93].

Determining the scene geometry involves obtaining geometric models of the real

objects and determining the mutual visibility of the real and synthetic objects while com-
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positing the two images. With full 3D information, the relative positions and occlusion

between synthetic and real objects in the final images can be obtained. Errors in the 3D

models will affect the calculation of the visibility and the illumination later on.

Methods to establish common viewing conditions can be distinguished as active

methods and passive methods. In active methods, the real camera is controlled and/or

monitored to give the relevant data. In passive methods the internal (focal length, piercing

point) parameters and the external parameters (position and orientation) of the camera are

retrieved from the RVI and are used to set the synthetic camera parameters in CGI accord-

ingly, so that the combined environment can be similarly rendered. If the real values and

those used in rendering are inconsistent, we will perceive the misalignment, different per-

spective and motion of stationary objects in the final images.

Establishing common illumination includes computing both local illumination and

global illumination of RVI from computer generated light sources, and those of CGI from

real light sources. This is necessary for shading the synthetic objects so that they appear to

be illuminated by the real lights or for shading the real objects according to the CGI lights.

Common illumination requires full 3D information, and should use explicit modeling of

the real world objects. If this is not properly done, then shading inconsistencies may

appear, we can observe that one component of the objects may be too light or dark, or fail

to cast certain shadows, and shadows are too light or dark.
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1.2 Motivation and Goal

This thesis, part of a research effort of the Computer Augmented Reality (CAR), focuses

on the problem of establishing common viewing conditions between real and computer

generated images. The specific goal of this project is to determine the camera movement

as well as the camera intrinsic parameters from the real video images using a calibration

free method, so we can insert computer generated objects according to the recovered

parameters.

Much work has been done in computer vision on this topic, but usually these steps

are followed:

• calibrating the camera and getting the camera intrinsic parameters;

• assuming a priori knowledge of the 3D geometry of objects, or performing 3D

reconstruction;

• sometimes assuming some previous knowledge about the camera motion.

However, these may not be appropriate for the CAR context. For example, assuming

that camera is calibrated is not realistic for a real time CAR situation. First, the calibration

is difficult to obtain and very sensitive to errors. Second, for many applications it is not

possible to calibrate on-line, for example a calibration pattern is not available or the cam-

era is involved in other visual tasks. Third, the images can be taken by different cameras

or by a single camera whose focus length is changing at different times, so the camera
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intrinsic parameters are variable. Also for some objects, it is difficult to know fully their

3D geometry, but it is relatively easier to measure a few points on them especially when

these points are corners.

In this thesis, we describe an approach to video-based CAR that avoids the camera’s

calibration; it does not use any metric information about the calibration parameters of the

camera; it does not know the 3D geometry of objects; it does not involves 3D reconstruc-

tion, and there is no limitation in principle to the camera motion while capturing the

images. The only requirement is the ability to track across frames at least 6 points

acquired by feature detection whose world coordinates are known. Our goal is to design a

system in which the determination of the camera parameters can be done as automatically

as possible. The ultimate goal is to achieve real-time update of the parameters.

We have to make some assumptions about our system in order to work properly and

to get the best results:

• There are enough corners in the real scene, i.e. the bounding contours of the objects

cannot all consist of smooth curves;

• The objects in the scene where corners are found are rigid, and none of them is

moving, so the displacements of these objects are caused by the camera moment;

•  The camera used is such that non affine or non perspective distortion in the images

can be ignored;
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•  The coordinates of some corners in the world coordinate system can be measured

accurately in advance.

1.3 System Design

A diagram of the system is shown in Figure 1.1, and can be summarized as:

  Image 1   Image 2

  Feature Detection  Feature Detection

2D Feature List 2D Feature List

      2D - 2D

Correspondences

      2D - 3D

Correspondences

          Computing

 Transformation Matrix

       Computing

 Transformation Matrix

          Getting

Camera Parameters

    Getting

 Camera Parameters

       2D - 3D

Correspondences

  3D coordinates

Figure 1.1 System Design

......



CHAPTER 1 INTRODUCTION

7

Feature Detection: The strongest features (corners in this case) are found in each image

by a corner detection algorithm and output to a feature list for further use. In our work the

Harris corner detection algorithm will be used.

2D-3D Feature Correspondences: For the first image, we get 2D image coordinates for

the feature points using a corner detection algorithm. With the imported 3D world coordi-

nates for some feature points, we can match these 2D points in the image coordinates to

3D points in the world coordinate. By doing this, we get the 2D-3D feature correspon-

dences list. Note that this kind of 2D-3D point matching is done only for the first image, or

for the images in which the number of points with 3D coordinates are less than 6.

2D-2D Feature Correspondences: For the following images, after getting the 2D image

feature points for each image, the system will automatically match these feature points to

the ones in the previous image to get a 2D-2D feature correspondence list. With the previ-

ous 2D - 3D matching information, the 3D world coordinates can be automatically trans-

ferred to some of the 2D feature points in this image. A new 2D-3D point correspondence

list is then obtained for each image.

From feature correspondences to the transformation matrix: With the 2D-3D point

correspondences list for each image, the relationship between the 3D coordinates of a

point and the corresponding 2D coordinates of its image can be expressed in terms of 3 by

4 matrix using the homogeneous coordinate system. This matrix is generally known as the

transformation matrix. It maps a 3D point, expressed with respect to the world coordi-
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nates, onto its 2D image whose coordinates are expressed in viewpoint units. Here we

assume that a pin-hole camera model in used, so that projective geometry can be used.

Such a matrix can be determined experimentally by measuring the image coordinates of 6

or more points whose 3D coordinates are known. This matrix contains all the geometric

information about of the imaging process which is possible to obtain from uncalibrated

image.

From the transformation matrix to camera parameters: The last step is the determina-

tion of the camera parameters. Ganapathy’s method [Ganapathy 84] will be used in our

system. In this method, the transformation matrix is represented in a way different from

traditional viewing matrix used in computer graphics. It is expressed using 10 camera

parameters (6 extrinsic and 4 intrinsic). By putting some other constraints, it is possible to

derive camera intrinsic parameters and extrinsic parameters analytically from the transfor-

mation matrix without resorting to non-linear methods.

1.4 Thesis Structure

Chapter 2 provides some background about projective geometry, the camera model we

will use in this system and camera parameters relevant to this research. Chapter 3 summa-

rizes several corner detection methods, and analyzes the method we use in our system in

detail. Chapter 4 analyzes the matching method we used to match feature points. Chapter

5 deals with the decomposition method we used to get the camera intrinsic and extrinsic

parameters from the projective transformation matrix. Chapter 6 presents the experimental



CHAPTER 1 INTRODUCTION

9

results for some real images and some synthetic images. Chapter 7 gives some ideas for

future work and the overall conclusions.
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Chapter 2

Background

This chapter presents background material on projective geometry, camera models and

camera parameters.

2.1 Projective Geometry

The image formation process for realistic rendering is comprised of two components, geo-

metric and radiometric. the geometric component determines where a surface element in

the scene appears in the image and the radiometric component determines the image

brightness of the surface element. The primary focus of this thesis is on the geometric

component of the image formation process. Projective geometry deals with the general

case of perspective projection and therefore provides clear understanding of the geometric

aspects of image formation.
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We will present a short introduction to the definitions and vocabulary of projective

geometry. The reader is referred to [Mohr 96] for a general introduction or to [Semple 52]

for advanced vision oriented consideration on projective geometry.

Projective Space Given a coordinate system, -dimensional realaffine space is the

set of points parameterized by the set of all -component real vectors .

Similarly, the points of -dimensionalprojective space ,with

the conditions that at least one coordinate must be non-zero and that the vectors are equiv-

alent:                                                                 (2.1)

They represent the same point of  for all . The  are called thehomogeneous

coordinates for the projective point.

The usual  dimensional affine space  is mapped into  through the correspon-

dence :

                                           (2.2)

 is a one to one mapping, it provides us with an understanding of the points

which can be viewed as the usual point in the Euclidean space.

A projective transformation from  into  is the mapping defined by a

 full rank matrix  such that the image of  is defined in

the usual way, represented in homogeneous coordinates:

n

n x1 … xn, ,( ) R
n∈

n x1 … xn 1+, ,( ) R
n 1+∈

x1 … xn 1+, ,( ) λ x1 … xn 1+, ,( )∼

P
n λ 0≠ xi

n R
n

P
n

Ψ

Ψ: x1 … xn, ,( ) x1 … xn 1, , ,( )→

Ψ

x1 … xn 1, , ,( )

P
n

P
k

k 1+( ) n 1+( )× W y1 … yk 1+, ,( )
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Since the column vectors are defined up to a scaling factor, the matrix  is too.

Therefore, the matrix has  degrees of freedom.

A particular case is the perspective projection which maps the 3D space  into the

image plane . Expressed in homogeneous coordinates,  is a  matrix, and has 11

degrees of freedom. Through this paper, we use the termsthe transformation matrixand

the projection matrixinterchangeably to refer to the matrix .

2.2 Camera Model

The geometry of the image formation process can be represented by a set of canonical

camera models that describe the projection of a scene onto the image plane. The classic

model for a camera is a pinhole at a fixed distance from an image plane. In first approxi-

mation light travels in a straight line, hence, each point in the image specifies a ray which

extends towards the scene. This gives us the standard perspective projection model which

is only an approximation to the optical physics of a physical camera - an excellent approx-

imation in most applications. The other models are specializations of this model. [Shapiro

90] discusses six camera models which are in two classes, calibrated and uncalibrated.

The projective and affine camera models are in the uncalibrated class. As we only use

λ
y1

…
yk 1+

T

x1

…
xn 1+

⋅=

T

k 1+( ) n 1+( )× 1–

P
3

P
2

T 3 4×

T
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uncalibrated camera in this research, we only discuss the projective camera model, i.e. the

pinhole camera model.

2.1.1 Projective Camera

Again the camera model most widely used in practice is the pinhole (projective camera)

model illustrated in Figure 2.1. Ideally, a pinhole camera has an infinitesimally small aper-

ture, through which light enters the camera and forms an image on the surface facing the

aperture, and the camera performs a perspective transformation of 3D space to the two

dimensional image plane. The basic assumption behind this model is that the relation

between the world coordinate and the image coordinate is linear projective, i.e., straight

lines project to straight lines, and consequently this model does not take into account lens

distortion or image plane defects but allows us to use the powerful tools of projective

geometry. Sometimes this model has to be corrected for distortion, and if a very high accu-

racy is needed more sophisticated correction methods are necessary.

Object

“Pinhole”

Figure 2.1 Pinhole Camera Model

Image
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As illustrated in Figure 2.1, the image in a pinhole model is inverted, this inversion

of the image is inconvenient as far as analysis goes. Hence, it is customary to consider the

geometric model of Figure 2.2 equivalent to Figure 2.1, in which the image is on the same

side of pinhole as object, as a result, the image is not inverted. It consists of a plane

called the image plane in which the image is formed through a perspective projection: a

point , the optical center, located at a distance , the focal length of the optical system, is

used to form the image  in the image plane of the 3D point  as the intersection of the

line  with the image plane. The optical axis is the line going through the optical

center  and perpendicular to image plane, which it pierces at a point . Another plane of

interest is the focal plane going through  and parallel to image plane.

It is convenient, from a mathematical point of view, to consider the world as embed-

ded in a three dimensional projective space,  and the image plane as embedded in a
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projective space of dimension two, . This facilitates the expression of the projective

transformation. Points in the scene and image projective spaces are represented as vectors

in homogeneous coordinates. The projective transformation from  to  then is given

by:

                                                       (2.3)

when  is a  matrix, which maps the scene point  to image point

expressed in homogenous coordinates.  is a 3 by 4 matrix,  is a 4 by 4

matrix, the product of these two matrix equals to , the Transformation Matrix.

2.3 Camera Parameters

The purpose of this section is to describe what the matrices  should be when we

relate 3D world coordinates to 2D image coordinates, which will allow us to define intrin-

sic and extrinsic parameters for the camera.

2.3.1 Extrinsic Parameters

 is a 4 by 4 displacement matrix accounting for camera position and orientation. It

expresses the displacement from the world coordinate system (  centered at ) to
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the camera-centered coordinate system (  centered at optical center ) by a trans-

lation followed by rotations around axes, shown in Figure 2.3.

First, consider a camera center  located at  (measured in the

coordinate system) looking along a line of sight .  is the point at which the line of

sight pierces the  plane and  is the point at which the line of sight intersects the

image plane (see Figure2.2). Let  represent the projection of  on the  plane.

We can transform the  coordinates of a point to  coordinates by choosing an
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system (Camera Centered Coordinate System) of axes centered at  by the fol-

lowing two steps:

a) Move the origin

First we move the origin from  to , leaving the axes’ directions the same, we get the

coordinate system  (See Figure 2.3). This can be accomplished with a  dis-

placement matrix  in homogeneous coordinate system.

                                                                                     (2.4)

b) Rotating axes

Pan: Let  represent the projection of  on the  plane, rotate the  plane

around the  axis by an angle  such that the new  axis  is parallel to  and is

in the same direction as . Now we have the coordinate system  (See Figure

2.3). If we take  to  seen from the positive  as the positive direction of rotation,

the transformation matrix  is:

                                                                        (2.5)
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Tilt:  Rotate  plane around the axis  by an angle  to align the new  axis ( )

with . The positive direction of rotation is from , the transformation matrix

 that does this is:

                                                                          (2.6)

Swing: Now the axis  aligned along the line of sight and pointing towards the image

plane at a distance  from the camera center . The projection of the axis  and axis

 on the image plane is , shown in Figure 2.4.

As the axes of the image coordinate system are  and the original is , now we

rotate  around the  axis by an angle , we get the coordinate system .
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 is the angle between the  axis and the  axis - the projection of the  axis on the

image plane,  is aligned parallel to the  axis. The rotation will leave the projection of

the  axis on the image plane -  either aligned in the same direction as the  axis or

parallel to it but in the opposite direction. The matrix  that accomplishes this is:

                                                                            (2.7)

The resultant coordinate system  is the camera centered coordinate system.

The image plane itself is at . The coordinates  (in camera-centered coordi-

nates) of a point  (in world coordinates) is given by

                                                                                (2.8)

in this case , and  is a 4 by 4 matrix equals to:

                                                      (2.9)

 are called six extrinsic parameters, three for translation and three for

rotation, which define the transformation from the world coordinate system to the camera-

centered coordinate system.
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2.3.2 Intrinsic Parameters

The matrix  expresses what happens when we change the world coordinate system to

camera-centered coordinate system. Now as importantly we consider the matrix  which

expresses what happens when we change the origin of the image coordinate system and

the units on the  and  axes. The situation is shown in Figure 2.4.  is a 3 by 4

matrix.

The old image coordinate system is centered at the intersection  of the optical

axis with the image plane, and it has the same units on both axes. We go from the old

image coordinate system to the new image coordinates system, which has its origin at a

point  in the image (usually one of the corners) and will sometimes have different units at

both axes. If we denote the original of the old coordinates system  by  and , the

scaling factor from the old coordinate system to the new one is  on both axes. As

from previous discussion we know that the  axis of the camera centered coordinate sys-

tem is pointing the image plane, and the projection of the  axis on the image plane is

, by the perspective transformation, an image point coordinates in the  coor-

dinate system on the image plane are:

Now we convert the measurement units to some different units on both axes, scale
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by  in the  axis and  in the  axis. Finally, translate the origin to . If the coordi-

nates of  are  and , in the  system we get:

Using the homogeneous coordinate system this can be written as:

                                                                                    (2.10)

where

                                              (2.11)

Let , and , the parameter  are called camera

intrinsic parameters, as they do not depend on the position and orientation of the camera in

space. Knowledge of the intrinsic parameters allows us to perform metric measurements

with a camera.
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extrinsic parameters. Thus the whole image formation process can be expressed by these

camera parameters only.
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Chapter 3

Feature Detection

3.1 Introduction

Feature detection is one of the most important areas in computer vision. A great deal of

effort has been spent by the computer vision community on this problem, and in particular

on the problem of edge detection. Comparatively, there are fewer reports in the literature

about corner detection. In vision, an edge is defined as a one-dimensional discontinuity of

image brightness function, a corner is defined as a two-dimensional discontinuity of the

image brightness function.

Why do we chose to use corners in our system? As we have no knowledge of 3D

geometry of the objects, or use 3D reconstruction method to get such information, we

want to use some features which not only abound in natural and man-made scenes, but

also can convey significant information to us. Corners in image are attractive to work with
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as they are likely to correspond to real 3D structure, such as corners of real objects and

surface markings which usually abound both in natural and man-made scenes. Straight

edge features more are suited to man-made environments than natural environments.

Although curving edges are abundant in natural scenes, they can be temporally unstable.

Corners in an image are easy to detect and simple to track through the sequence of images

(while still in view) when the camera moves from one location to another and lighting

conditions of the scene change somewhat; localization of corners in two dimensions can

give good repeatability and can be done accurately, where an image decomposition into

straight-line fragments can be highly erratic. The detection of corners is spatially and tem-

porally a local operation, it is comparatively computational cheap; and most importantly

as they usually are associated with the corners in real objects, there are easy to handle in

3D as a pragmatic consideration and they can be measured with little difficulty.

Corners as features are very important in computer vision. As these features can be

used to identify objects in the scene, they are popular tokens for image analysis, for stereo-

scopic matching, displacement vector measuring, etc. An ideal corner in an image looks

like Figure 3.1, it has an infinite sharpness and a clear boundary, while in practice corners

are typically more rounded, blunted, blurred and ragged.

As corners in image are detected based on image intensity discontinuities, it can be

caused by surface discontinuity in 3D space, texture changes on the objects or by some

shadows cast by other objects etc., and therefore it may not associated with a corner in real

scene, which is a junction of three or more surfaces. Similarly, a corner in 3D due to light



CHAPTER 3 FEATURE DETECTION

25

condition, view angles etc. may not turn up to be a corner in image. Here, in order to dis-

tinguish between corners in the image and corners in the real world, we refer the former as

2D corners, and the latter as 3D corners. Feature points is the more general term which is

used here interchangeably with the term corners. In our system, we only interested in

those 2D corners which have corresponding 3D corners in the scene, and try to establish

relations between them. Thus an accurate localization of these features both in 2D and 3D

is of great interest.

3.2 Corner Detection Algorithms

The most popular image features used are those based on image intensity discontinuity.

An edge, a 1D discontinuity, and a corner, a 2D discontinuity. In almost all the feature

detection algorithms, the image intensity gradient at corners and edges is used, to a greater

or lesser degree, as an intuitive measure of feature strength. In other words, the higher the

local gradient, the greater the “cornerness” or “edgeness” of a feature, and so the higher

x

I(x,y)
y

o
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 (Intensity)

Figure 3.1 An Ideal Corner Model
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the confidence that a genuine corner or edge has been found. A simple thresholding tech-

nique is then often used to discard out outliers and non-salient features.

Several approaches to the problem of detecting corners have been reported in the lit-

erature in the last years. They can be broadly divided into three group:

The first category of method is to extract edges as a chain code (Figure 3.2), then

search for points having maximal curvature [Asada 86]; variants are scanning the chain

with a moving line segment which spans several links, the angular differences between

successive segment positions are used as a smoothed measure of local curvature along the

chain [Freeman 77]; or performing a polygonal approximation on the chain and then

search for the line segment intersections [Horaud 90]. The computational cost is a great

concern in these methods.

The second group of methods works directly on a grey-level image. These tech-

niques are based either on heuristic techniques [Moravec 77], or apply a differential oper-
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Figure 3.2 Searching Corners from a Chain
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ator measuring gradients and curvatures of image intensity surface, then select points that

are corners by a second operator that is often a thresholding scheme. Among the most

popular corner detectors are those proposed by Kitchen [Kitchen 82], Wang [Wang 92]

and Harris [Harris 88, 92].

As this approach seems better suited for our purpose we will select a corner detec-

tion method in this group, we will take a look at several of the best known corner detection

methods in this group.

In [Moravec 77], Moravec developed the idea of using “points of interest”. They are

defined as occurring when there are large intensity variations in every direction. This defi-

nition is realized by computing an unnormalized local autocorrelation in four directions

and taking the lowest result as the measure of interest. This response is thresholded and

then local non-maxima are suppressed. However, some problems with the Moravec opera-

tor have been identified (principally by the proponents of the Plessey detector, which

builds on the same feature definition): the response is anisotropic, the response is noisy,

and the operator is sensitive to strong edges.

In [Kitchen 82], Kitchen used a local quadratic surface fit to find corners. The

parameters of the surface were used to find the gradient magnitude and the rate of change

of gradient direction; the product of these quantities was used to define “cornerness”, and

local maxima were reported as corners.



CHAPTER 3 FEATURE DETECTION

28

In [Wang 92], Wang developed the curvature based methods mentioned. As well as

requiring that curvature be a maximum and above a threshold, they require that gradient

perpendicular to the edge be a maximum and above threshold. Also false corner response

suppression is performed to prevent corners being wrongly reported on strong edges. The

corners are found at different smoothing levels allowing an estimation of the corner posi-

tions at zero smoothing. This is a very promising method, although the reliability of detec-

tion by this method is not clear.

In [Harris 88, 92], Harris described which has become known as the Plessey feature

point detector. It is built on similar ideas to the Moravec interest operator, but the measure-

ment of local autocorrelation is estimated from first order image derivatives. The variation

of the autocorrelation over different orientations is found by calculating functions related

to the principle curvatures of the local autocorrelation. This well conditioned algorithm

gives robust detection. We will discuss this algorithm in detail later.

Algorithms in the second groups are global and quite efficient approaches, however

it has been shown that the best known algorithms (Harris method) of this family yield a

precision only a few pixels in the positioning.

A third group of approach is emerging, mainly characterized by using model-based

corner detection, they match a part of the image containing a corner against a predefined

corner model (See Figure 3.3). Once the fitting is accomplished, the position of the corner
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in the image can be deduced by the knowledge of the corner position in the image [Der-

iche 90, 91, 93], [Rohr 92], [Blaszka 94].

In [Derich 90, 93], Deriche considered a corner model and studied analytically its

behavior once it has been smoothed using the well-known Gaussian filter. In these paper,

the author clarifies completely the behavior of some well known cornerness measure

based approaches used to detect these points of interest. In particular, most of the classical

approaches presented in the second group have been shown to detect points that do not

correspond to the exact position of the corner. A new scale-space based approach has been

proposed in order to correct and detect exactly the corner position.

In [Rohr 92], Rohr proposed an general analytical model and fitted it directly to the

image intensities to determine the position of grey value structures to sub-pixel accuracy

and also additional attributes such as the width of the grey value transitions.

Figure 3.3 Fitting a Corner with a Model (first approximation and final estimation)
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But the main drawback of the third group is the high computational cost, and the dif-

ficulty to perform the methods in a purely automatic manner.

We can summarize now some of the qualities expected from a good corner detector:

Good detection. There should be a minimum number of false negatives and false

positives.

Good localization. The feature location must be reported as close as possible to the

correct position.

Response. Only one response to a single feature.

Speed. The algorithm should be fast enough to be usable in the final image process-

ing system.

Consistency. Most importantly, if corners are to be used as features, upon which

subsequent processing is to be based, they must be detected consistently, that is have good

repeatability, even for natural scenes.

There are some trade-off among these criteria. Having compared several algorithms

just mentioned before, we choose the Harris detector in our system, because it has the best

repeatability, means most points can be reliably detected at different scale, rotational

change, and brightness change. This is very important for image matching, as the detec-

tion quality influences the matching quality.

3.3 Harris Corner Detection in Detail

The Harris corner detector was developed as a set of enhancements to the Moravec inter-



CHAPTER 3 FEATURE DETECTION

31

est operator. The problem of detecting corners can be analyzed in terms of the curvature

properties of the local image brightness autocorrelation function where the curvature

information can be represented by the Hessian matrix. The autocorrelation is useful for

characterizing how the brightness values change in the neighborhood of a location. At a

corner or an isolated brightness peak all shifts will result in a large change in the autocor-

relation function at that location. A version of the brightness spatial change function for a

small shift(x,y) can be written:

                                                            (3.3.1)

Where  is the average changes of image intensity produced by a shift ,  speci-

fies the image window,  denotes the image intensity.

A first order approximation of  is given by:

                                                                      (3.3.2)

where  are approximations of the second order directional derivatives, which are

computed by  respectively:
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 are the first order directional derivatives, which are approximated by convolving

the intensity image  with a finite difference operator of the form  in  direc-

tion and  in  direction:

,

Then (3.3.2) can be rewritten as:

                                                                              (3.3.3)

where the matrix  is an approximation of the Hessian matrix for :

 is closely related to the image’s local autocorrelation function. The principal cur-

vatures of the image brightness autocorrelation at a point can be approximated by the

eigenvalues of the approximated  Hessian matrix  defined at that point. If both

eigenvalues of this matrix are large, so that the local correlation function is sharply

peaked, then a shift in any direction will increase , that is the local grey patch cannot be

moved in any direction on the image without a significant change in grey level. This indi-

cates the window is at a corner. The response value is computed, and then any values that

are not local maxima are suppressed. This leads to a sparse corner point map for each

image. The determinant of the approximated Hessian matrix, , is proportional to

the product of the principal curvatures. The Harris-Steven’s corner detector is given by the
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following operator where a large value of  signals the presence of corner (Equation

3.3.4). Then values which are not local maxima are suppressed, this leads to a sparse cor-

ner point for each image. Finally we use a threshold to get only some strongest corners for

each image.

                                            (3.3.4)

where, ,

A positive value for scalar  can be used to ensure that the Gaussian curvature approxi-

mate  is valid, Zhanget al. [Zhang 95] specify  which is the best value

for our cases as well.

3.4 Sub-Pixel Accuracy

In Figure 3.4, suppose image grey values are only available at pixel level, after computing
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the directional intensity gradient for every pixel, we obtain a local maxima at pixel 5. In

fact the real corner position may be between pixels. If the grey values between pixels were

available, after computing the directional greatest intensity gradient in this area again, we

may get a local maxima at position C, which closer to the true position of the corner. This

is what we mean by sub-pixel accuracy.

This is important to consider because this will happen in real situations. For exam-

ple, in our system, when the camera moves, the movement for some corners in the image

sequences may less than one pixel. If we have a corner detector which can only give pixel

accuracy, then we can not get the accurate position for these corners. So we need a corner

detection which can give sub-pixel accuracy.

As Harris algorithm only allow us to get a corner position up to a pixel precision, in

order to recover the corner position to a sub-pixel position, some extra effort should be

made. In order to concentrate on the area where they might be corners, we first use the

Harris corner detector at the pixel level, then we interpolate image grey values in the areas

near detected corners (See Figure 3.5), in this case among 3 by 3 pixels.

For the interpolation, we know that the ideal 1D interpolation filter in frequency

space is the box, but the inverse transform of this finite-support spectrum is an infinite

impulse responsesinc function. We cannot convolve a signal with thissinc function in a

practical system as it requires us to have access to the signal from negative to positive

infinity. What we prefer is a filter that comes close to the box in frequency space, but still

has a finite, reasonable width in signal space. Because of the inverse relationship between
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the width of a signal and its Fournier transform - the narrower one becomes, the wider the

other spreads, we cannot really hope to find a very boxlike filter with a small and finite

impulse response. One practical method is to design a filter that drops off to a very small

value outside of some interval in both spaces. A popular choice is the Gaussian bump, as it

drops off “almost to zero” at some distance from the center in both spaces, therefore it

approximates a signal with finite support in both spaces. The same principle applies to 2D

interpolation, in our system, we choose to use a 2D Gaussian interpolation filter to recon-

struct the grey values in the interested areas.

The 2D Gaussian interpolation filter is:

   where  is the center of the filter, as

Figure 3.5 Grey Value Interpolation around the Interest Points
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Gaussian filter has the property ofseparability, it can be written as =

 where  and . This leads to

ease of implementation. a 2D implementation filter can be performed by a 1D interpola-

tion filter followed by another 1D interpolation filter acting perpendicularly to the first

one.

After the interpolation the corner detection is used again at these interpolated areas,

the corner position up to the accuracy of 1/10th of a pixel can be detected.
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Chapter 4

Feature Correspondences

4.1 Introduction

In our system, feature correspondences between 2D points and 3D points in the world

space need to be established, as well as feature correspondences between 2D points in dif-

ferent images. These are done by two different steps, which will be described in detail in

this chapter. Once the matching hypotheses are generated, the camera parameters can be

computed based on these correspondences. Since even a single mismatch can have a large

effect on the result, special care has been taken in the matching process.

For 2D-3D feature correspondences, first a corner detector is used to get some fea-

ture points in the images, for the first frame. Then 3D world coordinates are input by hand

for some 2D points if they correspond to some real corners in the world, then a 2D-3D fea-
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ture correspondences list is established, for the following frames, by matching the image

with the previous one, the 2D-3D feature correspondences list can be maintained automat-

ically. Later on the perspective transformation matrix can be determined from the 2D-3D

feature correspondences list.

4.2 Related Work

In this chapter we put our focus on 2D-2D feature correspondences. This kind of matching

is the same as image matching, except that it only matches some interesting features, not

all the pixels in the image. Any method used for image matching can be used for match-

ing. So we should analyze the best known image matching methods therefore to find one

that is most suitable for our system.

The image matching method which has been used for the longest is signal correla-

tion, Faugeras [Faugeras 92] compares the different methods. To obtain satisfactory

results the signal has to be taken under very similar condition. If we have to deal with non-

trivial image rotation this method fails.

A lot of image matching or feature matching method try to use the geometric con-

straints, like epipolar constraint, in reducing the false matches. Zhang [Zhang 95] pro-

poses a robust approach for image matching by exploiting the only available geometric

constraint, the epipolar constraint. The images are uncalibrated, the motion between them

is unknown, also the camera parameters are known too. The idea is to use classical tech-
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niques and relaxation methods to find an initial set of matches, and then use a robust tech-

nique-the Least Median of Squares (LMedS) to discard false matches. Thus the epipolar

geometry can be estimated accurately using a well adapted criterion from these matches.

In turn by using the recovered epipolar geometry, more matches are eventually found.

Schmid [Schmid 95], [Schmid 96] presents a matching method which is sufficiently

general in that the images can be taken under very different conditions. This method is

based on invariants of the luminance function. It uses the differential invariant scheme to

locally characterize the brightness function over a set of point feature. Having calculated

the derivatives of a function on a point up to Nth order (N=3 has been used), differential

invariants can be calculated. The set of invariants used is stacked in a vector denoted by

Vi, it is invariant to image rotation and translation, at the same time a multi-scale invariant

representation affords scale invariance. After points of interest are characterized by Vi this

vector simple brute force matching compare the Malinois distance between the vectors of

invariants to get the final result.

It is well known however, that the calculation of the derivatives is ill-conditioned, so

it is necessary to calculate the derivatives on smoothed data to reduce noise. Smoothing

the signal improves the stability but it may damage useful information. In case of illumi-

nation change, some non linear effect can occur, and this method may fail in case of partial

occlusion.
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In our system, the image sequences usually are taken under very similar conditions,

the camera movement or rotation between two consecutive frames is small, plus usually

there are less than 20 feature points in each frame whose 3D coordinates are available, so

we can choose the classical correlation method for feature correspondence, as it is fast and

efficient. Although other methods we have discussed before might give better matching

result, there are relatively complicated and less efficient.

4.3 2D - 2D Feature Correspondences

The use of correlation as a measure of similarity between two signals is a well known

technique and it is commonly used in stereo vision to solve the correspondence problem.

Template windows are chosen from the first image as 2D information samples to be

matched in a region of interest of the second image.

In [Faugeras 93], Faugeras gave four criteria for correlation after he had extensively

tested the four criteria, and concluded that the method which uses the sum of normalized

mean-squared differences of grey level values performs best in practice, because “it is the

most invariant to affine transformations of the images which may result from slightly dif-

ferent settings of the cameras, and it gives good experimental performance to varying

lighting conditions”.

In this matching stage, our inputs are two images containing feature points, the aim

of the matching is to find which corners of each image are the projections of the same cor-
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ners of the 3D object. The output is a correspondence list between the feature points of the

two images.

As shown in Figure 4.1, given a high curvature point  in image 1, we use a corre-

lation window of size  centered at this point. We then select a rect-

angular search area of size  around this point in the second

image, and perform a correlation operation on a given window between point  in the

first image and all high curvature points  lying within the search area in the second

image. The search window reflects some a priori knowledge about the disparities between

the matched points. This is equivalent to reducing the search area for a corresponding

point from the whole image to a given window. The correlation score is define as:
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where  is the average at point  of

.

We refer to this score  as a correlation score, where  and  are the left and right

image intensities. ,  are their average value over the correlation window and ,

represent the pixel displacement in the template window.

In our implementation,  for the correlation window, as it gives the best

matching result. For the search window,  and  are set to a quarter of the image width

and height, respectively, it is large enough (half of the whole image) to trace feature points

between image frames.

4.4 Validity Check

As mentioned in [Faugeras 93], the probability of a mismatch goes down as the size

of the correlation window and the amount of texture increase. However, using large win-

dows leads to the performance problem. Here a definition of valid measure in which the

two images play a symmetric role is used, which allows us to reduce the possibility of

error even when using very small windows. The correlation is performed twice by revers-

ing the roles of the two images and we consider as valid only those matches for which the
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same optimal correlation is measured at corresponding points when matching from  into

 and  into .

For example, given a point  in , let  be the point of  corresponding to

such that the windows centered on  and  yield the optimal correlation measure. The

match is valid if and only if  is also the point that maximizes the scores when correlat-

ing the window centered on  with windows of  that centered on .

In our system, a major concern of our work is the accuracy of the correspondences.

Higher accuracy of the correspondences leads to higher accuracy of the camera parame-

ters. Since detecting the same corners arising from the same scene corner from images

taken under different illumination or from different viewpoints is known to be unreliable,

no matching method can achieve 100% correct rate, and some incorrect matches may be

accepted by the matching algorithm. In this case the wrong 3D coordinates will be

assigned automatically to the feature points in the next frame and those false matches

might severely affect the value of the transformation matrix (we will discuss this in Chap-

ter 5). Of course the camera parameters based on decomposing the transformation matrix

will be quite different as well (these can be seen at the test results in Table 6.3). One solu-

tion is to eliminate the false matches, which we currently do manually.

I1

I2 I2 I1

P1 I1 P2 I2 P1

P1 P2

P1

P2 I1 P1
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Chapter 5

Recovering Camera Parameters

The problem of the determination of the camera location and orientation as well as camera

intrinsic parameters from 2D-3D correspondences is a very basic problem in image analy-

sis, and it is extremely important for practical applications. Most of the earlier or recent

studies in the field assume that calibration of the camera is known, which means that the

camera intrinsic parameters are known, Haralicket al. [Haralick 89] cite a German disser-

tation from 1958 that surveys nearly 80 different solutions to pose estimation (camera

extrinsic parameters). Moreover, the analysis of pose estimation in the case of an uncali-

brated image sequence has already been developed by several authors, considering point

and/or line correspondences. These studies are motivated by the fact that we must not con-

sider the camera is calibrated in an active vision, and it is not possible to self-calibrate the
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camera when zooming or modifying during the video capture the intrinsic calibration

parameters.

5.1 Related Work

From Chapter 2, we know that the determination of camera location and orientation means

to relate the camera-centered coordinate system to the world coordinate system by rota-

tions fallowed by a translation. Liuet al. [Liu 88] represent the relationship between two

points in these different coordinate system by: , where  is a 3 by 3 rotation

matrix and  is a 3 element vector, then compute the rotation matrix and the translation

vector separately using line correspondences. As for point correspondences, they first

derive lines from points, then use the same line correspondences method to get  and .

The authors provided both linear and non-linear algorithms. But in their method, the

authors assumed that the focal length is known and the optical axis of the camera passes

through the center of the image, which are not often the case. Also the authors noticed that

their method worked well only when the three rotation angles are less than .

Vieville et al. [Vieville 93] considered the motion of a rigid object or the ego-motion

of the camera observing a stationary scene determined by points and/or lines correspon-

dences. They not only assumed that the camera is not calibrated, but furthermore lifted the

restriction that the intrinsic parameters of the camera are constant for most uncalibrated

cases, and they used the standard pinhole model for a camera. In their paper, the authors

p Rp′ T+= R

T

R T

30
0
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first gave some precise definition for tokens and motion of points and lines through rigid

displacements, then from an algebraic point of view using a special representation, called

Qs-representation, the authors related these parameters to points and/or lines 2D corre-

spondences measured in an image sequence for a system of cameras without calibration.

Then the authors proposed two different algorithms to estimate these parameters. Imple-

menting such algebraic representation is not easy. The authors define a criterion to esti-

mate the Qs-representation, but “this is a rather huge criterion”. In order to dramatically

simplify the amount of calculations and to accelerate the convergence of the estimation

process, the problem has to be decomposed into two sub-optimal problems and a non-triv-

ial architecture has to be built in order to gain an efficient algorithm. The results are not

promising in general cases, and some additional hypotheses have to be used, such as

knowing the intrinsic parameters for the first frame. It is also sensitive to small errors, and

since the radius of convergence of the algorithm is very small, extra steps are need to be

taken to ensure the convergence of the method. In addition that the algebraic equations are

really complicated and the authors omitted a lot of intermediate calculations, making the

paper hard to follow.

Ganapathy [Ganapathy 84] showed how the location and orientation of the camera,

as well as the other parameters of the image formation process can easily be computed

from the homogeneous coordinate transformation matrix. He first used a noniterative

method for solving this kind of problem. We will discuss this method in detail later. In

[Strat 84] the author tried to compute the same parameters but from another point of view.
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He claimed that Ganapathy’s method is an algebraic one that provides little insight into the

underlying geometry, and tried to use a geometric method to solve for the same parame-

ters. The author admitted nevertheless that “While we do not expect this technique to be

any more robust than that of Ganapathy, we do feel that its geometric interpretation pro-

vides useful clues as to when it will be dependable”. Like Ganapathy, this method is also a

non-iterative one, with a small computational burden.

In [Huang 94], the author gave a review of motion from feature (points or lines) cor-

respondences, including 2D-2D, 2D-3D and 3D-3D feature correspondences. With 2D-2D

point correspondences, the author summarized four very similar methods, including

Ganapathy’s method we will use in this project, but he did not evaluate them, or express

opinion about which one is better. Although some methods compute the camera location

directly from a set of landmarks with known 3D locations, they need to know the focal

length and piercing point, which is not the case with Ganapathy’s method.

In our system, the Ganapathy method was chosen to recover the camera parameters

when the transformation matrix is known. Our method is based on decomposing the trans-

formation matrix. A least squares method is used to estimate the transformation matrix

(Equation 2.3) which project 3D points to 2D image points, then Ganapathy’s method is

used to retrieve the camera parameters from this matrix.

5.2 Getting the Camera Transformation Matrix
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We assume that we have a set of points whose coordinates in three dimensions  are

known, and whose locations in two dimensions  are also known. In addition to these

points, we also know that the view is a perspective projection, and therefore the transfor-

mation of the three-dimensional coordinates of a point to the two-dimensional coordinates

can be expressed compactly as a 3 by 4 transformation matrix using homogeneous coordi-

nate:

                                                                   (5.2.1)

Notice that there are 12 elements in the transformation matrix, and that the measure-

ments from the images are not the values  shown in (5.2.1), but the ratio

. In fact, we have no way of knowing the value of , and dif-

ferent input points  may give different values of .

Now we write out the separate equations implied in the matrix expression in (5.2.1):

                                                                               (5.2.2)

By substituting the value of  found in the third equation into the first two equa-

tions and grouping terms, we get:
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           (5.2.3)

If we know the location of several points in  and know their positions in

the view , then (5.2.3) gives two equations per point for the twelve unknowns

. For 6 points, the minimal number necessary to compute all the , subscripts

, the matrix looks like:

                (5.2.4)

Because the equations are homogeneous, the solutions will contain an arbitrary scale

factor. In Ganapathy’s method to compute the camera parameters, he assumed that  of

the transformation matrix is unity. We will also choose  to be unity, move the last col-

T11 T31U–( ) X T12 T32U–( ) Y T13 T33U–( ) Z T14 T34U–( )+ + + 0=
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umn to the other side of the equation, and solve for the remaining .

In most cases, we have more than 6 points, and the system is overdetermined. A

least-squares data-fitting technique is then used to obtain a solution. The formulation for

the linear least squares problem can be written as:

Given  and equations ,

find                                              (5.2.5)

The 2-norm corresponds to Euclidean distance, so there is a simple geometric inter-

pretation of (5.2.5). Find the closest pointAx in range(A) to b, so that the norm of the

residual  is minimized as illustrated in Figure 5.1. Range(A) is the set of vec-

tors that can be expressed asAx for somex.

There are several methods to solve the least squares problem. We chose to use QR

factorization method, described in [Strang 86] as “very fast” and “extremely stable”. So

11 Tij

A ℜm n×∈ m, n b,≥ ℜm∈ Ax b=

x ℜn
such that∈ b Ax–

2
is minimized.

r b Ax–=

b

r = b - Ax

y = Ax

range(A)

Figure 5.1 Formation of the least square problem
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we need at least 11 equations or 5 1/2 pairs of point correspondences for it to work, but

most of the time, we will have an over-determined system of equations.

While using the least squares data fitting technique, we should put more attention to

the selection of the matching point pairs. After the corner detection step, and the correla-

tion matching described in chapter 4 and 5, we may find two types of outliers in the

dataset:

1) Bad localization. There are localization errors of 2D corners in the image. They

are assumed to exhibit Gaussian behavior, which is reasonable in practice. Generally the

errors in localization for most 2D corners are small, but a few corners are possibly local-

ized more than three pixels away from their real location. These corners will bring a lot of

inaccuracy to the dataset and might severely degrade the accuracy of the estimation.

2) False matches. In the establishment of the correspondences, as we do not use any

other constraints, for example geometric constraints, some matches are possibly false.

These will spoil the estimation of the transformation matrix. The final estimation of the

camera parameters may be very different from the real values as illustrated by the test

results in Chapter 6.

Therefore, in order to get better results, some good matching pairs should be chosen

to avoid the two kinds of outliers as we have just mentioned to get a more accurate trans-

formation matrix for later use.
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5.3 Recovering the Camera Parameters from the Transformation

Matrix

The camera transformation matrix has an important role in computer graphics, and

other fields as in stereo reconstruction, robot vision, photogrammetry, unmanned-vehicle

guidance and image understanding. When the location and orientation of the camera are

known, the camera transformation matrix that models the image formation process can

easily be derived analytically. Here we are concerned with the inverse problem - given the

transformation matrix, determine the camera location, orientation, scaling and translation

parameters in the image plane from it. This problem is equivalent to the following prob-

lem: given an image that may have been enlarged both horizontally and vertically and

clipped arbitrarily, determine the position and orientation of the camera used to take the

picture from knowledge of the correspondences between known objects and their projec-

tions in the image. Any formulation of this problem results in a set of nonlinear simulta-

neous equations in several independent variables and hence the methods that have been

proposed are iterative in nature and use hill-climbing or other well-known similar numeri-

cal techniques for the solution.

In the work we have already mentioned by Ganapathy and Strat, new and simple

non-iterative analytical techniques are proposed that solve the camera location determina-

tion problem.

5.3.1 Decomposition of the transformation matrix
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The problem addressed here involves decomposing the transformation matrix to arrive at

the camera intrinsic parameters  (see equation 2.11 in chapter 2) and the cam-

era extrinsic parameters  (see equation 2.4-2.2.7 in chapter 2).

These ten parameters are needed in order to determine the projection of an object

onto the image: six parameters define the motion between the object and the camera, i.e.

three angles of rotation around each axis ( ) and three scalars for a translation

( ), two parameters give the scale factor between the camera frame and the image

frame ( ), the last two parameters define the translation between the origin of the

image origin and the intersection between the image plane and the optical axis ( ).

From equation (2.9), if we reexpress  as:

then, we can obtain that:

and we will get the following relations:

,                                                                             (5.3.1)
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,                                                                             (5.3.2)

,                                                                                                         (5.3.3)

,                                                                                                          (5.3.4)

,                                                                                                            (5.3.5)

,                                                                                                                     (5.3.6)

,                                                                             (5.3.7)

,                                                                             (5.3.8)

,                                                                                                           (5.3.9)

and  are expressed in terms of  as

,                                                                                           (5.3.10a)

,                                                                                          (5.3.10b)

                                                                                            (5.3.10c)

As we know , we can get:

                                                    (5.3.11 - 5.3.21)
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Since we set  to 1, there are 11 unknown , we have eleven equations (5.3.11 -

5.3.21) in terms of 16 unknown . But 9

unknown  can be specified in terms of the 3 unknowns  (5.3.1 - 5.3.9),

therefore we really have 11 equations and in only 10 unknowns, we can solve the equa-

tions and get the solution for the 10 unknowns. However, expressing  in terms of

 is not only messy, but it makes the decomposition algorithm harder to understand.

Hence, we will still use 16 unknowns but impose additional constraints.  is a pure rota-

tion matrix, so it must be a “proper orthonormal matrix”, it follows that  and

 is given by:

                                       (5.3.22)

this property along with the property that the determinant of  must be unity implies the

following constraints:

                                      (5.3.23 - 5.3.25)

                                             (5.3.26 - 5.3.28)

They are sufficient to derive the other constraints we need, namely:

                                                       (5.3.29 - 5.3.30)
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We will use these constraints together with the other equations (5.3.1 - 5.3. 21) to

decompose the matrix, and get the unknowns. In Ganapathy’s paper, the author gave an

ideal case of decomposition assuming that there are no errors in the  terms. But in

actual cases all terms  have errors. In this case Ganapathy also gave a practical solu-

tion. The method relaxes the requirement that the terms  through  form an orthonormal

matrix by dropping some of the (5.3.23 - 5.3.30) constraints. This method doesn’t use a

least squares fit or some such techniques, basically it derives relations from equations, and

can compute each value directly from the equations. Ganapathy’s paper gives the whole

process of derivation and an example of computation.

Tij

Tij

a i
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Chapter 6

Experimental Results

This chapter presents the results obtained for a series of experiments for the task of

retrieving camera parameters. Both synthetic and real data have been used to test the sys-

tem, and the results show that it yields an accurate estimation in most cases.

6.1 Images taken with synthetic camera

The synthetic images were produced using “optik”- an experimental interactive ray trac-

ing program developed by the University of Toronto’s Dynamic Graphics Project and the

University of British Columbia’s Imager Lab [Amanatides 92]. Five  cubes with

different colors were generated and placed at different places in 3D space, then the syn-

thetic camera took pictures from different views. The resolution of the images is 512 by

2 2 2××
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512. Table 6.1 gives the summary of the test results for these synthetic images. In this

table both the camera’s real positions, orientations and their corresponding computed val-

ues are given, as well as the number of corners used to get each result. Basically for every

image, more than 19 corners are used to compute the result. The detailed information for

each situation, i.e. the 2D image coordinates and corresponding 3D world coordinates for

the corners, are omitted.

 From Table 6.1, we tried to improve the results for Figure 6.6 by eliminating those

corners who bring the biggest errors to the linear equations in the least-squares computa-

tion, then recomputing the transformation matrix and the camera parameters. the results

are shown In Table 6.2. The first row is the expected result, the second row was obtained

by using all the corners in the image as in Table 6.1, from the third to the last row, given

number of corners was eliminated from the original dataset (total 20 elements) according

to the errors they brought, and the new results are shown.

For the case of Figure 6.6, we show the results when changed some values in the

original dataset to simulate the situation that there are 3 mismatches in the dataset (total 20

elements), i.e. there are some 2D corners with the wrong 3D coordinates: for example,

corner (293, 279)’s 3D coordinates should be (1, 1, -1) but as the corner is mismatched to

another nearby corner in the 2D-2D feature correspondences, consequently it gets the

wrong 3D coordinate (1, -1, -1). This also happens to two other corners. Table 6.3 shows

the results in this situation, the first row is still the expected result, while the second row is
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obtained by eliminating one corner from the initial dataset (total 20 elements 3 of which

have wrong 3D coordinates), then 2, 3 and more corners are eliminated from the dataset.

In this table, one sees that after the three mismatched corners are eliminated from the orig-

inal dataset, the result becomes stable, and further elimination will not affect the result sig-

nificantly.

From Table 6.2 and 6.3, we may say that the method used here to improve the result

accuracy is useful when we have some mismatches in the dataset which produce very

large errors to the linear equations. After eliminating them, the recomputed result will

improve significantly and the result will move towards the expected result. But this

method may not be of help when the dataset only has noise, but doesn’t have mismatches.

In Table 6.4 we show the results when we used different corners combination from

the original dataset to compute the results. The corners used were randomly selected from

the original dataset. When omitting one or two corners from the original dataset, the

results didn’t change very much, but when only 6 corners were left, the results varied

greatly. Therefore, although theoretically we can get an answer with 6 corners, in practical

more than 6 corners should be used in order to get stable solutions. When the dataset

doesn’t have mismatches, the more corners are used, the more stable the result will be.
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Figure 6.1 Synthetic Image 1 (with detected corners)

Figure 6.2 Synthetic Image 2 (with detected corners)
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Figure 6.3 Synthetic Image 3 (with detected corners)

Figure 6.4 Synthetic Image 4 (with detected corners)
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Figure 6.6 Synthetic Image 6 (with detected corners)

Figure 6.5 Synthetic Image 5 (with detected corners)
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Table 6.1 Summary of the Results for Synthetic Images

Image Used
Results Total Corners

Used
Camera Position

(x, y, z)

Camera Orientation
 (in degrees)

Figure

6.1

Expected n/a 10 10 12 135 -40.3155 0

Computed 24 10.0418 9.76797 12.3704 135.767 -40.2628 0.906025

Figure

6.2

Expected n/a 10 8 10 128.66 37.9852 0

Computed 24 10.1921 8.04824 10.087 129.241 -37.9178 0.44467

Figure

6.3

Expected n/a 10 6 8 120.966 -34.4499 0

Computed 26 10.138 5.98412 8.07359 120.983 -34.6151 0.089

Figure

6.4

Expected n/a 10 -7 -5 55.0347 22.0712 0

Computed 19 9.98793 -6.98462 -4.94183 55.3543 21.5163 -0.252

Figure

6.5

Expected n/a 10 0 2 90 -11.3099 0

Computed 19 10.4248 0.036744 2.08431 89.7911 -10.7542 0.03

Figure

6.6

Expected n/a 10 -10 -8 45.4286 29.001 0

Computed 20 10.6122 -10.4546 -8.25781 45.4537 29.3023 -0.31

θ φ ψ, ,( )
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Table 6.2 Improved Results for Dataset with only Noise

Table 6.3 Improved Results for Dataset with Mismatches

No. of Corners
Eliminated

Camera Position
(x, y, z)

Camera Orientation

n/a 10 -10 -8 45.4286 29.001 0

0 10.6122 -10.4546 -8.25781 45.4537 29.3023 -0.31

2 10.6533 -10.4718 -8.28137 45.0902 29.5975 -0.089

4 10.6665 -10.4804 -8.31937 44.1698 30.077 0.481594

6 10.7047 -10.5479 -8.35039 42.9077 31.0379 1.09046

8 10.7256 -10.5844 -8.33206 43.2051 31.1865 0.97729

No. of Corners
Eliminated

Camera Position
(x, y, z)

Camera Orientation

n/a 10 -10 -8 45.4286 29.001 0

0 5.91349 -6.8931 -5.4958 41.3477 26.4011 -0.396

1 6.0738 -7.27335 -4.77751 47.8276 22.3429 -3.481

2 7.15545 -8.27474 -6.21438 44.9449 25.4265 -1.402

3 10.6045 -10.4591 -8.25704 45.5382 29.2086 -0.377

4 10.6188 -10.477 -8.26687 45.4569 29.4223 -0.304

5 10.6538 -10.4835 -8.29198 45.1635 29.5445 -0.143

θ φ ψ, ,( )

θ φ ψ, ,( )
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Table 6.4 Results for different Corners Combination

No. of
Corners

Used
Camera Position

(x, y, z)

Camera Orientation

n/a 10 x diff -7 y diff -5 z diff 55.0347 22.0712 0

19 9.98793 0.01207 -6.98462 -0.01538 -4.94183 -0.05817 55.3543 21.5163 -0.252

18 9.98718 0.01282 -6.98176 -0.01824 -4.9387 -0.0613 55.2745 21.591 -0.233

18 10.0584 -0.0584 -7.03616 0.03616 -4.99182 -0.00818 54.9276 21.9051 -0.072

18 10.0036 -0.0036 -6.9943 -0.0057 -4.93841 -0.06159 55.325 21.5536 -0.254

18 10.0079 -0.0079 -6.98864 -0.01136 -4.92471 -0.07529 55.417 21.4322 -0.289

17 9.9357 0.0643 -6.96312 -0.03688 -4.90574 -0.09426 55.0806 21.6405 -0.137

8 10.1605 -0.1605 -7.04325 0.04325 -5.06112 0.06112 55.4006 21.6337 -0.126

6 10.1944 -0.1944 -6.986 -0.014 -5.13373 0.13373 53.201 22.3552 1.18394

6 8.62728 1.37272 -6.44897 -0.55103 -4.46529 -0.53471 56.2818 15.1994 -0.045

6 11.0048 -1.0048 -7.41336 0.41336 -5.48329 0.58329 64.0193 12.1546 -5.604

θ φ ψ, ,( )
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6.2 Images taken with a real camera

The experimental environment was set up in the Laboratory of Computational Intelligence

of University of British Columbia. The “ACME” group provide software to control the

camera, test station and to capture the image. A SONY 3CCD Color Video Camera

(model DXC-950) was mounted on the optical table and the objects are put on the test sta-

tion which can move and rotate under program control. The test station initially was

moved to a fixed position and only rotated between images. The origin of the World Coor-

dinate System was set to the center of the test station, the Y axis was pointing to the cam-

era (may not align with camera optical axis), the Z axis was perpendicular to surface of the

optical table, with a right-hand coordinate system was used, which determined the X axis

uniquely. Figure 6.7 is a picture of the environment.

Figure 6.7 the Optical Table, the Camera and the Test Station
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The set up of the test station: First, a  raiser board was

used, and a coordinate system was built on it. With the origin in the center and in the bot-

tom plane of the board,  axis are shown Figure 6.8 and  points away from the board

plane; Second, we placed several objects on the paper, and measured the coordinates for

the objects in this coordinate system. As we knew the size of each object, we could get the

coordinate for the corners on the objects in this coordinate system. Third, we put the board

with the objects onto the test station, let the  axes on the papers aligned to

axes of the World Coordinates System, and made the origin of the both coordinate systems

X

Y

o

Object 1

Object 2

Object 3

Object 4

(0, -6.5, 1.6)

(0, 6.5, 1.6)

(-7.3, 0, 1.6)(7.3, 0, 1.6)

Figure 6.8 Top View of the Set Up (before Rotating)

rotating axis
1

2

3

4

(5)

(6)

1(5)

2(6)

3(7)

4(8)

1(5)

2(6)

3(7)

4(8)

the set up

13 cm 15.6 cm 1.6 cm××

X,Y Z

X,Y XW,YW
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be at the same place. Next the board was lifted up 3.2cm in z direction. Finally, the board

was rotated around an axis parallel to the  axis as shown in Figure 6.7 to make the board

tilt. The result is shown in Figure 6.9.

The camera focus length is set to 0.02, and zoom is set to 85. Twelve images of the

objects on the teststation were captured with a resolution of . The motion

between each pair of two views was a rotation of 10 degrees of the test station. This gives

us the same effect as a rotation of 10 degrees of the camera while all the objects are still.

Figure 6.10 shows the initial position. We took a total of 6 images when test station rotated

counter-clockwise, then we set the test station to the initial position, and took 6 more

images as the test station rotated clockwise. These images were not corrected for lens dis-

tortion.

X

teststation

3.2cm
bottom plane of the board

o

3.2cm

Y

Z

Figure 6.9 Side View of the Set Up (after rotating)

θ

Yw

Zw

Ow

640 480×
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In this paper, only the test results of the 6 images where the test station rotated

counter-clockwise are given in Table 6.5 - Table 6.16.

In Table 6.5 - 6.16, the 3D world coordinates of the corners were obtained by trans-

forming from the coordinates in the board’s coordinate system  to the World

Coordinate System by two steps. First the  axes was rotated around

by  (from  to ) to make  parallel to  and  parallel to , then the origin  was

moved to the new place .

In Table 6.5 - 6.16, we use the notation  to refer to the number  corner in the

object , so we can identify each corner uniquely. Figure 6.8 should be used as a refer-

ence, as it shows the number for each corner clearly. The number between the parentheses

means this corner is at the top of the objects. With the corners are numbered,   we can have

a better understanding for each result - how many corners and which corners are used to

get it, and we can compare different results more clearly. The correspondences of the 2D

image coordinates, and their 3D coordinates of corners are also shown in tables.

In Table 6.6 - 6.16, “Distance” is the distance from the computed camera position to

the origin of the World Coordinate System. Ideally it should be a constant value, as we

only had rotation in the experiment, the distance between the camera and the origin of the

World Coordinate System didn’t change. “Rotation” is the angle between the computed

camera position and the Y axis, ideally this angle minus the computed angle for the initial

x y z( )

Xw Yw Zw( ) y z– x

θ y z y Yw z Zw o

Ow

m:n n

m
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position (Position 0) should equal to the rotation degree of the objects. “w.o.” means

“without”.

As Table 6.6 - 6.16 shows, the value of “Distance” varies significantly, although we

know it should be a constant, while the “Rotation” angles are relatively stable, and close to

the true values for every image. The results are quite promising, although they need a lot

of improvements.

There are several reasons which may bring errors to the results:

Lack of corners: In every case, less than ten corners are used, and as we can see

from the results for the synthetic images, when less than 10 corners are used, the camera

positions varies a lot, sometimes very far from the true values. As in these cases, the

dataset doesn’t have mismatches, only have noise, the method we used to improve the

accuracy in synthetic images will not be helpful here.

Large noise in the dataset: for every image, the errors in the linear equations are

very large, this means there is large noise in the dataset. This noise may result from the

inaccuracy of the environment set up, the inaccuracy measuring the objects and the inac-

curacy of the equipment. Also the corners in the real world are rather blunt, not as

expected defined by sharp edges, and the detected corners will not be localized very well.

The small difference in the corner localizations may result in big difference in the Trans-
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formation Matrix values, therefore the camera parameters which are solely based on dis-

composing Transformation Matrix will change significantly.

To increase the number of useful corners. We could use the following methods:

1) From Figure 6.10 - 6.15, we can get plenty of corners, although we only use less

than 10 now. Among these corners, some of them are caused by the texture changes on the

objects, these corners are quite stable and can be traced from one image to another, there-

fore, if their 3D coordinates are available, they can be used to compute results as well.

This will increase the number of useful corners.

2) Another method of increasing the number of corners is to reduce threshold, we

will get more useful corners, although at the same time we also get more false corners.

This method has side effect. With more false corners, the number of mismatches will also

increase, the method to eliminate mismatches must be improved, otherwise human inter-

ference will be increased.
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 Table 6.5 3D-2D Corner Correspondences for Rotating 0 Degree (Initial Position)

Corners World Coordinates Image Coordinates

1:1 1.4 6.015 3.323 244.0 315.0

1:3 0 3.108 4.062 306.9 283.1

2:1 6 0.200 4.800 113.0 249.0

2:5 6 0.985 7.892 105.0 146.0

2:6 6.9 -0.372 8.236 88.0 137.0

2:8 0.5 -2.698 8.827 303.0 122.0

3:5 -4.75 -0.471 8.251 479.6 140.5

3:6 -2 -1.92492 8.621 386.9 128.0

3:8 -6.3 -3.088 8.916 522.0 118.9.0

Figure 6.10 Image of Initial Position (with detected corners)



C
H

A
P

T
E

R
 6

 E
X

P
E

R
IM

E
N

T
IA

L
 R

E
S

U
LT

S73

Table 6.6 Results for Rotating 0 Degree (Initial Position)

Points Used Camera Position Camera Orientation Distance Rotation

9 -1.19153 35.7931 6.56891 -176.083 -19.183 358.797 36.4104 1.90664

8 w.o. 1:1 -0.71776 33.0026 7.1286 -176.47 -19.4893 358.655 33.7713 1.24591

8 w.o. 1:4 1.2852 32.2614 6.70073 -177.927 -39.3094 357.331 32.975 -2.28129

8 w.o. 2:1 -2.18205 24.5159 6.73176 -174.402 -45.0536 359.765 25.5168 5.08624

8 w.o. 2:5 -0.987056 38.415 6.79826 -175.78 -18.5052 358.597 39.0244 1.47187

8 w.o. 2:6 -0.940546 36.3632 6.76213 -178.335 -24.9673 358.344 36.9986 1.48164

8 w.o. 2:8 -1.46857 36.5559 6.82802 -179.504 -18.315 358.205 37.2171 2.30052

8 w.o. 3:5 -0.659698 30.5111 5.88835 -174.739 -18.3968 359.017 31.0811 1.23863

8 w.o. 3:6 -1.48539 36.3099 6.46822 -173.818 -15.1544 359.356 36.9114 2.34259

8 w.o. 3:8 -3.97321 51.4027 6.69851 -166.215 2.49555 359.858 51.9894 4.41993

7 w.o. 2:6,8 -1.00061 37.9319 7.2265 177.615 -25.2165 357.296 38.6271 1.51106

7 w.o. 1:4 3:6 0.495826 33.1539 6.63077 -175.897 -35.4005 358.111 33.8141 -0.856811

6 w.o. 1:1 2:1,8 0.164975 10.8657 5.44271 -179.844 -75.5728 357.709 12.1538 -0.869861

6 w.o. 2:1,5 3:8 1.47907 -79.4715 4.92696 -1.97711 80.867 2.844 79.6378 -1.06623

Average Note: the average for Distance and Rotation is based on 6+ points cases 36.1947 1.6556
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Table 6.7 3D-2D Corner Correspondences for Rotating 10 Degrees (Position 1)

Corners World Coordinates Image Coordinates

1:4 0 3.10769 4.06154 329 283

1:6 2 2.58062 6.45492 262 201

2:1 6 0.2 4.8 112.6 250.7

2:5 6 0.985231 7.89185 111.4 144.6

2:6 6.9 -0.37169 8.23646 85 135.1

2:8 0.5 -2.69785 8.82723 290 122

3:6 -2 -1.92492 8.6062 376 129

3:8 -6.3 -3.088 8.916 501 120.9

Figure 6.11 Image of Rotating 10 Degrees (with detected corners)
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Table 6.8 Results for Rotating 10 Degrees (Position 1)

Points Used (Total) Camera Position Camera Orientation Distance Rotation

8 5.48905 22.9722 6.7204 179.869 -29.415 359.35 24.5564 13.4385

8 w.o. 1:4 4.68444 17.9718 6.88622 -176.784 -25.2832 359.209 19.8078 14.6094

7 w.o. 1:6 4.98435 23.9106 6.1267 -178.998 -23.1697 359.41 25.1813 11.7751

7 w.o. 2:1 3.18449 16.6761 7.21423 -177.17 -43.4283 2.365 18.4466 10.8111

7 w.o. 2:5 7.73813 36.9259 7.31632 175.79 -24.6311 358.45 38.4308 11.8355

7 w.o. 2:6 6.19194 26.8771 6.90123 176.009 -33.8493 359.057 28.4314 12.9734

7 w.o. 2:8 5.34249 23.2807 6.72819 178.764 -28.0334 358.954 24.8154 12.9245

7 w.o. 3:6 5.44111 22.5071 6.70864 -179.969 -29.4869 359.388 24.1077 13.5905

7 w.o. 3:8 5.43493 22.4029 6.70917 178.264 -28.6728 358.835 24.0092 13.6365

6 w.o. 2:5 3:8 10.7017 58.1264 7.54251 176.195 -22.805 358.585 59.5827 10.432

6 w.o. 2:5 1:4 7.6171 24.178 6.37251 177.856 -56.0349 359.922 26.1382 17.4866

6 w.o. 1:6 2:1 0.468456 11.1364 5.90769 -178.94 -71.3767 5.733 12.6151 2.40874

6 w.o. 2:6 2:1 6.12774 26.4331 6.89288 176.283 -33.7153 359.126 27.9959 13.0518

Average Note: The average for Distance and Rotation is based on 6+ points cases25.3097 12.8438
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Table 6.9 3D-2D Corner Correspondences for Rotating 20 Degrees (Position 2)

Corners World Coordinates Image Coordinates

1:1 1.4 6.01538 3.32308 332 316

1:3 5.4 3.98 3.84 173.8 293

1:6 2 2.58062 6.45492 283 200

2:1 6 0.2 4.8 117 250.3

2:5 6 0.985231 7.89185 122.4 142.6

2:6 6.9 -0.371692 8.23646 89 133.2

2:8 0.5 -2.69785 8.82723 277 119

3:2 -2 -1.92492 8.62062 364 130

3:8 -6.3 -3.088 8.916 475.1 123

Figure 6.12 Image of Rotating 20 Degrees (with detected corners)
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Table 6.10 Results for Rotating 20 Degrees (Position 2)

Points Used (Total) Camera Position Camera Orientation Distance Rotation

9 11.3026 26.714 7.02832 170.564 -47.2411 0.593 29.846 22.9331

8 w.o. 1:1 11.2822 27.0695 7.16351 171.208 -43.5675 0.549 30.1888 22.6257

8 w.o. 1:2 9.62931 21.5997 6.78476 174.635 -44.0568 1.325 24.6029 24.0277

8 w.o.1:4 9.90793 21.0632 7.11766 172.791 -51.387 1.915 24.341 25.1918

8 w.o. 2:1 6.84421 18.4809 6.77531 176.85 -49.2261 3.708 20.8397 20.3216

8 w.o. 2:5 20.9982 46.5246 7.60667 160.079 -37.7731 356.138 51.6074 24.2913

8 w.o. 2:6 14.1973 31.4147 7.14322 160.08 -49.6937 356.733 35.2061 24.3197

8 w.o. 2:8 9.58789 22.4348 7.02396 175.821 -49.6601 3.036 25.3887 23.1403

8 w.o. 3:6 11.2932 26.6809 7.03666 170.771 -47.085 0.731 29.8148 22.9414

8 w.o. 3:8 11.4537 27.5082 7.0053 170.444 -47.0506 0.464 30.6098 22.6056

7 w.o. 3:6,8 10.7361 25.7997 7.1574 173.06 -47.988 1.859 28.8464 22.5938

7 w.o. 1:2 3:8 9.67261 21.8365 6.7807 174.567 -44.0018 1.269 24.8268 23.8912

7 w.o. 1:2 2:8 8.28418 17.0642 6.62905 179.496 -45.7527 3.148 20.0938 25.8952

7 w.o. 2:1 2:8 6.21391 16.7014 6.34874 178.128 -48.9559 4.35516 18.9171 20.4082

7 w.o. 2:6 3:6 14.036 30.9422 7.14252 160.338 -49.8076 356.886 34.7195 24.4

Average Note: The average for Distance and Rotation is based on 6+ points cases28.6566 23.3055
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Table 6.11 3D-2D Corner Correspondences for Rotating 30 Degrees (Position 3)

Corners World Coordinates Image Coordinates

1:1 1.4 6.01538 3.32308 373 315.1

1:2 5.4 3.98 3.84 210.9 293.1

1:4 0 3.10769 4.06154 372.5 283.8

1:6 2 2.58062 6.4592 305 200.1

2:1 6 0.2 4.8 128.9 251

2:5 6 0.985231 7.89185 140.5 140.6

2:6 6.9 -0.371692 8.23646 100 131.2

2:8 0.5 -2.69785 8.82723 265.1 119

3:5 -4.75 -0.471077 8.25138 449 144.3

3:6 -2 -1.92492 8.62062 350 131.1

Figure 6.13 Image of Rotating 30 Degrees (with detected corners)
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Table 6.12 Results for Rotating 30 Degrees (Position 3)

Points Used (Total) Camera Position Camera Orientation Distance Rotation

10 29.1934 53.493 7.28785 142.003 -8.19495 357.267 61.3748 28.6232

9 w.o. 1:1 20.7204 35.2711 6.96452 155.088 -12.812 358.04 41.4957 30.4326

9 w.o. 1:2 26.2345 48.4385 6.97719 146.452 -6.09064 357.66 55.5267 28.4402

9 w.o.1:4 17.1728 26.4651 6.89428 156.767 -43.1004 358.643 32.293 32.9789

9 w.o. 1:6 64.4524 76.104 4.88387 132.016 44.9476 187.651 99.8488 40.2612

9 w.o. 2:1 15.7803 34.3523 6.70741 161.227 -35.5572 181.579 38.3939 24.6725

9 w.o. 2:5 72.9265 69.6617 -3.32585 110.406 41.3708 192.467 100.906 46.3117

9 w.o. 2:6 29.9922 51.7653 9.82063 128.323 -21.1107 353.497 60.6269 30.0875

9 w.o. 2:8 26.8773 49.6762 7.152 142.376 -8.05692 357.35 56.9321 28.4156

9 w.o. 3:5 30.5821 54.9613 6.84871 147.469 -16.1866 357.091 63.2686 29.0929

9 w.o. 3:6 30.1285 55.5235 7.48369 140.808 -6.57456 357.36 63.6128 28.4854

8 w.o. 1:2 2:8 20.6229 38.9202 6.64157 149.338 -5.41306 357.879 44.5443 27.9181

8 w.o. 1:1 1:4 18.1449 28.5881 6.87919 156.2 -36.0127 358.311 34.552 32.4033

8 w.o. 2:8 3:6 28.6239 54.6743 7.50599 134.816 -1.39268 357.86 62.1687 27.6336

7 w.o. 1:6 3:5,6 97.9398 62.5918 12.0497 119.11 58.4229 195.189 116.855 57.418

7 w.o. 2:1 5:8 33.1988 63.1305 6.61737 136.015 2.32176 358.973 71.6339 27.7388

7 w.o. 1:2,4 2:1 5.96907 13.6676 7.87541 172.747 -52.9939 186.737 16.8658 23.5924

Average Note: The average for Distance and Rotation is based on 6+ points cases60.0529 32.0303
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Table 6.13 3D-2D Correspondences for Rotating 40 Degrees (Position 4)

Corners World Coordinates Image Coordinates

1:1 1.4 6.01538 3.32308 412.1 314

1:2 5.4 3.98 3.84 251 294

1:3 3.8 1.16923 4.55385 238 265

1:6 2 2.58062 6.45492 328 200

2:1 6 0.2 4.8 148 251.1

2:5 6 0.985231 7.89185 164.4 139.7

2:6 6.9 -0.371692 8.23646 119.1 127.1

2:8 0.5 -2.69785 8.82723 255 118

3:5 -4.75 -0.471077 8.25138 432 145.1

3:7 -3.4 -4.63877 9.30985 322 114

Figure 6.14 Image of Rotating 40 Degrees (with detected corners)
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Table 6.14 Results for Rotating 40 Degrees (Position 4)

Points Used (Total) Camera Position Camera Orientation Distance Rotation

10 26.8763 31.1218 6.46706 138.546 -29.057 356.316 41.626 40.8134

9 w.o. 1:1 26.743 32.7198 6.57235  140.484 -16.3663 357.255 42.7664 39.2603

9 w.o.1:2 24.9866 29.2426 6.4656 141.339 -29.3495 356.87 39.0034 40.5125

9 w.o. 1:3 24.1743 27.9653 6.70251 141.991 -31.8619 356.749 37.5683 40.8414

9 w.o. 1:6 64.5819 52.0711 3.84704 120.355 46.667 9.16 83.0483 51.1215

9 w.o. 2:1 18.771 25.4901 6.64558 153.624 -43.3877 1.958 32.3459 36.3681

9 w.o. 2:5 36.059 42.4532 8.16764 124.167 -10.3921 354.801 56.296 40.344

9 w.o. 2:6 24.5228 26.2293 6.94364 130.412 -36.9868 353.698 36.5726 43.0742

9 w.o.2:8 23.1316 26.4822 6.65169 138.858 -28.5895 356.04 35.7858 41.1365

9 w.o. 3:5 28.1108 38.1176 6.31312 151.891 -43.9295 0.413 47.781 36.4079

9 w.o. 3:7 24.145 27.6109 6.59361 145.377 -38.4359 358.206 37.2669 41.1688

8 w.o. 1:2 3:7 23.0461 26.4532 6.64641 146.466 -38.1165 358.465 35.7081 41.0625

8 w.o. 1:3 2:8 20.5098 23.2878 6.91983 141.877 -31.1129 356.25 31.794 41.3707

8 w.o. 2:6 3:5 32.805 33.3171 6.18469 128.713 -45.1882 352.018 47.164 44.5563

Average Note: The average for the Distance and Rotation is based on 6+ points cases43.1948 41.2884
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Table 6.15 3D-2D Correspondences for Rotating 50 Degrees (Position 5)

Corners World Coordinates Image Coordinates

1:1 1.4 6.01538 3.32308 446 313.3

1:2 5.4 3.98 3.84 295 293.9

1:3 3.8 1.16923 4.55385 262 264

1:6 2 2.58062 6.45492 349 200

2:1 6 0.2 4.8 173 251.1

2:5 6 0.985231 7.89185 194 139

2:6 6.9 -0.371692 8.23646 142.9 123.5

2:8 0.5 -2.69785 8.82723 247 118

3:5 -4.75 -0.471077 8.25138 411.1 146.1

3:7 -3.4 -4.63877 9.30985 291.9 114

Figure 6. 15 Image for Rotating 50 Degrees (with detected corners)
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Table 6.16 Results for Rotating 50 Degrees (Position 5)

Points Used (Total) Camera Position Camera Orientation Distance Rotation

10 28.0929 23.7668 6.49889 130.911 -29.0166 356.821 37.3672 49.7685

9 w.o. 1:1 28.8184 25.3475 6.53445 133.783 -13.2147 357.778 38.9319 48.6664

9 w.o. 1:1 26.5435 22.5195 6.58384 132.983 -30.31 357.218 35.4264 49.6887

9 w.o.1:2 24.2811 20.6912 6.87607 137.599 -33.9252 358.004 32.634 49.5639

9 w.o. 1:3 61.6795 26.2833 3.51029 100.381 46.2668 13.377 67.1379 66.9198

9 w.o. 1:6 18.1432 20.0653 7.30474 151.963 -46.389 5.469 28.0205 42.1201

9 w.o. 2:1 33.6627 27.6114 7.14702 119.098 -16.3233 354.65 44.1208 50.6401

9 w.o. 2:5 24.0606 19.776 6.83853 126.185 -36.0853 355.332 31.8868 50.5824

9 w.o. 2:6 25.9547 21.8486 6.60974 131.524 -28.5004 356.748 34.5644 49.9094

9 w.o.2:8 36.9139 31.6836 5.83267 129.857 -34.6381 356.299 48.995 49.3602

9 w.o. 3:5 28.3515 23.7697 6.56202 133.061 -33.5499 357.332 37.5748 50.0238

9 w.o. 3:7 27.3021 22.8648 6.66096 133.531 -33.6171 357.385 36.2294 50.0547

8 w.o. 1:2 3:7 130.168 -47.8643 41.0616 66.4242 62.8065 33.961 144.64 69.8109

8 w.o. 1:3 2:8 84.0443 12.664 9.34882 91.1564 59.7362 20.416 85.5057 81.431

8 w.o. 2:6 3:5 20.9232 18.145 6.8126 135.15 -45.4687 359.145 28.5207 49.0675

Average Note: The average for Distance and Rotation is based on 6+ points cases48.7704 53.8405
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

To merge Computer Generated Images with Real Video Images seamlessly in real time, it

is necessary to recover the real camera parameters, including extrinsic parameters (posi-

tion, orientation) and intrinsic parameters. This thesis proposes and analyzes a system

which can be used to get these parameters, and it includes the system design and the prin-

ciples behind the methods used in the system. Examination of the experimental results

shows that there are some problems applying the system into practical applications, it

requires more accurate results. A few ideas are proposed to improve the current system.

Retrieving camera parameters is not a new issue, especially in computer vision, but

for CAR applications we want minimize operations for real-time implementation pur-
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poses, it should not involve calibrating the camera, or other complicated issues, like

reconstructing 3D models or recovering the epipolar geometry. This is a trade-off between

the simplicity, performance and accuracy.

In summary, the conclusions are:

a) The Harris corner detection is stable and consistent, but is relatively poor in local-

ization and only gives pixel accuracy. When using a Gaussian filter to interpolate grey

level values to get subpixel accuracy, special attention should be paid to the smoothness

effect the filter will bring as it affects the localization of a corner;

b) Using a correlation window, the corner-based brute force search matching method

is efficient in assigning 3D coordinates to some corners in the next image. The computa-

tion of the camera parameters can be done without inputting new 3D information, makes

the system work as automatically as possible, but it can be computationally expensive

when the number of corners becomes very large, as it uses the brute force search; it also

can be unreliable when the translation, rotation and scale change ranges are large, since

the number of mismatches will increase;

 d) The least-squares method in computing the transformation matrix is robust and

fast, but for the linear equations  the classical least-squares method assumes the

measurements of are free of errors, all errors are confined to the observation vector .

However, this assumption is unrealistic in real cases: measuring errors, instrument errors

Ax b≈

A b
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etc. may imply inaccuracies of matrix  as well. For a dataset with noise this method

won’t give the best fitting result;

e) The decomposition method used to get the camera parameters from the transfor-

mation matrix is linear, non-iterative and very fast, but “extremely susceptible to noise

mainly because the orthonormal constraints associated with the rotation matrix on which

this solution is based are not fully taken into account” [Phong 94];

f) This whole system gives stable result when 20 or more corners are used in the

image, and in the synthetic image case, the result are very promising; for the real images,

the result for the camera rotation are relatively accurate and stable, but it gives very differ-

ent values for camera position, mostly because less than 10 corners are used in every

image, partly because the difficulty in setting up a ideal experimental environment, which

brings some immeasurable errors to the results.

7.2 Future Work

Further work could be done in order to deal with real situations:

•    A better corner detector which can directly give sub-pixel position;

•    A better matching method, which would give better matching results when transla-

tion, rotation and scale changes are large, and would reduce the false matches;

A
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•    A method better than least-squares to compute the transformation matrix, which

tolerates more the errors in the data, and gives better fitting result. As almost all

work in the area of computer vision is related in one form or another to the prob-

lem of estimating parameters from noisy data, the parameter estimation problem is

usually formulated as an optimization one. Because of different optimization crite-

ria and several possible parameterization, a given problem can be solved in many

ways. The importance of choosing an appropriate method cannot be minimized.

This will influence the accuracy of the estimated parameters, the efficiency of

computation and the robustness to errors. When Ganapathy’s method is used to

compute the camera parameters, the accuracy of the transformation matrix is the

key issue of the whole system;

•    Finally, looking for possible methods other than Ganapathy’s method which use the

transformation matrix to compute the camera parameters is another choice. These

methods should be less sensitive to errors in the transformation matrix. Another

possibility is to improve Ganapathy’s method to make it more tolerating to noise.
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