
Fast Progressive Transmission of Images Using

Wavelets With Sorted Coe�cients

by

Allan G. Rempel

B.Sc., The University of Saskatchewan, 1993

B.Comm. (Computational Science), The University of Saskatchewan, 1993

AN ESSAY SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

I accept this essay as conforming

to the required standard

The University of British Columbia

August 1997

c
 Allan G. Rempel, 1997

Abstract

Wavelets provide a convenient mechanism for encoding image data and transmitting

it progressively. This is useful in many applications such as Geographic Information

Systems, in which users interactively obtain images from a central server. By sorting

the coe�cients in decreasing order of magnitude, further gains may be realized in

that the important features of the image may be transmitted sooner rather than

later. This essay documents software written to do this, and shows the results of

these techniques.

ii

Contents

Abstract ii

Contents iii

Acknowledgements iv

Dedication v

1 Introduction: The Problem of Communication 1

2 Previous Work 4

3 Wavelets 8

4 Progressive Transmission 15

5 Results 19

6 Conclusions and Future Work 34

Bibliography 36

iii

Acknowledgements

First and foremost, I would like to thank my research supervisor, Alain Fournier,

without whose guidance this work would not have been completed. I would also like

to thank Gerry Furseth of Facet Decision Systems, Inc., who provided a convenient

problem and context for my work, and Jack Snoeyink, who brought Facet and

I together. And I would be remiss if I did not thank the members of Imager who

provided friendship and assistance along the way, NSERC and BC ASI for providing

the funding which enabled me to pursue this degree, and the Computer Science

Department at UBC for providing the breadth Masters option as well as additional

funding.

I would also like to thank my family, especially my mother, Doris Rempel,

who is responsible for much of what I am. Thanks to Angela and Bret RempelEwert,

who keep me in touch with reality, lest I lose myself in the ivory tower, and to

Stephen Rempel, for uncountably many conversations and gedankenexperimenten

on the nature of the universe, which have fueled the
ame that makes hot the water

of science in which I swim.

Finally, I would like to thank the residents of Green College at UBC, a bastion

of interdisciplinarity (of which my breadth Masters degree is yet another symptom)

which provided the cold water of art in which I also swim. I would especially like to

thank my best friend and fellow inmate Dawna Tong, who encouraged me to think

in new ways and changed my mind on many topics, who taught me much about

sociology, law, postmodernism, and French, who gave me a greater appreciation for

the plight of the disenfranchised, and who has made my life better by her presence.

Allan G. Rempel

The University of British Columbia

August 1997

iv

To Nick Rempel, who unfortunately could not live to see his son grow up,

and will be forever missed

v

Chapter 1

Introduction: The Problem of

Communication

Since the beginning of humanity, people have been concerned with knowledge. Peo-

ple learned by observing the physical world and performing experiments with it,

thus acquiring knowledge, and this knowledge became useful in predicting the out-

comes of future actions. But in order for one person's knowledge to become useful

to another, such knowledge would have to be communicated in some way.

Communication is the transmission of knowledge or information from one

entity to another. When people talk, they encode the knowledge they're trying

to convey into a format whereby it can be communicated, such as words. This is

necessary, since it is not well known how to directly transmit thoughts from one

person to another. Similarly, digital information must be encoded or translated

into a format appropriate to the transmission medium to be sent from one entity to

another.

The translation process is concerned with two key features: correctness and

1

e�ciency. When communicating knowledge, we want to ensure that what is being

communicated is as true or correct as possible, since the communication of false-

hoods is not useful in the same way as the communication of truth, and the goal

of communication is to share the usefulness of true knowledge. But there are also

costs to communication and translation in that they require time, which is a limited

resource and which can be used in many other ways. As a result, it is advantageous

to communicate knowledge as quickly or e�ciently as possible.

Sometimes, though, there is a tradeo� between correctness and e�ciency,

in that a more e�cient encoding of the knowledge can be achieved by altering it

somewhat. In many cases, this alteration might not change the e�ective correctness

of the knowledge in a speci�c context, because that context does not have the

resolution to make use of the di�erence between the true encoding and the more

e�cient almost true encoding. However, the task is to determine just what the

resolution of the context is, and how much truth can be sacri�ced for the sake of

expediency.1 There is also the concern that truth in one context may be taken to

another context which may have a higher resolution, in which case the truth may

cease to be truth, and become erroneous. This problem is particularly endemic to

natural languages, in which words, even in the same language, are coloured by the

experiences and cultural context of the person uttering them, which may not match

those of the receiver.

This problem arises in numerous �elds, including many areas of computer

science, computer graphics, and scienti�c computing, where a quick approximate so-

lution is often better than an time-consuming exact one. However, the concern here

is how it arises in the �eld of Geographic Information Systems (GIS). Geographic

1For more on truth and resolution, see [7]. For more on this theme as applied to computer

science, see [6].

2

Information Systems are systems that dispense geographic information interactively

from a server to a client over some transmission line. In particular, I am interested

in the case where a raster image with a resolution of 512 by 512 greyscale pixels

whose values range from 0 to 255, is transmitted over a slow communication line

such as a 28,800 bps modem. Such an image could be, for instance, a digitized satel-

lite photograph, or an image of terrain with thematic polygons denoting regions of

forest, water, etc. These images can take prohibitively long to transmit over such a

medium, and so it is desirable to �nd ways of encoding the image so that it can be

transmitted faster, perhaps even at the expense of some detail.

3

Chapter 2

Previous Work

The most obvious and naive approach to transmitting an image such as the one

described in the previous chapter is to just do it. A quick calculation indicates that

there are 262,144 bytes to transmit. The modem typically requires approximately

12 bits (including start and stop bits) to transmit a single byte, so it can transmit

about 2400 bytes per second. Hence, transmission of this image would take about

109 seconds, nearly 2 minutes, not counting any transmission delays that could

occur. This is clearly inadequate for any interactive application. However, to its

credit, the image can be displayed as it comes in. This can be useful if the part of

the image that the user is most interested in arrives �rst. Unfortunately, if it arrives

last, or if the user is looking for a general overview of the image instead of a small

piece of it, the user has a long wait ahead.

However, several encoding schemes exist which can cut down on the time

required for transmission. Many of these do so by compressing the image data so

that it requires less bytes, usually exploiting some kind of redundancy in the image,

and hence can be transmitted faster. Unfortunately, these schemes are dependent

on the nature of the image data. It is mathematically impossible, as can be proven

4

by a simple counting argument[4], for a compression scheme to compress any and

every �le by some amount without any loss of data. Lossless compression schemes

will make some �les smaller while making other �les larger, in the hopes that the

�les that need to be compressed are the of the former. Lossy compression schemes,

on the other hand, are not restricted by this theoretical limit and can often achieve

very high compression while losing detail that, it is hoped, will not be noticed by

the human visual system. This is an example of sacri�ce of extraneous detail when

the message is transmitted to a receiver with less resolution than the sender, as

mentioned in the previous chapter.

Run-length encoding (RLE) is a lossless compression scheme that takes ad-

vantage of simple redundancy in an image by collecting strings of identical pixels

(bytes) and replacing them with pairs of bytes where the �rst byte is a count of the

number of pixels in a string and the second is the value of those pixels. Unfortu-

nately, it tends not to work well for the images that this essay is concerned with

because the images seldom have long strings of pixels with the same value. In fact,

RLE often increases the size of the �le to be transmitted.

Many other schemes such as GIF and JPEG also exist and are in common use

for compressing images. For more information on these and other encoding schemes,

see [5]. However, these are usually not completely suitable for the GIS application,

either because the compression ratio is not particularly good, or they require all the

data in the image to be downloaded before display can begin, or they lose too much

detail.

Another development in coding theory which holds considerable promise for

applications such as this is wavelets. Wavelets provide a means of decomposing an

image into di�erent levels of detail, which can later be combined again to recon-

5

struct the image. This has numerous applications from querying images at multiple

resolutions to editing them. It can also be used for compression, in that a good

approximation of an image can be gained with a very small number of wavelet co-

e�cients. But perhaps most importantly for our application, it is ideally suited to

progressive transmission.

Progressive transmission simply means displaying the image continuously as

it comes in. As such, the term could be applied to the naive transmission scheme at

the beginning of this section since the image can be continuously updated line by

line as the pixels come in. However, it is perhaps best applied to schemes in which

successive better approximations to the whole image are sent, one after the other.

One way to achieve this is to create a set of images which are downsampled

versions of the original image. For example, from a 512x512 image, one can create

256x256, 128x128, 64x64, 32x32, 16x16, 8x8, 4x4, 2x2, and 1x1 images. Each image

has only 1/4 of the data of the previous image, and taken together, they comprise

only 1/3 of the data of the original image. By transmitting the 1x1 image �rst,

then the 2x2, and so on up to 256x256 and eventually 512x512, the user is able to

see successive approximations of the image very quickly, and from that data may

gain enough information to quickly decide whether to abort the transfer (saving a

lot of time) or continue. In applications such as GIS, the user may need to view a

number of images before �nding the right one, and thus would save a lot of time by

utilizing progressive transmission. However, in exchange for this luxury, the price for

downloading the image that the user eventually settles on is 4/3 of what it originally

was, which, while e�cient from an algorithmic analysis point of view in that the

time complexity in order notation has not increased, is still not insigni�cant.

However, the above scheme transmits redundancy in that each of the �rst

6

nine images sent before the �nal one was generated by and is subsumed by the

�nal one. This redundancy can easily be eliminated by using wavelets, as follows:

A wavelet decomposition of a
at image �le yields an \image pyramid"[3] with a

number of levels that is proportional to the logarithm of the number of pixels in

the image, just as in the above example. But this time, instead of resending a new

version of the image each time, the only data sent is incremental data which can be

added to the existing data to create a newer higher resolution image. This is the

essence of progressive transmission using wavelets.

7

Chapter 3

Wavelets

Stollnitz, DeRose, and Salesin[8] provide a good description of Haar wavelets and

their use in standard and nonstandard decomposition and reconstruction of images.

I will not reproduce that here, except to recall the relevant formulae. Recall that

any wavelet is comprised of a set of scaling functions and a set of wavelet functions.

The scaling functions for Haar wavelets are

�
j
i (x) = �(2jx � i) i = 0; : : : ; 2j � 1

where

�(x) =

8><
>:

1 for 0 � x < 1

0 otherwise

while the wavelet basis functions are

j
i (x) = (2jx� i) i = 0; : : : ; 2j � 1

where

 (x) =

8>>>>><
>>>>>:

1 for 0 � x < 1=2

�1 for 1=2 � x < 1

0 otherwise

8

These can then be normalized as desired, by replacing the previous equations with

�
j
i (x) =

p
2j�(2jx� i)

j
i (x) =

p
2j (2jx� i)

In the case of 2-dimensional images, new scaling and wavelet functions need

to be de�ned based on the above functions, depending on how the decomposition

and reconstruction is done. Stollnitz et al de�ne the 2-dimensional scaling function,

��(x; y) = �(x)�(y)

and the three wavelet functions for the standard construction:

� (x; y) = �(x) (y)

 �(x; y) = (x)�(y)

 (x; y) = (x) (y)

and for the nonstandard construction:

�
j
kl(x; y) = 2j� (2jx� k; 2jy � l)

 �
j
kl(x; y) = 2j �(2jx� k; 2jy � l)

j
kl(x; y) = 2j (2jx� k; 2jy � l)

The nonstandard construction uses the same scaling function as the standard,

��00;0(x; y) = ��(x; y). Stollnitz et al also provide algorithms which use these func-

tions to decompose and reconstruct 2-dimensional images.

For simplicity of coding, I have chosen to use slightly di�erent decomposition

and reconstruction algorithms which correspond to the following wavelet functions:

�
j
kl(x; y) = � (2j+1x� k; 2jy � l)

 �
j
kl(x; y) = �(2jx� k; 2jy � l)

Again, the scaling function is the same as that used in the standard construction,

��00;0(x; y) = ��(x; y).

9

My algorithms are derived from the nonstandard decomposition and recon-

struction algorithms given by Stollnitz et al, which, for convenience, are reproduced

in Figure 3.1.

There are a number of numerical issues involved in this wavelet decomposition

and reconstruction, some of which are dealt with by normalization. Each pass over

a set of data produces 2 data sets, one with means and one with o�set or detail

coe�cients. The means then become the inputs for the next pass. As successive

passes produce successive sets of means, the means approach the one mean of all the

pixel values in the original image. As that happens, the o�set coe�cients approach

zero. This can result in loss of data if the number representation scheme (e.g.

oating point) does not have the resolution to capture those numbers. The solution

to this is to normalize the coe�cients, so that they will all still have the same

dynamic range that the original image did.

Another issue is that some of the coe�cients will be negative numbers. This

can be a problem if the wavelet-decomposed image is to be stored as a PNM �le (for

example) to be viewed. PNM �les typically have pixel values ranging from 0 to 255,

without negative values. My solution to this problem is to subtract 128 from every

pixel, so that the dynamic range becomes -128 to 127, which is the same as that

for the C type signed char. My variation of the nonstandard decomposition will

then yield coe�cients all in that same range. I then add 128 to all the coe�cients

to bring them back up to the original range, suitable for viewing.

There are also other signi�cant di�erences between my decomposition, given

in Figure 3.3, and the nonstandard decomposition. Where the nonstandard decom-

position takes care of normalization by dividing means and detail coe�cients by
p
2,

mine divides by 2. Since I did not prenormalize the input by dividing all the pixels

10

void DecompositionStep(c: array[1. .2j] of reals)
f

for i = 1 to 2j=2

c0[i] = (c[2i�1] + c[2i])=
p
2

c0[2j=2+i] = (c[2i�1] � c[2i])=
p
2

c = c0

g

void NonstandardDecomposition(c: array[1. .2j, 1. .2j] of reals) 10

f
c = c=2j == normalize input coe�cients

g = 2j

while g >= 2 do

for row = 1 to g

DecompositionStep(c[row, 1. .g])
for col = 1 to g

DecompositionStep(c[1. .g, col])
g = g=2

g 20

void ReconstructionStep(c: array[1. .2j] of reals)
f

for i = 1 to 2j=2

c0[2i�1] = (c[i] + c[2j=2+i])=
p
2

c0[2i] = (c[i] � c[2j=2+i])=
p
2

c = c0

g

void NonstandardReconstruction(c: array[1. .2j , 1. .2j] of reals) 30

f
g = 2

while g <= 2j do

for col = 1 to g

ReconstructionStep(c[1. .g, col])
for row = 1 to g

ReconstructionStep(c[row, 1. .g])
g = 2g

c = 2jc == undo normalization

g 40

Figure 3.1: Nonstandard decomposition and reconstruction from [8].

11

Figure 3.2: Original image, Nonstandard decomposition, Rempel decomposition.

by 2j , this will guarantee that the resulting numbers stay in the same range as the

numbers from which they were derived, which is useful for numerical reasons.

The other change a�ects the wavelet basis functions. The nonstandard de-

composition, in its �rst loop, runs a pass on all the rows and then all the columns,

so that both the means and the detail coe�cients resulting from the pass across the

rows are processed by the pass across the columns. In my decomposition, only the

means from the previous pass are processed on the next pass. In the �rst loop, my

decomposition runs a pass on all the rows just as the nonstandard decomposition

did, but it then runs a pass on only the columns that contain the means, leaving the

o�set coe�cients as they are. I believe this approach is conceptually simpler than

the nonstandard decomposition, and it also makes the progressive reconstruction

slightly simpler. Figure 3.2 shows a sample image, the nonstandard decomposition

of it, and my decomposition of it.

Just as the nonstandard reconstruction is the simply reverse of the non-

standard decomposition, so is the Rempel reconstruction the reverse of the Rempel

decomposition. The base coe�cient (in the upper left corner of the image) is the

mean of all the pixels in the original image, and is typically transmitted �rst. The

12

void DecompositionStep(c: array[1. .2j] of reals)
f

for i = 1 to 2j=2
c0[i] = (c[2i�1] + c[2i]) = 2

c0[2j=2+i] = c[2i�1] � c[2i]
c = c0

g

void RempelDecomposition(c: array[1. .2j , 1. .2j] of reals) 10

f
c = c � 128

g = 2j

while g >= 2 do

for row = 1 to g

DecompositionStep(c[row, 1. .g])
for col = 1 to g=2

DecompositionStep(c[1. .g, col])
g = g=2

c = c + 128 20

g

void ReconstructionStep(c: array[1. .2j] of reals)
f

for i = 1 to 2j=2

c0[2i�1] = c[i] + c[2j=2+i]=2

c0[2i] = c[i] � c[2j=2+i]=2
c = c0

g
30

void RempelReconstruction(c: array[1. .2j, 1. .2j] of reals)
f

c = c � 128
g = 2

while g <= 2j do

for col = 1 to g=2
ReconstructionStep(c[1. .g, col])

for row = 1 to g

ReconstructionStep(c[row, 1. .g])
g = 2g 40

c = c + 128
g

Figure 3.3: Modi�ed nonstandard decomposition and reconstruction.

13

pixel immediately below it divides the image into an upper and a lower half. The

next two coe�cients (to the right of the �rst two, completing the square) divide each

of the halves in half again, resulting in a total of 4 squares within the square image.

The next 4 coe�cients divide each of those squares into an upper and a lower half.

The next 8 coe�cients divide those halves in half again, resulting in a 4x4 grid of

square pixels. This process continues until the entire image is reconstructed. By this

scheme, each pass requires the transmission of exactly twice as many coe�cients as

the previous pass (with alternating passes a�ecting the rows and columns), and the

number of individual blocks in the image doubles with every pass as well.

14

Chapter 4

Progressive Transmission

Using wavelets to encode an image into a base coe�cient and a large number of

detail coe�cients is an interesting way to encode an image, but it su�ers from some

problems as well. An nxn greyscale image has n2 pixels, where each pixel ranges

over [0..255] and hence takes up 1 byte. A wavelet transform of an image, as done by

one of the above methods, also has n2 numbers, but here each number has fractional

value, and can be encoded as a
oating point number or a more simple string of

bits with a binary point. My implementation in C uses the former, where a float

type number uses 4 bytes. Thus, the image has increased to four times its original

size. It is quite possible to reduce this factor substantially by some clever encoding,

but without using another compression technique on the coe�cients, the coe�cient

data will still be larger than the size of the original image, which brings us no closer

to our goal of fast image transmission.

However, the power of wavelets is that a substantial part of the original

image can be reclaimed with very few coe�cients, and it is this feature that we wish

to take advantage of. In an interactive application such as a GIS, a user perusing

images looking for the right one will not be interested in having each image be

15

perfectly reconstructed, as much as having a close approximation of the image be

transmitted quickly so that a decision can be made quickly as to whether to get the

rest of the image or move on to the next one. This power is particularly present in

the nonstandard decomposition and my decomposition, as opposed to the standard

one, since every pair of passes across the rows and columns yields an approximation

of the original image which is 1/4 the size of the image from which it was generated.

The simple and obvious way to do progressive transmission is to send the

coe�cients in the reverse order of when they were generated. In other words, the

last coe�cient generated, the base coe�cient (which happens to be the mean of all

the pixels in the original image) is sent �rst, followed by the coe�cients which turn

that into a 2x2 approximation of the original image, then a 4x4, an 8x8, and so on

until the whole image is reconstructed. At each stage, 3 times as many coe�cients

as have been transmitted to that point are required to complete the next stage.

This is similar to the scheme outlined in Chapter 2, where several smaller

approximations to the image were sent before the whole image. However, while

that scheme sent redundant data, this scheme always builds upon the previously

sent data. Even with that, though, it can take longer to transmit a complete image

under this scheme since the numbers can be up to 4 bytes each in size. Moreover,

while the smaller images quickly generate a good approximation of the whole image,

the user may be less interested in an overview of the whole image than in some

�nely detailed sections, which are not likely to be generated until the �nal stage. In

addition, images with high-frequency elements or many sharp discontinuities may

not have the relevant features adequately reconstructed until late in the process.

My solution to this problem, which forms the crux of the contributions of

this essay, is to sort the coe�cients and transmit them in an order independent of

16

level hi x hi y lo x lo y

byte 0 byte 1 byte 2 byte 3

Figure 4.1: 4-byte wavelet coordinate.

when in the wavelet transform they were generated. Speci�cally, those coe�cients

that have the highest magnitude represent the greatest deviances (excluding from

consideration the size of the area over which they act) between the original image

and the approximation. Consequently, it makes sense to send them before other

coe�cients. This is not a particularly new idea; it is a relatively straightforward

extension of wavelet reconstruction and has been alluded to in such papers as [1]

and [2]. What is new is that I have implemented it and have results to show how

useful it can be.

Unfortunately, this approach requires even more data overhead to be trans-

mitted. The simple top-down reconstruction needs to send only the coe�cients

themselves because it is always clear at which level and where in the image a co-

e�cient is to be applied. However, if these coe�cients are sorted by magnitude,

the level and position of the coe�cient must be speci�ed for each coe�cient. My

implementation uses a 4-byte coordinate, broken down as shown in Figure 4.1.

There are 3 values encoded in the coordinate, level, x, and y. level gets

an entire byte to itself, though it only needs the lower 5 bits, thus leaving (or

wasting, depending on one's point of view) 3 bits available for future de�nition, if

necessary. It indicates the level at which the coe�cient is to be applied. The number

of levels possible in a 2jx2j image is 2j, ranging from 0 to 2j� 1. The reason for 2j

instead of j is that both horizontal and vertical passes need to be made, which must

be di�erentiated from each other. At level i, a total of 2i coe�cients exist to be

17

transmitted by my decomposition scheme. The base coe�cient is always transmitted

�rst and hence needs no additional information.

x and y are each 12-bit values, where the lowest 8 bits are stored in bytes 2

and 3 respectively, and the highest 4 bits are stored in the upper and lower halves,

respectively, of byte 1. That is,

x = byte2 + (byte1=16) � 256

y = byte3 + (byte1&15) � 256

For even levels i, both x and y range between 0 and 2i=2�1. However, for odd levels

i, x ranges between 0 and 2i=2+1�1 while y still ranges between 0 and 2i=2�1. Note

also that, in accordance with the third image of Figure 3.2, x refers to the row and

y to the column.

This wavelet coordinate can be used to represent coe�cients in images as

large as 4096x4096 pixels, since that is the range of 12-bit numbers. At that size,

there will be 24 levels, which �ts easily within 5 bits. Larger images will need a

di�erent wavelet coordinate encoding.

18

Chapter 5

Results

The source image that I will be using for this section is a sample image from a GIS

application. It consists of a number of thematic polygons which indicate regions of

di�erent terrain. It began as a colour 429x305 GIF �le but was then resampled to

a 512x512 PGM �le for the sake of this experiment. It is reproduced in Figure 5.1.

The complete image as a PGM �le takes up 262,159 bytes, but encoded as

a GIF it takes up only 49,545 bytes. It thus seems reasonable that we should see

useful results before we have transmitted 50,000 bytes or so.

As it happened, the regular top-down progressive reconstruction turned up

some good results, as can be seen in Figure 5.2. Each coe�cient takes up 4 bytes,

and so the images there were generated from only 1024, 4096, and 16384 coe�cients

respectively. With more e�cient representations of coe�cients, further gains might

be realized. These images are quite good and quickly converge to the actual image,

making this a reasonable scheme to use in an interactive application such as a GIS.

Of course, the �ne lines that run through the image are not very clear until

the later stages of the reconstruction, and so for those who are interested in seeing

those early in the reconstruction, we have the sorted reconstruction. As can be

19

Figure 5.1: GIS image of thematic polygons.

20

Figure 5.2: Top-down reconstruction after 4096, 16384, 65536 bytes read.

Figure 5.3: Sorted reconstruction after 4096, 16384, 65536 bytes read.

Figure 5.4: Naive progressive transmission after 1365, 5461, 21845 bytes read.

21

seen in Figure 5.3, those features appear early, although without much background

colouring to put them in a good context. The third image starts to bring in some

background colour, but that's as good as it gets for this image until half the coe�-

cients are transmitted and the image begins to closely resemble the original, as can

be seen in Figure 5.5.

A useful baseline comparison is provided in Figure 5.4 which shows the

progress of the naive progressive transmission algorithm described in Chapter 2.

In this example, downsampled images have been created and transmitted, one after

the other, beginning with a 1x1 image. The �rst image is 32x32, the second is 64x64,

and the third is 128x128. As the pictures indicate, the scheme may be naive, but

the images it generates make relatively e�cient use of bandwidth, in comparison to

the schemes presented here.

Those results are promising, but the original image in that test was somewhat

sparse and the range of pixel values quite narrow. So for variety, I ran the same

experiment with a di�erent image, which is reproduced in Figure 5.6. This 512x512

image is an original, not upsampled from any smaller or colour photo.

The complete image as a PGM �le again takes up 262,159 bytes, but this

time, the GIF encoding takes up 214,857 bytes. It thus seems reasonable to allow

more bytes to pass to see what the reconstruction routines can do.

Again, the regular top-down progressive reconstruction turned up some good

results, as can be seen in Figure 5.7. And again, the sorted progressive reconstruc-

tion brought out the detail before the whole image, as seen in Figures 5.8 and 5.9.

This time, however, the sorted reconstruction approached the real image a little

faster than in the previous example, and each order of magnitude in the number

of coe�cients transmitted generated an appreciable improvement over the previous

22

Figure 5.5: Sorted reconstruction after 1/2 the coe�cients have been transmitted.

23

Figure 5.6: A greyscale photograph of a head, with a large dynamic range.

24

Figure 5.7: Top-down reconstruction after 4096, 16384, 65536 bytes read.

Figure 5.8: Sorted reconstruction after 4096, 16384, 65536 bytes read.

Figure 5.9: Sorted reconstruction after 262,144, 524,288, 1,048,576 bytes read.

25

image. The blocky artifacts which the wavelet decomposition generates persist no-

ticeably in this image even when half the coe�cients have been transmitted, as can

be seen in the lower right-hand corner of Figure 5.10. However, at that resolution,

the image is nearly indistinguishable from the original.

One comment that can be made on the blocky artifacts in these images is that

they are images of a human head, which most humans are experts at recognizing

and in which they are sensitive to deviations. Such artifacts appearing in a GIS

image are much less likely to be noticeable. Furthermore, the artifacts only detract

from an aesthetic appreciation of the image, which is not typically a concern in a

GIS application.

Another application for which the sorted reconstruction performs reasonably

well, and better for some purposes than top-down, is shown in Figure 5.11. This

image started o� as a 486x389 colour GIF image, which was then converted to

greyscale rather well and without artifacts. Instead of scaling the image to 512x512,

though, the scale of the features was preserved by duplicating the rightmost columns

and the lower rows to �ll out the image to 512x512.

Again one can see the di�erence between the top-down and sorted recon-

structions in Figures 5.12 and 5.13.1

One salient feature of this image which we wish to have transmitted quickly

is the text near the top of the image. Unfortunately, since the text consists of

lines that are only 1 pixel wide, in the top-down case, it will never be adequately

reconstructed until the very last level. The second last level, in which 1/4 of the

1It should be noted, however, for this and the previous examples, that the thumbnail 128x128

postscript images reproduced in this essay for the sorted reconstruction have artifacts not present

in the 512x512 PGM images. These thumbnail images were provided for convenience of rough

comparison, and where appropriate, 512x512 images have also been provided for a more accurate

comparison.

26

Figure 5.10: Sorted reconstruction after 1/2 the coe�cients have been transmitted.

27

Figure 5.11: Another GIS image of thematic polygons with text.

28

Figure 5.12: Top-down reconstruction after 4096, 16384, 65536 bytes read.

Figure 5.13: Sorted reconstruction after 4096, 16384, 65536 bytes read.

29

coe�cients have been transmitted, is reproduced in Figure 5.14. It is only at this

level that the text in the image begins to be readable.

However, when the coe�cients are sorted, text that stands out signi�cantly

from the surrounding pixels can be transmitted quickly. The image in Figure 5.15

shows the sorted reconstruction after only 1/16 of the coe�cients are sent, at which

point the text is already readable. Further reconstruction to the point where 1/4

of the coe�cients have been transmitted results in an image, in Figure 5.16, that

is nearly indistinguishable from the original. The only unfortunate detail of this

experiment is that the image is so sparse that the GIF encoding takes only 20703

bytes. Nevertheless, if a progressive transmission scheme is what is needed, the

sorted coe�cient scheme is an attractive option.

30

Figure 5.14: Top-down reconstruction with 1/4 of the coe�cients.

31

Figure 5.15: Sorted reconstruction with 1/16 of the coe�cients.

32

Figure 5.16: Sorted reconstruction with 1/4 of the coe�cients.

33

Chapter 6

Conclusions and Future Work

For this essay I have implemented routines to do standard and nonstandard wavelet

decompositions and reconstructions of greyscale images. I have also implemented a

variation on the nonstandard construction which I believe is simpler, both concep-

tually and in the implementation, and which retains the attractive features of the

nonstandard construction. In addition, I have implemented routines to read and

write PNM images as well as an OpenGL program to progressively display wavelet-

encoded images in the form of
oating point numbers which are fed to it, either by

the top-down method or by my own sorted coe�cient method.

I have used these programs to examine the e�cacy of both the top-down and

sorted progressive transmission schemes and have found that both are good in their

own way. The top-down scheme quickly generates an overview of the image but takes

some time to show the details, while the sorted coe�cient scheme shows the details

quickly but takes even more time to show the whole image. Neither are particularly

good for lossless image reconstruction because they both take signi�cantly longer

to transmit the entire image than a naive pixel-by-pixel transmission. However,

that e�ect can be mitigated signi�cantly by a more e�cient coe�cient encoding.

34

Nevertheless, in both cases, signi�cant parts of the image that a user may be very

interested in are transmitted quickly, allowing the user to make a quick decision

on whether to download the rest of the image or not. One can envision a system

in which, when a user has had enough of an image progressively transmitted and

has decided to request the complete image, the image is sent in a compressed non-

progressive form such as GIF or JPEG. This gives the user interactivity as well as

speed.

Future work could include extending these routines to colour RGB images,

which may hold an answer to the problem of transmitting the images with coloured

thematic polygons. Also, modifying the routines to handle nonsquare images, in par-

ticular those that are twice as wide as they are long (which should be easily handled

by my modi�ed nonstandard construction), might make these routines more
exible

and useful. Modifying the sorted reconstruction to transmit, for every coe�cient,

all the coe�cients above it in the image pyramid might give the sorted reconstruc-

tion the best of both worlds; fast transmission of detail, as well as the context in

which that detail sits. In addition, the development of progressive JPEG encoding

([5]) might make for an interesting comparison. And �nally, �nding a more e�cient

representation of the coe�cients than simple 4-byte
oating point numbers could

generate further improvements in interactivity by allowing even faster transmission

than was presented here.

35

Bibliography

[1] Deborah F. Berman, Jason T. Bartell, and David H. Salesin. Multiresolution

painting and compositing. In Andrew Glassner, editor, Proceedings of SIG-

GRAPH '94 (Orlando, Florida, July 24{29, 1994), Computer Graphics Proceed-

ings, Annual Conference Series, pages 85{90. ACM SIGGRAPH, ACM Press,

July 1994. ISBN 0-89791-667-0.

[2] Andrew Certain, Jovan Popovi�c, Tony DeRose, Tom Duchamp, David Salesin,

and Werner Stuetzle. Interactive multiresolution surface viewing. In Holly Rush-

meier, editor, SIGGRAPH 96 Conference Proceedings, Annual Conference Se-

ries, pages 91{98. ACM SIGGRAPH, Addison Wesley, August 1996. held in

New Orleans, Louisiana, 04-09 August 1996.

[3] Alain Fournier. Introduction. In SIGGRAPH '95 Course Notes, Wavelets and

Their Applications in Computer Graphics, 1995.

[4] Jean loup Gailly. Compression faq.

http://www.faqs.org/faqs/compression-faq/part1/section-7.html

accessed August 20, 1997.

[5] James D. Murray and William vanRyper. Encyclopedia of Graphics File For-

mats. O'Reilly & Associates, Sebastopol, California, 1994.

[6] Allan Rempel. Hacking the truth in linguistic translation: A survey of opti-

mization in language processing. CPSC 511 class essay, University of British

Columbia, 1997.

[7] Allan Rempel. Simulation and reality: An essay on ai, prolog, and the chinese

room. IBM Writing Competition First Prize Essay, 1992.

[8] Eric Stollnitz, Tony DeRose, and David Salesin. Wavelets for Computer Graph-

ics: Theory and Applications. Morgan Kaufmann, San Francisco, California,

1996.

36

