
Combining Software Quality Predictive Models: An Evolutionary Approach

Salah Bouktif, Bal´azs Kégl, Houari Sahraoui
Dept. of Computer Science and Op. Res., University of Montreal

C.P. 6128 Succ. Centre-Ville, Canada, H3C 3J7
fbouktifs,kegl,sahraouhg@iro.umontreal.ca

Abstract

During the past ten years, a large number of quality
models have been proposed in the literature. In general,
the goal of these models is to predict a quality factor start-
ing from a set of direct measures. The lack of data behind
these models makes it hard to generalize, to cross-validate,
and to reuse existing models. As a consequence, for a com-
pany, selecting an appropriate quality model is a difficult,
non-trivial decision. In this paper, we propose a general ap-
proach and a particular solution to this problem. The main
idea is to combine and adapt existing models (experts) in
such way that the combined model works well on the partic-
ular system or in the particular type of organization. In our
particular solution, the experts are assumed to be decision
tree or rule-based classifiers and the combination is done
by a genetic algorithm. The result is a white-box model: for
each software component, not only the model gives the pre-
diction of the software quality factor, but it also provides the
expert that was used to obtain the prediction. Test results in-
dicate that the proposed model performs significantly better
than individual experts in the pool.

1. Introduction

Object oriented (OO) design and programming have
reached the maturity stage. OO software products are be-
coming more and more complex. Quality requirements
are increasingly becoming determining factors in select-
ing from design alternatives during software development.
Therefore, it is important that the quality of the software be
evaluated during the different stages of the development.

During the past ten years, a large number of quality mod-
els have been proposed in the literature. In general, the goal
of these models is to predict a quality factor starting from a
set of direct measures. There exist two basic approaches of
building predictive models of software quality. In the first,
the designer relies on historical data and applies various sta-
tistical methods to build quality models (e.g., see [2]). In

the second approach, the designer uses expert knowledge
extracted from domain-specific heuristics (e.g., see [6]).

The role of real software systems is crucial in both ap-
proaches: in the first, we need them to build the models,
and in the second, we need them for validation. In most
of the domains where predictive models are built (such as
sociology, medicine, finance, and speech recognition) re-
searchers are free to use large data repositories from which
representative samples can be drawn. In the area of soft-
ware engineering, however, such repositories are rare. Two
main reasons can explain this fact. First, there are not many
companies that systematically collect information related to
software quality (such as development effort, maintenance
effort, reusability effort and bug reports). The second rea-
son is that this type of information is considered confiden-
tial. Even if the company can make it available in a partic-
ular project, only the resulting models are published. Each
particular model reflects the programming style, the type of
the software system, the application domain, and the profile
of the company. The lack of data makes it hard to generalize
and to reuse existing models. Since universal models do not
exist, for a company, selecting an appropriate quality model
is a difficult, non-trivial decision.

In this paper, we propose a general approach and a partic-
ular solution to this problem. The main idea is to combine
and adapt existing models in such way that the combined
model works well on the particular system or in the partic-
ular type of organization. The combination is entirely data-
driven: we use the existing models as independent experts,
and evaluate them on the data that is available to us. An
important property of software quality models, beside their
reliability, is their interpretability [8]. Practitioners want
white-box models: they want to know not only the predicted
quality of a certain software component but also thereason
of the assessment, so models without sufficient semantics
are unlikely to be used in practice. This makes sophisti-
catedblack-box type models (such as non-linear statistical
models or neural networks) unsuitable for the process of
decision making, in spite of the predictive power of these
techniques. In our particular solution, the experts are as-

sumed to be decision tree or rule-based classifiers and the
combination is done by a genetic algorithm. The result is
a white-box model: for each software component, not only
the model gives the prediction of the software quality fac-
tor, but it also provides the expert that was used to obtain
the prediction. As a comparison, we show the results ob-
tained by using a simpler and more general although less
powerful method developed for similar tasks in the domain
of machine learning.

The paper is organized as follows. Section 2 formulates
the problem, introduces the formalism used throughout the
paper, and gives a short overview of the techniques used to
combine the models. The two techniques are described in
detail in Sections 3 and 4. Test results are given in Section 5.

2. Problem formulation

In this section we introduce the formalism used through-
out the paper and give a short overview of the techniques
used to combine the models. The notation and the concepts
originate from a machine learning formalism. To make the
paper clear and transparent, we shall relate them to the ap-
propriate software engineering notation and concepts wher-
ever it is possible.

The data set or sample is a set Dn =
f(x1;y1); : : : ;(xn;yn)g of n examples or data points
wherexi 2 R

d is aattribute vector or observation vector of
d attributes, andyi 2 C is a label. In the particular domain
of software quality models, an examplexi represents a
well-defined component of a software system (e.g., a
class in the case of OO software). The attributes ofxi

(denoted byx(1)i ; : : : ;x(d)i) are softwaremetrics (such as
the number of methods, the depth of inheritance, etc.)
that are considered to be relevant to the particular soft-
ware quality factor being predicted. The labelyi of the
software componentxi represents the software quality
factor being predicted. In this paper we consider the case
of classification where the software quality factor can
take only a finite number of values, soC is a finite set of
these possible values. In software quality prediction the
output spaceC is usually an ordered setc1; : : : ;ck of labels.
In the experiments described in Section 5, we consider
predicting thestability of a software component. In this
case,yi is a binary variable, taking its values from the set
C = f�1(unstable);1(stable)g. For the sake of simplicity,
the machine learning method in Section 3 is described for
the binary classification case (it can easily be extended to
the k-ary case). The genetic algorithm-based technique in
Section 4 considers the generaln-ary case.

A classifier is a function f : Rd 7! C that predicts the
label of any observationx 2 Rd . In the framework of super-
vised learning, it is assumed that (observation,label) pairs
are random variables(X;Y) drawn from a fixed but un-

known probability distributionµ, and the objective is to find
a classifier f with a low error probabilityPµ[f (X) 6= Y].
Since the data distributionµ is unknown, both the selection
and the evaluation off must be based on the dataDn. To this
end,Dn is cut into two parts, thetraining sample Dm and
the test sample Dn�m. A learning algorithm is a method
that takes the training sampleDm as input, and outputs a
classifier f (x;Dm) = fm(x). The most often used learning
principle is to choose a functionfm from a function class
that minimizes thetraining error

L(f ;Dm) =
1
m

m

∑
i=1

If f (xi)6=yig (1)

where IA is the indicator function of eventA. Examples
of learning algorithms using this principle include the back
propagation algorithm for feedforward neural nets [14] or
the C4.5 algorithm for decision trees [13]. To evaluate the
chosen function, the error probabilityPµ[f (X) 6= Y] is es-
timated by thetest error L(f ;Dn�m). In Section 5 we will
use a more sophisticated technique calledcross validation
that allows us to use the whole data set for training and to
evaluate the error probability more accurately.

In this paper we consider the problem of combiningN
predefined decision tree classifiersf1; : : : ; fN calledexperts
into a classifier that works well on the available data set.
The first and simplest way to combineN experts is to find
the one expert that works the best on the training data, that
is,

fbest= argmin
f j

L(f j ;Dm):

The advantage of this method is its simplicity and that it
keeps the full interpretability of the original experts, while
its disadvantage is that it does not use the combined knowl-
edge of several experts. We will usefbest as a benchmark
for evaluating more sophisticated techniques.

A somewhat more complicated way to combine the ex-
perts is to construct a normalized weighted sum of their out-
puts and then to threshold the output at zero. Formally, let

f (x) =

(
1 if ∑N

j=1 wj f j(x)� 0;

�1 otherwise.
(2)

wherewj � 0; j = 1; : : : ;N. To learn the weights, we use
the AdaBoost [7] algorithm from the family ofensemble
or voting methods. We will refer to the classifier produced
by this algorithm asfboost(x). The method is described in
detail in Section 3. The weightsw j of the experts in classi-
fiers of the form (2) have a natural interpretation that they
quantify our confidence in thejth expert on our data setDn.
However, the white-box property of the original experts is
somewhat reduced in the sense that there is more than one
expert responsible for each decision.

Machine learning algorithms that intend to combine a set
of experts into a more powerful classifier are generally re-
ferred to asmixture of expert algorithms [10]. These meth-
ods are more general than ensemble methods in two aspects.
First, the expert weightswj are functionsw j(x) of the input
rather than constants, and secondly and more importantly,
after learning the weights, the expertsf j areretrained and
the two steps are iterated until convergence. Because of this
second property, we cannot use general mixture of expert
algorithms since our purpose is to investigate the reusabil-
ity of constant experts trained or manually built on differ-
ent data. There are algorithms halfway between ensemble
methods and the mixture of expert approach that learn lo-
calized, data-dependent weights but keep experts constant
[12, 11]. While in principle these methods could be ap-
plied to our problem, the increased complexity of the weight
functionsw j(x) makes the interpretation of the classifier
rather difficult.

In Section 4 we describe an approach of combining ex-
perts using a genetic algorithm. The method is designed
specifically to combine and evolve decision tree classifiers
into one final expertfgen(x) in such a way that it retains the
full transparency (white box property) of decision trees.

3. The AdaBoost algorithm

The basic idea of the algorithm is to iteratively find the
best expert on the weighted training data, then reset the
weight of this expert as well as the weights of the data
points. Hence, the algorithm maintains two weight vec-
tors, the weightsb = (b1; : : : ;bm), bi� 0; i = 1; : : : ;m of the
data points and the weightsw = (w1; : : : ;wN), wj � 0; j =
1; : : : ;N of the expert classifiers. Intuitively, the weightbi

indicates how “hard” it is to learn the pointxi, while the
weight wj signifies how “good” expertf j is. The tth it-
eration starts by finding the expertf j�t that minimizes the
weighted training error

Lb(f ;Dm) =
1
m

m

∑
i=1

biIf f (xi)6=yig:

Then both the weight off j�t and the weightsbi of the data
points are reset. The weight adjustment off j�t depends on
the weighted errorLb(f j�t ;Dm) of f j�t : the smaller the er-
ror, the more the weightw j�t of f j�t increases. The weight
of the data pointxi increases iff j�t commits an error onxi,
and decreases otherwise. In this way as the algorithm pro-
gresses, experts are asked to concentrate more and more on
data points with large weights, that is, points that are “hard
to learn”. The number of iterationsT can be either preset to
a constant value or decided by using validation techniques.
At the end of the routine, the weighted sum of the experts
∑N

j=1wj f j(�) is returned and used as a classifier as in (2).

Figure 1 summarizes the algorithm. The explanation of the
details of the algorithm and the theoretical justification of
the steps can be found in [7, 15].

ADABOOST(Dm;(f1; : : : ; fN);T)

1 b (1=m; : : : ;1=m) . initial point weights
2 w (0; : : : ;0) . initial expert weights
3 for t 1 to T
4 j�t argmin

j
Lb(f j;Dm)

. best expert

5 εt Lb(f j�t ;Dm) . weighted error

6 wj�t wj�t + 1
2 ln

�
1�εt

εt

�
. weight adjustment of f j�t

7 for i 1 to m . reweighting the points
8 if f j�t (x¯i) 6= yi then
9 bi

bi
2εt

. error) bi "
10 else
11 bi

bi
2(1�εt)

. no error) bi #

12 return
N

∑
j=1

wj f j(�)

Figure 1. The pseudocode of the AdaBoost
algorithm.

4. A genetic algorithm-based technique

Combining models is a difficult problem. Exhaustive and
local-search methods are inefficient when the problem in-
volves a large set of models that use different metrics. Ge-
netic algorithms (GA) [9] offer an interesting alternative to
these approaches. The basic idea of a GA is to start from
a set of initial solutions, and to use biologically inspired
evolution mechanisms to derive new and possibly better so-
lutions [9]. The derivation starts by an initial solution set
P0 (called the initialpopulation), and generates a sequence
of populationsP1; : : : ;PT , each obtained by “mutating” the
previous one. Elements of the solution sets are calledchro-
mosomes. The fitness of each chromosome is measured by
an objective function called thefitness function. Each chro-
mosome (possible solution) consists of a set ofgenes. At
each generation, the algorithm selects some pairs of chro-
mosomes using a selection method that gives priority to the
fittest chromosomes. On each selected pair, the algorithm
applies one of two operators, crossover and mutation, with
probability pc and pm, respectively, wherepc and pm are
input parameters of the algorithm. The crossover operator
mixes genes of the two chromosomes, while the mutation
operator randomly changes certain genes. Each selected

pair of chromosomes produces a new pair of chromosomes
that constitute the next generation. The fittest chromosomes
of each generation are automatically added to the next gen-
eration. The algorithm stops if a convergence criterion is
satisfied or if a fixed number of generations is reached. The
algorithm is summarized in Figure 2.

GENETICALGORITHM(pc; pm; : : :)

1 InitializeP0

2 BESTFIT fittest chromosome ofP0

3 BESTFITEVER BESTFIT

4 for t 0 to T
5 Q pairs of the fittest members ofPt

6 Q0 offsprings of pairs inQ using
crossover and mutation

7 replace the weakest members ofPt by Q0

to createPt+1

8 BESTFIT fittest chromosome inPt+1

9 if BESTFIT is fitter than BESTFITEVER then
10 BESTFITEVER BESTFIT

11 return BESTFITEVER

Figure 2. The summary of a genetic algorithm.

To apply a GA to a specific problem, elements of the
generic algorithm of Figure 2 must be instantiated and
adapted to the problem. In particular, the solutions must be
encoded into chromosomes, and the two operators and the
fitness function must be defined. In the rest of this section,
we present each of these aspects for our algorithm.

4.1. Model coding

Our algorithm is designed specifically to combine a set
of decision tree classifiers into one final classifier. A deci-
sion tree is a complete binary tree where each inner node
represents a yes-or-no question, each edge is labeled by one
of the answers, and terminal nodes contain one of the classi-
fication labels from the setC . The decision making process
starts at the root of the tree. Given an input vectorx, the
questions in the internal nodes are answered, and the corre-
sponding edges are followed. The label ofx is determined
when a leaf is reached.

If all the questions in the inner nodes are of the form
“Is x(j) > α?” (as in the tree depicted by Figure 3), the
decision regions of the tree can be represented as a set of
isothetic boxes (boxes with sides parallel to the axes). Fig-
ure 4 shows this representation of the tree of Figure 3. To
represent the decision trees as chromosomes in the GA, we
enumerate these decision regions in a vector. Formally, each
gene is a (box,label) pair where the boxb =

�
x 2 Rd : `1 <

LCOMB

NPPMstable

stableinstable

<=16 >16

>10<=10

LCOMB

NPPMstable

stableunstable

<=16 >16

>10<=10

Figure 3. A decision tree for stability predic-
tion.

x(1) � u1; : : : ; `d < x(d) � ud
	

is represented by the vec-
tor
�
(`1;u1); : : : ;(`d ;ud)

�
, and a vector of these (box,label)

pairs constitutes a chromosome representing the decision
tree. To close the opened boxes at the extremities of the
input domain, for each input variablex(j), we define lower
and upper boundsL j andUj, respectively. For example,
assuming that in the decision tree of Figure 3 we have
0 < NPPM� 100 and 0< LCOMB � 50, the tree is rep-
resented by the nested vector0

@
�
(0;10);(16;50);�1

�
;�

(10;100);(16;50);1
�
;�

(0;100);(0;16);1
�

1
A :

instable

stable

LCOMB

NPPM

16

10

unstable

stable

LCOMB

NPPM

16

10

Figure 4. A two-dimensional example of deci-
sion tree output regions.

4.2. The crossover operator

A standard way to perform the crossover between the
chromosomes is to cut each of the two parent chromosomes
into two subsets of genes (boxes in our case). Two new
chromosomes are created by interleaving the subsets. If we
apply such an operation in our problem, it is possible that
the resulting chromosomes can no longer represent well-
defined decision functions. Two specific problems can oc-
cur. If two boxes overlap, we say that the model isincon-

sistent. In this case, the model represented by the chromo-
some is not even a function. The second problem is when
the model isincomplete, that is, certain regions in the input
domain are not covered by any boxes. Figure 5 illustrates
these two situations.

Parent1 Parent2

Subset1 of Parent1 (S
11

) Subset2 of Parent1 (S
12

)

Subset1 of Parent2 (S
21

) Subset2 of Parent2 (S
22

)

Offspring1 (S
11

+ S
21

)

Inconsistency Incompleteness

Offspring2 (S
12

+ S
22

)

Parent1 Parent2

Subset1 of Parent1 (S
11

) Subset2 of Parent1 (S
12

)

Subset1 of Parent2 (S
21

) Subset2 of Parent2 (S
22

)

Offspring1 (S
11

+ S
21

)

Inconsistency Incompleteness

Offspring2 (S
12

+ S
22

)

Figure 5. Problems when using standard
crossover.

To preserve the consistency and the completeness of the
offsprings, we propose a new crossover operator inspired by
the operator defined for grouping problems [5]. To obtain
an offspring, we select a random subset of boxes from one
parent and add it to the set of boxes of the second parent. By
keeping all the boxes of one of the parents, completeness of
the offspring is automatically ensured. To guarantee con-
sistency, we make the added boxes predominant (the added
boxes are “laid over” the original boxes). The size of the
random subset isv times the number of boxes of the parent,
wherev is a parameter of the algorithm. Figure 6 illustrates
the new crossover operator.

After the crossover, it is possible that some of the deci-
sion regions are not isothetic boxes. To keep the offspring
consistent with the model coding described in Section 4.1,
we transform all the residual regions into boxes, as indi-
cated by Figure 7.

The residual transformation is extremely time and space

Parent1 Parent2

Subset of Parent1 (S
1
) Subset of Parent2 (S

2
)

Offspring1 (parent1+ S
2
) Offspring2 (Parent2+ S

1
)

Parent1 Parent2

Subset of Parent1 (S
1
) Subset of Parent2 (S

2
)

Offspring1 (parent1+ S
2
) Offspring2 (Parent2+ S

1
)

Figure 6. Crossover that preserves consis-
tency and completeness.

ResidualsResiduals

Figure 7. The residual transformation.

consuming. On the one hand, residuals must be computed
for each possible pairs of boxes after each crossover, for
several crossovers per generation and for several genera-
tions. On the other hand, in the worse case, a residual must
be decomposed into 2d boxes (whered is the dimension of
the input space), so after several generations, the space can
become very fragmented.

To circumvent these problems, we modify our coding
scheme by keeping all the boxes (even those that have hid-
den parts) and by adding thelevel of predominance as an
extra element to the genes. Therefore, each gene is now a
three-tuple (box,label,level). The boxes of the initial pop-
ulation P0 have level 1. Each time a predominant box is
added to a chromosome, its level is set to 1 plus the max-
imum level in the hosting chromosome. To find the label
of a input vectorx (a software component), first we find all
the boxes that containx, and assign tox the label of the box
that have the highest level of predominance. This scheme is
similar in spirit to rule systems where rules have priorities
that are used to resolve conflicting rules. Note also that this
model retains the full white-box property of the original ex-
perts since each decision can be associated with a unique

box, and each box comes from a unique expert.

4.3. The mutation operator

Mutation is a random change in the genes that happens
with a small probability. In our problem, the mutation op-
erator randomly changes the label of a box. In software
quality prediction the output spaceC is usually an ordered
set c1; : : : ;ck of labels. With probabilitypm, a labelci is
changed toci+1 or ci�1 if 1 < i < k, to c2 if i = 1, and to
ck�1 if i = k.

In general, other types of mutations are possible. For
example, we could change the size of a box, or we could set
the label of a box to the label of an adjacent box. The main
reason of our mutation operator is its simplicity.

4.4. The fitness function

To measure the fitness of a decision functionf repre-
sented by a chromosome, one could use thecorrectness
function

C(f) =
∑k

i=1 nii

∑k
i=1∑k

j=1 ni j
;

whereni j is the number of training vectors with real label
ci classified ascj (Table 1). It is clear thatC(f) = 1�L(f)
whereL(f) is the training error defined in (1).

predicted label
c1 c2 : : : ck

c1 n11 n12 : : : n1k

real c2 n21 n22 : : : n2k

label
...

...
...

...
...

ck nk1 nk2 : : : nkk

Table 1. The confusion matrix of a decision
function f . ni j is the number of training vec-
tors with real label ci classified as cj.

Software quality prediction data is oftenunbalanced,
that is, software components tend to have one label with
a much higher probability than other labels. For example,
in our experiments we had much more stable than unstable
classes. On an unbalanced data set, low training error can
be achieved by the constant classifier functionfconst that
assigns the majority label to every input vector. By using
the training error for measuring the fitness, we found that
the GA tended to “neglect” unstable classes. To give more
weight to data points with minority labels, we decided to

use Youden’sJ-index [16] defined as

J(f) =
1
k

k

∑
i=1

nii

∑k
j=1 ni j

:

Intuitively, J(f) is the average correctness per label. If
we have the same number of points for each label, then
J(f) = C(f). However, if the data set is unbalanced,J(f)
gives more relative weight to data points with rare labels.
In statistical terms,J(f) measures the correctness assuming
that the a-priori probability of each label is the same. Both a
constant classifierfconstand a guessing classifierfguess(that
assigns random, uniformly distributed labels to input vec-
tors) would have a J-index close to 0:5, while a perfect clas-
sifier would haveJ(f) = 1. On the other hand, for an unbal-
anced training setC(fguess)' 0:5 butC(fconst) can be close
to 1.

5. Evaluation

To test the algorithms, we constructed a “semi-real” en-
vironment in which the “in-house” data set is a real soft-
ware system, but the experts are “simulated”: they are deci-
sion tree classifiers trained on independent software system
data. To imitate the heterogeneity of real-life experts, each
expert was trained on a different subset of metrics and on
a different software system. Although we are aware of the
limitations of this model, we found that it simulated reason-
ably well a realistic situation and yielded some interesting
results.

5.1. Experimental settings

The chosen task in our experiments is to predict the sta-
bility of Java classes. The main reason of our choice is that
it is relatively easy to objectively measure stability by look-
ing at consecutive major versions of the same software. In
our case, we say that a classxi is stable (yi = 1) if its public
interface of thejth version is included in the public interface
of the(j+1)th version, and unstable (yi =�1) otherwise.

Since the structure of an OO software component is very
important in determining its stability, we chose 22 structural
software metrics for the attributes constituting the observa-
tion vectorsxi (Table 2). The metrics belong to one of the
four categories of coupling, cohesion, inheritance, and com-
plexity, and constitute a union of metrics used in different
theoretical models [4, 1, 17, 3].

5.2. Data collection

The selected software metrics were extracted from 11
software systems (Table 3) using the ACCESS tool of the

Name Description

Cohesion metrics
LCOM lack of cohesion methods
COH cohesion
COM cohesion metric
COMI cohesion metric inverse

Coupling metrics
OCMAIC other class method attribute import coupling
OCMAEC other class method attribute export coupling
CUB number of classes used by a class
CUBF number of classes used by a memb. funct.

Inheritance metrics
NOC number of children
NOP number of parents
NON number of nested classes
NOCONT number of containing classes
DIT depth of inheritance
MDS message domain size
CHM class hierarchy metric

Size complexity metrics
NOM number of methods
WMC weighted methods per class
WMCLOC LOC weighted methods per class
MCC McCabe’s complexity weighted meth. per cl.
DEPCC operation access metric
NPPM number of public and protected meth. in a cl.
NPA number of public attributes

Table 2. The 22 software metrics used as at-
tributes in the experiments.

Discoverc environment1. The Jedit and Jetty systems were
selected to serve as the “in-house” software systems. We
created a data setDn of 690 data vectors using the classes in
these two systems. The remaining 9 systems were used to
“create” 23 experts in the following way. First we formed
15 subsets of the 22 software metrics by combining two,
three, or four of the metrics categories in all the possible
ways, and created 15�9= 135 data sets. Then we trained
a decision tree classifier on each data set using the C4.5 al-
gorithm [13]. We retained 23 decision trees by eliminating
constant classifiers and classifiers with training error more
than 10%.

5.3. Algorithmic settings

The only free parameter of the AdaBoost algorithm, the
number of iterationsT , was set to 100. The GA has sev-

1Available at http://www.mks.com/products/discover/developer.shtml.

System Number of Number of
(major) versions classes

Bean browser 6(4) 388–392
Ejbvoyager 8(3) 71–78
Free 9(6) 46–93
Javamapper 2(2) 18–19
Jchempaint 2(2) 84
Jedit 2(2) 464–468
Jetty 6(3) 229–285
Jigsaw 4(3) 846–958
Jlex 4(2) 20–23
Lmjs 2(2) 106
Voji 4(4) 16–39

Table 3. The software systems used to train
and to combine the experts.

eral parameters that were set based on experiments. To
form successive generations, the elitist strategy was used:
in each iteration, the entire population is replaced, except
for a small numberNe of the fittest chromosomes. The
number of generationsT was set to 100. The maximum
number of chromosomes in a generation was 160 to have a
reasonable execution time. The values ofNe, pc (crossover
probability),pm (mutation probability), andv (proportion of
the random subset of boxes used in the crossover operation)
change with the number of generationst. Table 4 indicates
the actual values.

t 0–10 11–30 31–99

Ne 3 5 10
pc 0:65 0:65 0:60
pm 0:02 0:03 0:05
v 0:3 0:1 0:05

Table 4. GA parameters.

5.4. Results

To accurately estimate the correctness and the J-index of
the trained classifiers, we used 10-fold cross validation. In
this technique, the data set is randomly split into 10 subsets
of equal size (69 points in our case). A decision function is
trained on the union of 9 subsets, and tested on the remain-
ing subset. The process is repeated for all the 10 possible
combinations, and mean and standard deviation values are
computed for the correctness and J-index for both the train-
ing and the test sample. Table 5 shows our results.

The relatively low correctness rates indicate that the cho-
sen problem of predicting software quality factor itself is
difficult problem. Nevertheless, test results show that our

CorrectnessC(f) J-indexJ(f)

fbest 68.55(0.70) 57.43(0.50)
Training fboost 69.55(0.60) 59.41(0.42)

fgen 73.01(1.10) 69.24(1.81)

fbest 68.55(6.30) 57.49(3.52)
Test fboost 69.13(6.42) 58.92(3.84)

fgen 72.12(4.18) 68.89(5.17)

Table 5. Experimental results. The
mean(standard deviation) percentage values
of the correctness and the J-index.

approach of combining expert knowledge can yield sig-
nificantly better results than using individual models. We
strongly believe that if we use more numerous and real ex-
perts on cleaner, less ambiguous data, the improvement will
be even more significant. In particular, the results show that
AdaBoost performed slightly better than the best expert, and
GA performed slightly better than AdaBoost, although the
only statistically significant difference is in the J-index in
favor of the GA. This is not surprising since the GA was
trained with the J-index as the fitness function. The small
difference between the training and test results indicate that
there is no visible overfitting.

6. Conclusion

In this paper we propose an evolutionary approach for
combining and adapting existing software quality predic-
tive models (experts) to a particular context. The resulting
model can be interpreted as a “meta-expert” that selects the
best expert for each given case. This notion corresponds
well to the “real world” in which individual predictive mod-
els, coming from heterogeneous sources, are not universal.
Indeed, an ideal predictive model can be seen as the mixture
of two types of knowledge: (1) domain common knowledge
and (2) context specific knowledge. In the existing mod-
els, one of the two types is often missing. On one hand,
theoretical models are designed to cover the common do-
main knowledge and their application requires some adap-
tation/calibration to the particular context of a company.
On the other hand, historical-data-based models contain the
knowledge that was abstracted from a context-specific data
set. Our approach takes the best of both worlds. By combin-
ing several existing models, it reuses the common domain
knowledge and by guiding this combination by the company
specific data, it integrates its specific context. Our prelim-
inary results show that our combination method of mod-
els can perform significantly better then individual models.
Issues of future research include the evaluation of the ap-
proach on real experts proposed in the literature and the

comparison of our approach to other white-box techniques.
To show the universality of our technique, we also intend
to evaluate our method on data coming from other domains
where representative benchmarks exist.

References

[1] L. Briand, P. Devanbu, and W. Melo. An investigation into
coupling measures for C++. InProceedings of the 19th In-
ternational Conference on Software Engineering, 1997.

[2] L. Briand and J. W¨ust. Empirical studies of quality mod-
els in object-oriented systems. In M. Zelkowitz, editor,Ad-
vances in Computers. Academic Press, 2002.

[3] L. Briand, J. Wüst, J. W. Daly, and V. Porter. Exploring the
relationships between design measures and software quality
in object-oriented systems.Journal of Systems and Software,
51:245–273, 2000.

[4] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented design.IEEE Transactions of Software En-
gineering, 20(6):476–493, 1994.

[5] E. Falkenauer.Genetic Algorithms and Grouping Problems.
John Wiley & Sons, 1998.

[6] N. E. Fenton and N. M. Software metrics: roadmap. In
A. Finkelstein, editor,The Future of Software Engineer-
ing, 22nd International Conference on Software Engineer-
ing, pages 357–370. ACM Press, 2000.

[7] Y. Freund and R. Schapire. A decision-theoretic general-
ization of on-line learning and an application to boosting.
Journal of Computer and System Sciences, 55(1):119–139,
1997.

[8] A. Gray and S. MacDonell. A comparison of techniques for
developing predictive models of software metrics.Informa-
tion and Software Technology, 39:425–437, 1997.

[9] J. H. Holland.Adaptation in Natural Artificial Systems. Uni-
versity of Michigan Press, 1975.

[10] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton.
Adaptive mixtures of local experts.Neural Computation,
3(1):79–87, 1991.

[11] R. Meir, R. El-Yaniv, and S. Ben-David. Localized boosting.
In Proceedings of the 13th Annual Conference on Computa-
tional Learning Theory, pages 190–199, 2000.

[12] P. Moerland and E. Mayoraz. DynaBoost: Combining
boosted hypotheses in a dynamic way. IDIAP-RR 9, IDIAP,
Switzerland, 1999.

[13] J. Quinlan.C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

[14] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learn-
ing representations by back-propagating errors.Nature,
323:533–536, 1986.

[15] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boost-
ing the margin: a new explanation for the effectiveness
of voting methods.Annals of Statistics, 26(5):1651–1686,
1998.

[16] W. J. Youden. How to evaluate accuracy.Materials Research
and Standards, ASTM, 1961.

[17] H. Zuse.A Framework of Software Measurement. Walter de
Gruyter, 1998.

