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Abstract

Predicting stability in object-oriented (OO) software,
i.e., the ease with which a software item evolves while pre-
serving its design, is a key feature for software maintenance.
In fact, a well designed OO software must be able to evolve
without violating the compatibility among versions, pro-
vided that no major requirement reshuffling occurs. Sta-
bility, like most quality factors, is a complex phenomenon
and its prediction is a real challenge. In this paper, we
present an approach which relies on the case-based reason-
ing (CBR) paradigm and thus overcomes the handicap of in-
sufficient theoretical knowledge on stability. The approach
explores structural similarities between classes, expressed
as software metrics, to guess their chances of becoming
unstable. In addition, our stability model binds its value
to the impact of changing requirements, i.e., the degree of
class responsibilities increase between versions, quantified
as the stress factor. As a result, the prediction mechanism
favors the stability values for classes having strong struc-
tural analogies with a given test class as well as a similar
stress impact. Our predictive model is applied on a testbed
made up of the classes from four major version of the Java
API.

Keywords: Analogy based estimation, learning, main-
tainability, predictive model, software quality prediction

1 Introduction

The object-oriented (OO) paradigm has now reached
maturity, with a huge amount of software written with
OO programming languages currently available. Software
maintenance, under evolving requirements and continuous
error detection, often leads to the development of several
successive version of a system, whereby the preservation of
downward compatibility among versions is a highly desir-
able feature.

Unfortunately, as software products are growing more

sophisticated, the writing of newer versions has become
complex and time consuming activity. For example, Press-
man estimated that 60% of the total effort in software de-
velopment is spent to maintenance [25], whereby 80% of
this amount is spent directly or indirectly on software evo-
lution (adaptive and perfective maintenance) [24]. Despite
some clear benefits of object-orientation for maintenance,
OO systems are not exempt from this rule. In this respect,
it has become important to manage class stability along the
version sequence, in particular, by applying tools for stabil-
ity prediction, e.g., based on the symptomatic detection of
potential instabilities during the design phase.

In the context of our investigation, we define stability as
the capability of a software system or component to evolve
while preserving its design. In the present work, we restrict
the part of design considered for preservation to the class
interfaces, i.e., set of attributes and methods. This choice
was motivated by the observation that any change in class
interfaces can trigger a large amount of side effects due to
the dependencies (coupling) between classes.

Classical approaches to stability prediction, which is a
hard problem, perform some form of inductive inference
starting from datasets of classes with known stability lev-
els and looking for typical features that discriminate stable
classes from unstable ones. However, most of the effec-
tive methods for predictive model construction are based on
the implicit hypothesis that the available samples are repre-
sentative, which is rather strong. In fact, unlike other ex-
perimental fields within disciplines such as medicine, soci-
ology, or statistics, where free access to large repositories
of consensual data is granted, in software engineering there
are no such sources of data. To make the matters worse, the
very nature of software and of the related software process
makes the constitution of such consensual testbeds unreais-
tic. Indeed, among the few companies that systematically
collect quality-related information, even fewer are those ea-
ger to publish such information (usually considered confi-
dential), and, whenever they decide to proceed to publica-
tion, only the resulting predictive models are usually pre-



sented, keeping the initial data aside. Consequently, the
models that are proposed in the literature are most of the
time hard to generalize from and of poor reusability.

In our investigation, we study an alternative approach
for building predictive models which we consider as more
appropriate to the particular context of software. The ap-
proach implements a similarity-based comparison princi-
ple: the stability of a given software item is estimated from
the recorded stability of a set of other items that have been
recognized as the most similar to that item among a larger
set of items stored in a database (quality factors whose
prediction by means of similarity-based techniques include
reusability [10], correctability [2], and reliability [13]). A
direct application of the similarity-based approach, also
known as case-based reasoning (CBR) has been examined
at an earlier step of our study [15], whereby we provided
some empirical evidence to illustrate its advantages with re-
spect to a classical inductive learning technique as the deci-
sion tree inference.

In this paper, we propose a more sophisticated model
which, except for the more flexible learning mechanisms,
includes a key factor that has been previously neglected,
i.e., the stress a class experiences between two software ver-
sions. The stress, usually the result of a major change in the
requirements, has been defined as the degree of increase in
the responsibilities of the class itself or the classes to which
it is related. The role of the stress as a measure is dual to that
of stability since the interface of a class in a versioni + 1
compared to that in the versioni is made up of three parts:
stable members, unstable members, and newly introduced
members reflecting the augmented responsibilities. The pa-
per proposes a formalization of the stress factor as well as a
set of strategies for the integration of the stress factor in the
stability prediction. An experimental comparison of those
strategies is presented as well, involving classes from four
major versions of the standard Java API.

The paper is organized as follows. First, existing work
on the quality prediction is presented in section 2, with a
focus on stability. Then, our approach is described in sec-
tion 3. Section 4 follows the experimental evaluation of the
similarity-based approach and its variants with respect to
the utilization of the stress-related information.

2 Stability prediction for Java classes

In the following we present key elements of our approach
such as the software quality prediction principles, stability
models and the considerations related to the choice of Java.

2.1 Quality prediction for object-oriented soft-
ware

Most of the software quality factors, e.g., maintainabil-
ity, reusability, reliability, etc., admit no direct measure-
ment a priori. This fact motivated a wide range of stud-
ies aimed at predicting these factors from some measur-
able software characteristics such as coupling, cohesion,
and size [12]. Within this trend, a large number of met-
rics, in particular, OO metrics, have been proposed in the
literature (see [5, 4, 8, 20]).

Early work on effective construction of predictive mod-
els for quality relied on classical techniques from statistics
such as least squares or robust regression (see [6] for a com-
parative study). Globally, all these techniques assume par-
ticular data distributions or specific dependencies between
quality factors and metrics. Unfortunately, both types of
hypotheses are difficult to validate in the software domain.

To avoid this pitfall, many researchers, while looking
for alternative, adopted techniques inspired by the ma-
chine learning field. Thus, in early 90s, predictive mod-
els for reliability [18], for size [16] or for development ef-
fort [29, 28] have been proposed. However, these models
suffered from their “black box” effect which eventually lim-
ited their scope. Another trend brought in ideas from the
neuro-fuzzy paradigm in machine learning, although they
remained of a limited impact on the resolution of the black
box problem [17, 19].

Recently, the application of another powerful learn-
ing paradigm, the decision trees induction, has been stud-
ied [21]. Except for its inherent limitation to classification
problems, the technique also requires additional effort in
determining the threshold values for variable discretization.
Later on, this specific problem has been tackled with meth-
ods from the fuzzy logic field [14, 26]. Despite the undeni-
able progress on the figuring out key difficulties in predic-
tion, there is still no valid solution to the problem of lack of
representativity in the available datasets.

Before representing an approach that avoids the repre-
sentativity trap, we first define what we consider to be the
stability of a class, together with a key factor that was pre-
viously ignored, the stress of a class.

2.2 Defining the stability

All its life-cycle along, but especially during operation
time, a software undergoes various changes, most of the
time triggered by error detection or environment changes,
but also due to evolution in the requirements. As a result,
the behavior of the software is gradually deteriorating along
the increase in modifications and this quality slump may go
as far as the entire software becoming unpredictable [23].
Consequently, we claim that the software that is intended to



last must be designed in a way that helps them withstand
such negative impact, i.e., remain stable in spite of require-
ments evolution. Unfortunately, as reported in [11], the rel-
ative awareness about this important topic within the com-
munity, has not yet led to the broad adoption of stability-
oriented design methods.

2.2.1 Stability definition from the literature

Much work has been dedicated to the clarification of the
stability concept. For instance, in [22], design rules are pro-
posed which ensure the stability of large software systems
by rigorous dependency management and abstraction. Sim-
ilarly, [11] describes a design model that distinguishes be-
tween a kernel layer (Enduring Business Themes and Busi-
ness Objects) and peripheral layer (Industrial Objects) in
the system whereby the former attracts the major part of
the stability enforcement effort. Indeed, it is suggested to
keep the kernel stable while keeping the peripheral parts
open to arbitrary changes. However, neither of the above
studies suggests an effective method for stability evalua-
tion, whence their respective impact on stability of the tar-
get systems is hard to estimate. Other researchers have put
the emphasis on stability evaluation and proposed effective
methods for the problem [9, 3], although the scope of these
methods remains limited to software frameworks.

Another way to achieve the stability of software systems
is to apply some refactoring. From this perspective, the sta-
bility enforcement can be seen as a maintenance activity.
The main idea is to develop techniques that evaluate/predict
the stability with the perspective of deciding whether a ma-
jor refactoring is needed or not. The goal of the refactoring
is then to reduce the implementation cost of the future re-
quirements. Our current work is founded by this belief. It
deals with stability in its general form, with no hypothesis
about the nature of the target system. In this paper, we study
the stability assessment at the class level and between two
successive versions.

2.2.2 Basic stability model

The key assumption behind our stability model is that a
class is stable whenever its interface remains unchanged be-
tween versions. Letc be a class.I(ci) is the interface ofc
in versioni (public and protected, local and inherited meth-
ods). The level of stability c can be measured by comparing
I(ci) to I(ci+1) (following version). It represents the per-
centage ofI(ci) that is included inI(ci+1). Formally

NS(ci→i+1) =
# ∩ (ci, ci+1)

#I(ci)

where
∩(ci, ci+1) = I(ci) ∩ I(ci+1).

Our hypothesis is that the stability of a class interface
depends from the design (structure) of the class and the
stress induced by the implementation of new requirements
between the two versions. The estimation model will take
the form of a functionf that takes as input a set of structural
metrics(m1(ci),m2(ci), . . . ,mn(ci)) and an estimation of
the stressSt(ci→i+1) and produces as output an estimation
of the level of stabilityENS(ci→i+1). Formally

ENS(ci→i+1) = f(m1(ci), . . . ,mn(ci), St(ci→i+1)).

In our work we considered 14 structural metrics cover-
ing the coupling, cohesion, size/complexity and inheritance
(see figure 2).

2.2.3 Stress factors

The stress is hard to estimate since it is difficult to quantify
a priori at what level a class will be concerned by a set
of new requirements. Nevertheless, we have identified the
following types of modifications that may have an impact
on the stability of a class and therefore will be considered
as components of the complex stress factor:

• local modifications of the classci, e.g., triggered by
the definition of new methods,

• modifications in the ancestor classes in the generaliza-
tion hierarchy: local modifications of ancestors or in
the structure of the hierarchy above the classci,

• modifications in the descendant classes in the general-
ization hierarchy: local modifications of ancestors or
in the structure of the hierarchy below the classci,

• modifications in the classes depending onci or in the
classes whichci depends on,

For practical uses, the stress can be approximateda pos-
teriori by the percentage of added methods in the consid-
ered class. Formally

St(ci→i+1) =
#∆(ci+1)
#I(ci+1)

where
∆(ci+1) = I(ci+1)− I(ci).

In the following section, we describe our predictive
model for stability which integrates structural metrics and
stress estimations in various prediction strategies derived
from a classical case-based reasoner.

2.3 Java API classes

Nowadays, the largest part of OO software is written in
Java, whence our choice of this programming language. In
the following paragraphs, we recall some basic facts from
the philosophy of the language as well as the major steps in
the evolution of Java.



2.3.1 Language evolution

Java was initially designed bySun Microsystems1, in the
early 90s, with its first public release dating back to 1996
(JDK version 1.0). In the first version, only a limited
number of standard classes were included (less than 200).
Since then, several substantial reorganizations of the lan-
guage have been undertaken, aimed at two main purposes:
on the one hand, correct errors, and on the other hand, ex-
tend the functionalities of the language. Basically, most of
the changes consisted in improving the development tools,
changing standard classes in the API, and adding new pack-
ages and classes.

For instance, the graphical librarySwing , initially in-
cluded in the releases as an external library, has been in-
cluded in the standard API in the version 3 of Java (API
1.3). Another large-scale modifications include the intro-
duction of inner and nested classes as well as the profound
restructuring of the event-handling mechanisms in the ver-
sion 2 of Java (JDK 1.2).

Since the very beginning, the portability of the software
written in Java has been a major concern and, hence, a key
factor in the success of the language. As a matter of fact,
Java is the most portable language that is currently used in
the software industry. However, other problems, such as
lack of downward compatibility between API versions ham-
pers the portability, since for running the same software on
two different platforms, one still needs having the same ver-
sion of Java running on them.

2.3.2 Compatibility between versions

In spite of the significant effort towards version compati-
bility, far too many systems have to be rewritten, at least
partly, to enforce compatibility with the latest versions of
the language. To ease the problem of software rewriting for
compatibility, a specific mechanism has been implemented
in Java. Thus, classes or methods that have been substan-
tially changed are labeled asdeprecated. At compilation
time, the calls to deprecated items trigger warning messages
from JDK, so that a developer could be informed about the
changes between versions.

2.3.3 Aims of our study

The experimental study presented in section 4 examines the
stability of standard Java classes, in systematic way. Four
major versions of the language are considered, from the
first one(API 1.0.2) to the most recent one that was avail-
able at the period of the study (API 1.3.2)2, thus leading to
three transitions. A set of metrics has been measured on

1http://java.sun.com
2The most recent stable version, API 1.4.1 has been released at later

step.

the classes of each version, whereby the deprecated classes
and methods have been considered as unstable in order to
increase the precision of the prediction.

3 Stability prediction using case-based rea-
soning

CBR emerged as an approach towards problem resolu-
tion in domains where little is known about key processes
and their interdependencies (also calledweak theorydo-
mains). Thus, instead of relying on a complete domain the-
ory, CBR only explores the expert knowledge encoded in
the available documented resolutions of past cases. Tech-
nically speaking, the overall reasoning process behind CBR
consists in solving new problems by retrieving and adapting
the solutions to similar problems that have occurred in the
past. These problems are represented and stored as individ-
ual cases in a case-base [1]. The choice of the most appro-
priate case(s) for reuse the solution is driven by analogies
in case descriptions. Analogies are detected by a match-
ing mechanism which typically relies on a similarity assess-
ment function.

As there is a lack of knowledge about software evolution,
we believe that CBR is a suitable approach to the software
stability prediction problem. Thus, we hypothesize that two
software items (Java classes in the experimentation) which
show same or similar characteristics will also evolve in a
similar way.

In the context of CBR, three important issues need to be
addressed: case representation, case retrieval and solution
reuse.

3.1 Case representation

The representation problem in CBR is primarily the
problem of deciding what to store in a case, finding an ap-
propriate structure for describing case contents and decid-
ing how the case base should be organized and indexed for
effective retrieval and matching. As described in section 2,
here, the relevant characteristics of software items are ex-
pressed as a set of class structural metrics completed by a
stress factor. For the current study, we regard the stability
as a real variable for which range is between0 (absolute
instability of the software component) and1 (absolute sta-
bility). We use a structured representation formalism, of
an object-attribute-value type, for classes. Thus, a software
class is represented as a structured object in our model, with
object attributes representing software metrics and stress.
The result for a given metric on a class is stored as the
value of the respective attribute in the object representing
the class. In addition, the case representation includes an at-
tribute modeling the stability indicator. Thus, each class is
represented as an-tuplec = (name, m1,m2, . . . ,mk, s, t),



wherename is the class identity,mi are metric values,s is
the stress value andt is the stability indicator (see figure 1
for symbolic names of attributes).

Figure 1. Example of structured Case Repre-
sentation

In the above example, the classPolygonfrom the pack-
agejava.awt(graphics library) has50% of its interface in
the version 1.1 newly introduced with respect to the version
1.0.2 (attributeStress value). Similarly, 70% of its public
interface changed between version 1.0.2 to version 1.1 (at-
tribute Stability). The value ofStability in a class is the
target of the prediction process, i.e., given a previously un-
seen classc with unknown stability indicator, a prediction
value will be extracted from the cases in the case base.

3.2 Case retrieval

The aim is to find the set of known cases that match
the new case at best, i.e., theBestMatchset. In our case,
this amounts to look for most similar classes (in terms of
our similarity assessment function). These classes, further
called thenearest neighbors, lay within a particular neigh-
borhood of the new case in the description space. Thus, the
retrieve task takes a (possibly partial) problem description,
and ends with a completeBestMatchset.

The retrieval algorithm performs a complete search
through the case base whereby each case in the base is com-
pared to the new case. Depending on the similarity value,
the current known case may be inserted into the set of cur-
rent best matches. In order to increase the chances of a
correct prediction, the size of setBestMatchmay be ex-
tended. The exact value of|BestMatch| is a parameter of
the algorithm, the approach being known as thek-nearest
neighborslearning (k-NN). For our study, we experimented
various size of the best-match set.

3.3 Similarity issues

With the above representation, a component may be seen
as a point in then-dimensional Euclidean space where co-
ordinates correspond to software metricsmj and to stress.
Thus, classical distance measures can be applied to the
assessment of inter-component similarity, for example the
metrics of the Minkowski family (Euclidean, Manhattan
distance, etc.). Our own measure, derived from the Manhat-
tan distance, is basically a linear combination of the point-
wise differences (absolute values) between the vectors rep-
resenting a pair of components.

The measure is defined on two levels: local level, and
component or global level.

Local similarity factor For each individual factor, either
structural metricmj or stress, the local disimilarity between
two componentsc andc′ with respect ot this factor, is de-
fined as the normalized absolute arithmetic difference of
the respective values. Thus, for a metricmj , the func-
tion considers the valuesmj(c) andmj(c′), furhter denoted
dis(mj(c),mj(c′)). Formally, the function is computed as
follows:

dis(mj(c),mj(c′)) =
|mj(c)−mj(c′)|

|dom(mj)|
(1)

where|dom(mj)| stands for the maximal difference of two
valuesv1, v2 in dom(mj). Clearly, for any pair of classes
c and c′, the valuedis(mj(c),mj(c′)) is in [0 1], with 0
meaning perfect match, i.e., identical values on each metric,
and 1 meaning complete mismatch. The reasoning with the
stress estimation value is similar.

Global similarity measure The contributions of each
metricmj and of the stress estimation on the local level, are
combined into a unique value reflecting the overall disimi-
larity of both components. For this purpose, we use a nor-
malized linear combination. Thus, given a pair of classes
from versioni of the system,ci andc′i, their global resem-
blances are evaluated as follows:

Dis(c, c′) =
j=p∑
j=1

βj dis(mj(ci),mj(c′i))+ (2)

+βs dis(St(ci→i+1), St(c′i→i+1)) (3)

whereβj ≥ 0 is the weight of the software metricsmj and
βs ≥ 0 is the weight of the stress factor. For the experi-
mental study in section 4, we always take equal weights for
structural metrics, i.e.,

∀j ∈ {0, . . . , p}, βj =
1− βs

p



which yields a normalized similarity function that depends
only on the choice ofβs. It is noteworthy that the ratio be-
tweenβs and1 − βs translates the mutual importance of
both high-level factors, design and stress, in the disimilar-
ity computation and therefore by varying the value ofβs

one reflects specific hypotheses about their respective role
in the prediction. For this study we did not have strong
reasons for distinguishing among structural metrics, so we
kept their weights equal. This choice reflects the initial lack
of knowledge about the relative importance of each met-
ric, for the prediction goal. However, finer weights can be
extracted from previous experiences by accounting for the
contribution of an attribute to the correct/incorrect predic-
tion for each case in a training dataset [27] (see section 4).

In contrast, various hypotheses were formulated regard-
ing the role of the stress factor and the weights followed
them. In a first setting, we decided to consider the stress as
an ordinary characteristic rather than as a higher-level fac-
tor in the stability. Therefore, we assigned equal weights
to all quantities describing a class, metrics and stress, i.e.,
βs = 1/(p + 1). The second setting reflected our belief
that the contribution of structural properties of a class to its
stability is at best as important as the stress the class is expe-
riencing. This has been translated as 50% weight assigned
to the stress and the remaining 50% were equally distributed
among the metrics (0.5/p). Finally, we adopted a radically
different view on stress regarding it no more as quantity
to contribute to an overall similarity between classes, but
rather as an independent criterion used to refine the initial
similarity-based comparison at a further step.

3.4 Solution adaptation

The aim of the adaptation step is to design a solution of
the current problem from the solutions of the cases in the
BestMatchset. For this purpose, a combination of the so-
lutions inBestMatchis defined that represents a reasonable
trade-off of several factors such as frequency of particular
class in the set, ranks of the best matches, etc. For example,
the adaptation may simply choose the solution of the first
nearest neighbor or rather combine the solutions of several
ones. For Boolean variables, the majority choice is usu-
ally used, whereas for continuous measures, linear combi-
nations are preferred.

We used various strategies in the adaptation. On the one
hand, the classical1-NNvariant has been compared tok-NN
of larger values fork. On the other hand, we have been fol-
lowing different hypotheses about the role of both factors
in the stability prediction, i.e., structural similarity versus
similarity in the applied stress. Thus, in the case ofk-NN
with k > 1, two adaptations have been compared. First,
a linear combination of all stability values is considered,
whereby each case stability is weighted by the respective

distance. In this way, the nearer a case, the stronger the
contribution of its own stability value. Second, we exam-
ined a hypothesis that stress factor may play the selector in
the adaptation process. Technically speaking, stress values
are no longer included in the similarity computation inputs
(βs = 0), but they are rather used to chose a single nearest
neighbor, among thek retrieved classes, whose stability is
then copied as a solution.

The following table 1 provides an illustration of the
three strategies. It shows the five nearest neighbors of the
classjava.net.Socket (version 1.1) computed with a
0 weight for the stress.

Class name Stability Stress Distance
java.net.DatagramSocket .46 .45 .77%

java.lang.System .94 .44 1.5%

java.net.ServerSocket 1. .31 1.51%

java.awt.Point .78 .5 1.75%

java.awt.MenuComponent 1. .46 1.78%

Table 1. The five NN for java.net.Socket
with respective similarity, stability and stress
values.

The classjava.net.Socket itself has a stability fac-
tor of .62 while the stress amounts to.47. Table 2 illustrates
the results of the adaptation step, i.e., the predicted value for
java.net.Socket according to each of the three strate-
gies.

Strategy Predicted stability
1-NN .46

5-NN adaptation on stress .78

5-NN weighted average .88

Table 2. The three values for
java.net.Socket stability.

4 Evaluation

In order to evaluate our CBR-powered stability predic-
tion method, we applied it to dataset made up of the classes
found in four major releases of JDK from which 14 struc-
tural metrics have been extracted (see figure 2).

To feed the remaining parameters of our model, i.e., the
stress factor and the stability level, we further considered
the three transitions between versions and compared the
subsequent variants for each class. Thus, three test datasets
have been constituted, one per transition, completed by a
fourth one, made up of all classes in the first three sets.



Our experimental study followed a test protocol based on a
“leave-one-out” validation strategy. In the sequel, relevant
aspects of the global evaluation are discussed.

4.1 Choice of the variables

We choose 14 structural software metrics among the set
of metrics used in different theoretical models [8, 7, 20, 9,
30]. The metrics belong to one of the four categories ofcou-
pling, cohesion, inheritanceandcomplexity(see figure 2).

LOC weighted  methods per classWMC_LOC
McCabe's complexity weighted methods/classMCC
Number of public attributesNAA
Number of methodsNOM

Complexity
Class hierarchy metricCHM
Message domain sizeMDS
Depth of inheritance treeDIT
Number of parents (including interfaces)NOP
Number of childrenNOC

Inheritance
Number of used classesCUB
Other class method attribute export couplingOCMAEC
Other class method attribute import couplingOCMAIC

Coupling
Cohesion metricCOM
Lack of cohesion in methodsLCOM

Cohesion
DescriptionMetric

Figure 2. Metrics description

The choice of the metrics in figure 2 has been carefully
studied. Actually, the set of 14 metrics emerged from a pre-
vious study on a similar but simpler experimental frame-
work [15]. In that study, we examined the predictability of
class stability for Java classes coming from several appli-
cations, based on a set of 22 metrics. One of the results
suggested a limited subset of the entire metrics collection
were well correlated with the stability variable (binary in
that case, i.e., stable vs unstable). Based on this experience,
we hypothesize that the same metrics are suitable for the
prediction on datasets stemming from standard Java APIs.

4.2 Data collection

The selected software metrics were extracted from each
Java class using theACCESS tool of theDiscover c© en-
vironment3. For this purpose, we considered the major ver-
sions of Java, from its first stable version (1.0.2) to its most

3available athttp://www.mks.com/products/discover/developer.shtml.

widely used version at present, 1.3.1. The latest API, ver-
sion 1.4.1, emerged only recently and could not be included
in our study.

The following table 3 illustrates the evolution in the
size of the datasets along the version increase. The fig-
ures also indicate the number of classes that underwent
some, even minor, changes between versions (the unstable
classes) compared to classes that kept their public interface
unchanged from previous version (the stable classes). It is

Figure 3. Data

noteworthy that the major shift in the composition of the
Java API which has been operated between the versions 1.1
(Java 1) and 1.2 (Java 2) is also reflected by the table. In
fact, several novel features have been incorporated into the
language during this transition: inner and nested classes,
enhanced event mode, etc., thus leading not only to the in-
troduction of many new classes but also to a large num-
ber of modifications to already existing classes (37% of all
classes). Moreover, the jump in the number of classes in
the version 1.3 with respect to 1.2 is the result of the inte-
gration into the standard API of two previously independant
libraries, Swing and CORBA.

The last line of the table represents the global dataset,
i.e., the one resulting from the merge of the previous three.
Thus, in this dataset, consecutive versions of the same class
may be observed.

4.3 Experimental parameters

Several major parameters have been used in the experi-
ments, their number reflecting the complexity of the stabil-
ity prediction problem.

First, we used variable weights in the computation of the
similarity measure (parametersβs andβj). There was no
particular reason for distinguishing among structural met-
rics - although this would be an interesting track to follow
- therefore we kept their weights equal in all experimental
settings. In contrast, we made vary the relative weight of the
stress variable with respect to the remaining 14 metrics, as
we were intrigued about its specific role in the stability. Our
hypothesis was that the stress is a major factor and should
be assigned greater importance in the computation.

To test this hypothesis, we chose three different exper-
imental settings. In the first setting, we assigned equal
weights to all 15 quantities describing a class, i.e., metrics



and stress, feflecting a straightforward hypothesis that the
stress is an ordinary metrics rather than as a higher-level
factor. The second setting reflected our belief that the stress
should be seen as a factor of the same importance as the en-
tire set of design-related properties. Thus, 50% weight was
assigned to the stress alone and the remaining 50% were
equally distributed among the 14 other metrics. Finally, we
adopted a radically different view on stress regarding it no
more as quantity to contribute to an overall similarity be-
tween classes, but rather as an independent criterion used
to refine the initial similarity-based comparison at a further
step.

Second, we used various mechanisms for the adaptation
of the results from the similarity-based retrieval of cases to
the resolution of the test case. On the one hand, the pa-
rameterk indicating the number of nearest neighbors par-
ticipating in the adaptation procedure has been tuned. Two
values fork, 1 and 5, have been studied, the former one
leading to what is known in the CBR community as “null
adaptation” as the stability of the unique nearest neighbor is
simply copied. With a set of five neighbors, there are fur-
ther possibilities, whereby a straightforward one would be
to take the average of the five stability values. We preferred
a bit finer version in which the weighted sum of these quan-
tities is used with weights being the normalized similarity
values. On the other hand, we played with the contribution
of the stress factor to the CBR mechanisms and moved it
from the retrieval step to the adaptation process. Thus, we
used its value to select among the five nearest neighbors,
the one whose stress value is the closest to that of the test
case. This setting reflects our hypothesis that among a set
of classes of similar structural properties, the one which has
the best chances of nearing the stability for a given case, is
the one whose stress is the closest to the stress experienced
by that case.

Further parameters were used in the validation procedure
as described in the next paragraph.

4.4 Error computation and global validation

We used particular settings to tune the computation of
the error in the prediction. In fact, as the value to predict
is a ratio of two integer quantities, which ranges between
0 and 1, exact predictions are simply unrealistic. There-
fore, some degree of deviation in the prediction should be
admitted. Among the different possibilities, we have cho-
sen a simple model in which a tolerance threshold is used
to separate sufficiently well predicted cases from the rest.
Thus, a percentageq is specified as a parameter of the error
computation mechanism and its role is as follows: given an
effective stability valueve and a prediction valuevp, if vp

fells within the interval of[(100 − q) ∗ ve, (100 + q) ∗ ve]
it is considered as valid, otherwise it is invalid. Intuitively,

the greater the threshold, the bigger the number of the valid
predictions, whereby a value of100% for q leads invari-
ably to no false predictions. For our experiments, a value
of 20% has been used, which is fairly precise for stability
prediction.

To evaluate the global rate of accuracy in the prediction,
we used the correctness factor that accounts for the number
of well predicted cases with respect to the total number of
cases. Separately, we have computed the rates of the valid
predictions for stable and unstable classes.

Finally, to make our results more representative, we used
a validation strategy that computes average rates on several
runs. Our current results have been obtained with a “leave-
one-out” technique, which means that there have been as
many runs as the size of the corresponding dataset. This
technique has been preferred to the classical 10-fold cross-
validation for two main reasons: on the one hand, the small
number of unstable classes in the global dataset may easily
lead to unbalanced distributions of those classes between
the training set and the test set, while on the other hand,
having a single class to compare to a large number of al-
ready examined and labeled classes is a situation close to
the settings of the real problem of stability prediction.

4.5 Results

We have carried out a series of experimental tests over
the four datasets with different parameters as explained in
the previous paragraphs. Figure 4 presents a summary of
the results for the major experiments for which the “leave-
one-out” validation has been used.

Each line refers to a particular experimental setting with
columns corresponding to parameters and datasets. Thus,
for any combination of weight assignment and adaptation
method, on the one hand, and dataset, on the other hand, we
provide the respective value of the global correctness.

The above results are to compare to those obtained with
a 10-fold cross-validation, which is usually preferred to the
leave-one-out, since more robust in general (see figure 5).
However, this technique is more delicate to use on highly

Figure 5. Prediction accuracy with CBR on all
classes, 10-fold cross-validation.

unbalanced dataset, as the global Java API dataset consid-
ered here, since it is hard to assure a good trade off between



Figure 4. Prediction accuracy with CBR for Java API classes with “leave-one-out” validation.

the random choice of the 10% samples and the minimum
ration between stable (Stability = 1) and unstable (Stability
< 1) cases to keep results sensible. In other terms, com-
pletely random choice of the samples reduces bias, but, as
there are few unstable cases, may easily increase the disbal-
ance in the remaining 90% of cases in the learning set. We
chose to favor randomness in the data partition, hence, the
results of this experiment are bare indicators of the possible
drop in prediction accuracy due to disbalance in the data.

4.6 Interpretation

In the light of the above remarks about balance in the
Java API dataset, the results from the first study may be in-
terpreted as follows. First, globally, the larger set of nearest
neighbors (five versus one), favors more precise predictions
as the risk of wrongly selecting a value is reduced by the
greater number of values considered.

In the first two transitions, where the percentage of un-
stable cases in the data is relatively high (between the fifth
and the third of all cases) the most successful technique
is a5-NN that considers both structural characteristics and
stress as similarity factors. Thus, every individual measure
is assigned the same weight in the similarity computation,
whereby in the computation of the predicted stability value,
a weighted average of the five stabilities in theBestMatch
set is used. The good relative performance of the technique
is due to the fact that stability and stress are similarly dis-
tributed over the classes and favoring one of them leads to
a decrease in precision. To support this view, a correlation
level of−.5 between stress and stability has been observed
in the first version dataset (v1), but this vanishes in the data
from later version. On the other hand, this fact offers a
hint about the sharp drop in prediction correctness between
v1 andv2: it reflects the impact of adding the version 1.2
of JDK which includes the biggest ratio of unstable cases.
In the third transition dataset, the overwhelming number of
classes (six in every seven) are stable, which makes the pre-
diction of instability a hard task. In fact, since the proba-
bility of retrieving stable nearest neighbors is high, even for
5-NN the computed stability tends to be an overestimation
of the real value. Therefore, the most successful technique

is the one that excludes the stress from similarity computa-
tion but uses it as a selector for the unique nearest neigh-
bor, among the five retrieved, whose stability will be used
as a prediction. The results of the 10-fold cross-validation,
despite the sharp drop in the accuracy, indicate a similar
ranking between techniques, with the adaptation on stress
showing the best score.

To sum up, we may globally conjuncture that the ap-
propriate use of the stress in stability prediction is as fol-
lows. At a first step, the most similar classes are retrieved
on design-based criteria, i.e., unbiased by stress consider-
ation, and at a second step, the stability is adaptated from
the case solutions with respect to the stress levels in the test
class and the retrieved cases. Furthermore, the adaptation
and the retrieval may vary in shape, e.g., usingk-NN for
retrieval andp-NN for adaptation, withp ≤ k.

5 Conclusion

In this paper we propose a case-based reasoning ap-
proach for predicting the stability of software items from
relevant metric data and results about the stress. The tech-
nique presented here considers each item as a point in
a multi-dimensional space, one dimension per metric, in
which a distance function is defined. The stability of each
new item is computed with respect to a fixed number of
nearest cases in the case base whose stability and stress are
known. Various techniques for adaptation of the stability
values from nearest neighbors to the test case have been ex-
perimented whereby the most promising approach seems to
be the use of the stress factor as adaptation selector rather
than as basic similarity factor.

The resulting predictive model is a refinement of our pre-
vious work on stability prediction which had a scope limited
to pure design considerations. In a very general sens, the
new model can be seen as a mapping between stress lev-
els for a class and its respective (expected) stability values.
This sort of models fit better realistic situations in which the
available data is neither of sufficient size nor representative
enough to develop universally valid models by abstraction.
Indeed, our similarity-based prediction avoids the pitfalls
of over-generalization of logical classification models: the



preliminary results show that a very straightforward CBR
classifier (5-NN, no tuning of weights, no domain theory)
can perform significantly well when the stress estimation is
properly fed in.

Our study is a first attempt to construct a realistic pre-
diction models for stability and as such we consider it suc-
cessful since the stability has been proved to be predictable.
Moreover, the experiments we carried out confirmed the the
utility of CBR for tasks where few theoretical knowledge
is yet available. Thus, it could be applied to other main-
tenance tasks and quality factor prediction, in particular to
the prediction of the stress from the results of some rough
analysis of the requirements evolution.

To our view, exploring analogy through CBR does not
mean that domain theories are excluded: we see both ap-
proaches as complementary and a natural integration be-
tween both, e.g., as a theory-powered case-based stability
predictor, seems even more promising. In this respect, our
future research is directed at the design of enabling tech-
niques for a reasonable amount of domain knowledge, i.e.,
information about the structure of the manipulated items
and about possible relationships among items, to be fed into
the classification process. Another research track leads to
the improvement of the feature-selection capabilities of our
method to help reduce the number of the software metrics
used in the prediction and fine-tune their respective weights.
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