
A

Multi-step learning and adaptive search for learning complex model
transformations from examples

ISLEM BAKI, Université de Montréal
HOUARI SAHRAOUI, Université de Montréal

Model-driven engineering promotes models as main development artifacts. As several models may be ma-
nipulated during the software-development life cycle, model transformations ensure their consistency by
automating model generation and update tasks. However, writing model transformations requires much
knowledge and effort that detract from their benefits. To address this issue, Model Transformation by Ex-
ample (MTBE) aims to learn transformation programs from source and target model pairs supplied as ex-
amples. In this paper, we tackle the fundamental issues that prevent the existing MTBE approaches from
efficiently solving the problem of learning model transformations. We show that, when considering com-
plex transformations, the search space is too large to be explored by naive search techniques. We propose an
MTBE process to learn complex model transformations by considering three common requirements: element
context and state dependencies, and complex value derivation. Our process relies on two strategies to reduce
the size of the search space and to better explore it, namely, multi-step learning and adaptive search. We ex-
perimentally evaluate our approach on seven model transformation problems. The learned transformation
programs are able to produce perfect target models in three transformation cases, whereas precision and
recall values larger than 90% are recorded for the four remaining cases.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/Specifications; D.2.2
[Software Engineering]: Design Tools and Techniques; I.2.6 [Artificial Intelligence]: Learning—Knowl-
edge acquisition; G.1.6 [Numerical Analysis]: Optimization

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Genetic programming, model-driven engineering, model transformation,
model transformation by example, simulated annealing

ACM Reference Format:
Islem Baki and Houari Sahraoui, 2015. Multi-step learning and adaptive search for learning complex model
transformations from examples. ACM Trans. Softw. Eng. Methodol. V, N, Article A (January YYYY), 36
pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Over the last decade, model-driven engineering (MDE) has proven to be an efficient ap-
proach to develop software, as it alleviates overall development complexity, promotes
communication, and increases productivity through reuse [Mohagheghi et al. 2013].
MDE advocates the use of models as first-class artifacts. It combines domain-specific
modeling languages to capture specific aspects of the solution, and transformation en-
gines and generators in order to move back and forth between models while ensuring
their coherence, or to produce from these models low level artifacts such as source
code, documentation, and test suites [Schmidt 2006]. Model transformation (MT) is

Authors’ address: I. Baki and H. Sahraoui, Département d’informatique et de recherche opérationnelle,
Université de Montréal
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© YYYY Copyright held by the owner/author(s). Publication rights licensed to ACM. 1049-331X/YYYY/01-

ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:2 I. Baki et H. Sahraoui

at the very heart of the MDE paradigm. As such, several transformation languages
and tools have been made available to MDE practitioners. Unfortunately, developing
MTs remains a challenging task [Siikarla and Systa 2008] as it requires many types
of knowledge, e.g., semantic equivalence between source and target domains, source
and target metamodels, model transformation language, etc., that domain experts do
not generally have. Moreover, developing large sets of transformations requires a lot of
effort as candidate transformation rules need to be written and debugged iteratively
in order to produce the correct output.

The automation of MT activities is one of the major obstacles that threaten the
success of the MDE vision. Over the last decade, many researchers tackled this sub-
ject. A particularly interesting idea that has motivated many contributions is learning
model transformations by example (MTBE) [Varró 2006]. MTBE approaches aim to
derive transformation rules starting from a set of interrelated source and target model
pairs. Over the past few years, different approaches have been proposed to achieve
MT automation using examples with ad-hoc heuristics [Varró 2006; Wimmer et al.
2007], inductive logic programming [Balogh and Varró 2009], particle swarm optimiza-
tion [Kessentini et al. 2008], relational concept analysis [Dolques et al. 2010], genetic
programming [Faunes et al. 2012], etc.

Independently from their nature, these approaches search for a model transforma-
tion in a space whose boundaries are defined by a transformation language (the in-
finity of programs that could be written in this language) and the source and target
metamodels (the infinity of programs that take, as input, instances of the source meta-
model and produce, as output, instances of the target metamodel). Consequently, and
although these approaches make important advances towards the resolution of the
MTBE problem, they all face the search-space explosion issue when targeting complex
transformations.

In this paper, we discuss the considerations that contribute to the search-space ex-
plosion when attempting to derive complex MTs from examples. We also propose a
learning process that copes with huge search spaces, and that can thus target such
transformations. Our process derives an MT from a set of interrelated source-target
example pairs. First, transformation traces between the supplied source and target
models (mappings) are refined and analyzed to build example pools. Then, genetic
programming is used to derive for each pool, a set of rules that best transforms its
examples. Finally, rule sets are merged into a single transformation program that is
refined using a simulated annealing algorithm.

In our approach, we contend with huge search spaces using two strategies. First, the
multi-phase aspect of our learning process allows us to reduce the size of the search
space to be explored at each step. We thus learn the transformation program incremen-
tally by addressing different requirements separately. Second, we take advantage of
adaptive search techniques to adjust our search to the dynamics of the solution spaces
and escape local optima. We validated our approach on seven transformation problems
that exhibit diverse characteristics and different complexity levels. Our results show
that common transformations are fully learned, and high precision and recall values
can be achieved for the most complex ones.

The rest of this paper is organized as follows. Sections 2 and 3 introduce basic MTBE
notions and motivate our work. In Section 4, we discuss the existing contributions in
the area of MTBE. We briefly introduce our approach in Section 5 and then detail each
phase of the learning process in Section 6. Section 7 describes the settings and the
results of our validation. In this section, we also discuss the threats to the validity
of our results. In Section 8, we discuss our findings. Finally, Section 9 concludes our
paper and outlines future work.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Multi-step learning and adaptive search for learning complex model transformations from examplesA:3

2. BACKGROUND
2.1. Model Transformation
A model transformation can be defined as the automatic generation of a target model
(TM) from a source model (SM) according to a transformation definition [Kleppe et al.
2003]. This definition is usually expressed as a set of transformation rules where each
rule analyzes some aspects of the SM given as input, and synthesizes the correspond-
ing TM as output. Both source and target models conform to their respective meta-
models [Revault et al. 1995].

Fig. 1. Model transformation concepts.

The generation of the target model is said automatic because an MT is defined at the
metamodel level (see Figure 1). If SM and TM have the same metamodel, the transfor-
mation of SM into TM is said endogenous [Czarnecki and Helsen 2006], whereas if SM
and TM conform to different metamodels SMM and TMM, the transformation is said
exogenous. In this paper, we are interested in exogenous model transformations.

2.2. Transformation Language
The traditional approach toward implementing an MT is to specify the transformation
rules using an executable, preferably declarative, transformation language. In this
contribution, we use Jess [Hill 2003] (Java Expert Shell System) as a transformation
language and engine. Jess is a Java rule engine that holds knowledge organized as a
collection of facts. It is then possible to reason on this knowledge base using declara-
tive rules. Rules are continuously applied on the data through pattern matching tech-
niques (Jess uses an enhanced version of the Rete algorithm [Forgy 1982]). We decided
to use this generic, simple, and declarative language to separate, in a first phase of
this research project, the intrinsic complexity of example-based transformation learn-
ing from the accidental complexity of using specific tools (e.g., ATL with Ecore) with
interoperability and dependency concerns.

Jess facts are very similar to Java objects. Each fact has a name and a list of at-
tributes called slots. Facts can be defined using templates, which are in turn similar to
the concept of classes in Java. Jess rules react to the changes that occur in the collec-
tion of facts. Each rule is composed of two parts: conditions expressed in the left-hand
side (LHS) of the rule, and actions defined in its right-hand side (RHS). When the
LHS of a rule is satisfied, its RHS is executed.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:4 I. Baki et H. Sahraoui

In the context of MT, we represent source and target models as facts. Each model
conforms to its metamodel, which is supplied as a set of Jess fact templates. The trans-
formation program consists in a set of Jess rules. The LHS patterns of the rules are
matched with elements from the SM (or the already created elements of the TM).
The RHS part of the rules allows us to generate fragments of the TM by asserting
new facts. Listing 1 illustrates a single rule program that transforms a single-element
source model into the corresponding target model. When this trivial transformation is
executed, the engine will look for facts that satisfy the condition specified in the rule
Source2Target, i.e., the presence of an element sourceElement. For each match in the
source model, the rule asserts a new target model element targetElement, whose name
attribute is set with the name of the matched source element (the assignment is done
by means of the same variable ?c00 in the rule’s LHS and RHS).

Listing 1. A simple example of source and target metamodels, a source model to transform, a transformation rule,
and a produced target model, expressed in the Jess syntax.

; source metamodel
(deftemplate sourceElement (s l o t name))

; target metamodel
(deftemplate targetElement (s l o t name))

; source model
(assert (sourceElement (name SC1)))

; rule
(defrule Source2Target
(sourceElement (name ?c00))
=>
(assert (targetElement (name ?c00))))

; output
(targetElement (name SC1))

2.3. Model Transformation by Example
As mentioned in Section 1, writing model transformations may be a challenging and
time-consuming task. Unlike the example given above, real-world MT may consist of
dozens of complex interdependent rules. MTBE is an elegant solution to this problem.
The goal of MTBE is to learn a transformation program from examples. Each example
is a pair consisting in a source model and the corresponding target model. Instead of
writing the transformation, the user provides such pairs to illustrate its behavior. The
system then learns the sought transformation automatically. The idea behind MTBE
is that experts are much more comfortable in defining real source-target examples,
expressed in a concrete syntax (modeling notation), rather than specifying transfor-
mation rules in abstract syntax (computer representation) [Egyed 2002].

In many MTBE papers, the source and target models supplied within each exam-
ple pair are interrelated. Thus, a transformation example consists usually in a triple
(SM ,TM ,TT), where SM denotes the source model, TM the target model and TT are
the transformation traces, also called mappings. Transformation traces are many-to-
many links that associate a group of n source elements to a group of m target ele-
ments. Figure 2 shows an example pair with three identified traces (not all the traces
are displayed). For each trace, the target fragment (bottom) has been determined as
corresponding to the source fragment (top). Transformation mappings can be identi-
fied by an expert during the design process or recovered (semi-)automatically using,

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Multi-step learning and adaptive search for learning complex model transformations from examplesA:5

Fig. 2. A source-target example pair with three identified traces.

for instance, approaches such as the ones proposed by Saada et al. [2013] or Grammel
et al. [2012].

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:6 I. Baki et H. Sahraoui

3. PROBLEM STATEMENT
Despite important advances in MTBE, state-of-the-art contributions are unable to
handle many complex, nonetheless common, model transformation scenarios. To illus-
trate the most common characteristics of what we consider in this paper as complex
transformation cases, let us consider a motivating example of the well-known problem
of transforming UML class diagrams into relational schemas (CL2RE).

An ideal simple situation when transforming class diagrams to relational schemas
is when the transformation rules map a single source element of a given type to a
single target element of another type. For example, a basic rule consists of creating a
table for each class, regardless of the other elements related to the class, and simply
assigning the class name to the table name. The search space in such a situation is
relatively small and is defined by all the possible sets of pairs <source-element-type,
target-element-type>, where in each set, all the source element types are mapped to
target element types. Unfortunately, in a more complete specification, many consider-
ations will increase this search space dramatically. Although many requirements can
contribute to the search-space explosion, the three most recurrent ones that we iden-
tified are (1) dependency on the element state, (2) dependency on the element context,
and (3) complex value derivation of target element attributes.

3.1. Dependency on the Element State
In many transformation problems, the same element type can be transformed differ-
ently depending on its state, i.e., the values of the element attributes. This generally
holds for enumeration types, where the set of values that the attribute can take is fi-
nite. For example, in CL2RE, consider the case of two classes linked by an association.
The association is transformed differently according to its state, which is defined by its
cardinalities (one-to-one, one-to-many, many-to-many).

Fig. 3. Similar source fragments, extracted from the example of Figure 2, having elements with different
states.

As illustrated in trace T1 of Figure 3, when two classes (Product and Order) are
linked by a many-to-many association, a table is created (OrderProduct), and keys
link this table to the ones corresponding to the association source and target classes.
However, if the cardinalities are one-to-many, as in the association between Employee
and Order in T2, no specific table is created, and the class-corresponding tables are

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Multi-step learning and adaptive search for learning complex model transformations from examplesA:7

linked by a key. Thus, when transforming an element, the search space is augmented
by all the possible combinations of all the possible values of its attributes.

3.2. Dependency on the Element Context
In addition to the dependency on the element state, many transformation scenarios
require to consider the context in which a source element appears, i.e., the relation-
ships to the other elements, in order to transform it. To illustrate this characteristic on
the CL2RE transformation problem, let us consider this time the case of a one-to-one
association. It is a common practice to merge classes related through a “1-1” associa-
tion into one table when one of these classes is not involved in any other association
or inheritance relationship. If not, a table is created for each class. Both situations are
illustrated by the two traces presented in Figure 4. In T3, the class Address does not
have links other than the one to Customer, and then a single table is created. Con-
versely, in T4, both classes Employee and Contract have at least one other link (see
the initial source model in Figure 2). Therefore, two tables must be created and linked
with foreign keys.

Fig. 4. Similar source fragments, extracted from the example of Figure 2, having elements with different
contexts.

This situation illustrates the fact that, for some transformation problems, the search
space increases by all the possible contexts of the element type to transform, i.e., ex-
istence of different direct or indirect links to the other elements of the transformed
model. In such a case, a wider context must be explored to transform the elements,
which requires to learn complex rules with sophisticated conditions.

3.3. Complex Value Derivation
While both previous requirements tackle sophisticated conditions that could be ex-
pressed in a transformation rule, considerations have also to be directed toward the
action part of the rules. Indeed, although in many cases, the attributes of the target
elements are set with the attributes’ values of the source elements, many transfor-
mations require the generation of values using combinations of arithmetic, string and
conversion operators as well as constant generation and aggregations (e.g., count, av-
erage, minimum). For example, in T3 of Figure 4, when a unique table is generated for
two classes, as it is the case for the association that links the Customer and Address

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:8 I. Baki et H. Sahraoui

classes, the name of the corresponding table in the target model can be the concatena-
tion of the two-class names. Similarly, the name of a table key could be the concatena-
tion of a generated constant with a class attribute name or with the class name.

Other transformation scenarios that require complex value derivations are those
whose target models are graphical representations [Pfister et al. 2012; Buckl et al.
2007]. In these transformations, numeric operators and functions are often required to
perform the transformation, particularly for coordinate and size attributes derivation.
Thus, in many transformation scenarios, there is a large number of operator-attribute
combinations, which multiplies the possibilities in the search space.

These three requirements, namely, dependency on the element state, dependency on
the element context, and complex value derivation are quite common (see the transfor-
mation problems described in Section 7.2). Therefore, they must be considered when
trying to automate real-world model transformations. However, two considerations
arise when using search based techniques to learn such transformation problems. The
first one is the search-space size explosion that ensues. The expression of complex
transformation rules with more sophisticated LHS conditions, and especially, com-
plex RHS attribute derivations, increases exponentially the number of transformation
possibilities. Second, many search-based techniques such as evolutionary algorithms
may be subject to local optimum convergence, known as the premature convergence
problem [Andre et al. 2001]. A fully automated MT learning process must, therefore,
implement mechanisms that would permit to circumvent such a phenomenon.

4. RELATED WORK
Two main research axes investigate learning model transformations from examples:
example-based (MTBE) and demonstration-based (MTBD) approaches. MTBE ap-
proaches aim to derive transformation programs by exploiting example pairs of source
and target models, supplemented in most contributions with fine grained transfor-
mation traces. Demonstration-based approaches (MTBD) rely on recording and ana-
lyzing user editing actions when performing a transformation to learn its rules [Sun
et al. 2009]. As pointed out by Kappel et al. [2012], existing example-based approaches
deal exclusively with exogenous model transformations whereas demonstration-based
approaches focus primarily on endogenous MT. A summary of the characteristics of
MTBE and MTBD contributions is provided in Table I.

An alternative approach to automated transformation synthesis (MTBE and MTBD)
is proposed by Avazpour et al. [2015]. The approach, CONVErT, uses visualization to
allow a domain expert to interactively specify mappings between source and target
elements in example model pairs. It also relies on recommendations to derive a trans-
formation specification and to convert it into transformation rules.

4.1. Example-based Model Transformations
Varró [2006] propose a semi-automatic graph-based approach to derive transformation
rules using interrelated source and target examples. The derivation is interactive and
iterative and allows to derive 1-1 transformation rules. The extension by Balogh and
Varró [2009] derives n-m rules using Inductive Logic Programming (ILP). Wimmer et
al. [2007] propose a similar approach to derive 1-1 transformation rules in ATL. Their
contribution differs from Varró and Balogh with respect to transformation mappings,
which are defined in a concrete rather than an abstract syntax. Wimmer et al.’s con-
tribution is improved in [Strommer et al. 2007; Strommer and Wimmer 2008] to also
handle n-m rules with the mention of a basic string manipulation operator (lower-
case). Similarly, Garcı́a-Magariño et al. [2009] propose an ad-hoc algorithm to derive
ATL n-m rules using example pairs with their mappings.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Multi-step learning and adaptive search for learning complex model transformations from examplesA:9

Table I. Features of current MTBE approches.

Approach Algorithm Input Output n-m
rules?

Con-
trol?

Con-
text? State?

Complex
derivations?

MTBE approaches

Varró [2006] ad-hoc
heuristic

Examples
& traces Rules 1-1 No No No No

Wimmer et
al. [2007]

ad-hoc
heuristic

Examples
& traces Rules 1-1 No No No No

Strommer et
al. [2007; 2008]

Pattern
matching

Examples
& traces Rules n-m No No No String operator

Kassentini et
al. [2008; 2012]

PSO/PSO-
SA

Examples
& traces

Target
model – No No No No

Balogh and
Varró [2009] ILP Examples

& traces Rules n-m No No No No

Garcı́a-Magariño
et al. [2009]

ad-hoc
algorithm

Examples
& traces Rules n-m No No No No

Kassentini et
al. [2010] PSO-SA Examples

only Rules 1-m No No No No

Deloques et
al. [2010] RCA Examples

& traces
Pat-
terns – No No No No

Saada et
al. [2012a; 2012b] RCA Examples

& traces Rules 1-m No No No No

Faunes et
al. [2012; 2013] GP Examples

only Rules n-m No No No No

Baki et al. [2014] GP Examples
& traces Rules n-m Yes Yes No No

MTBD approaches
Brosch et

al. [2009a; 2009b]
Pattern

matching
User

actions Rules – – No No Added
manually

Sun et al. [2009;
2011]

Pattern
matching

User
actions Rules – – No No Demonstrated

by the user
Langer et
al. [2010]

Pattern
matching

User
actions Rules n-m Yes No No Added

manually

Kessentini et al. [2008; 2012] use analogy to perform transformations. Unlike the
above-mentioned contributions, they do not produce transformation rules but derive
the corresponding target model by considering MT as an optimization problem. The
problem is addressed using particle swarm optimization (PSO), followed by a combi-
nation of PSO and simulated annealing (SA). The approach is taken a step further by
producing transformation rules while overcoming the need for transformation map-
pings [Kessentini et al. 2010]. Another contribution, not initially intended for trans-
formation rules, is proposed by Dolques et al. [2010]. The approach is based on rela-
tional concept analysis to learn transformation patterns. This approach is extended
by Saada et al. [2012a; 2012b], in which the patterns are analyzed to select subsets,
which are mapped to executable Jess rules. The most-recent contribution to MTBE is
the one of Faunes et al. [2012; 2013] in which genetic programming (GP) is used to
learn n-m transformation rules starting from source and target examples without the
transformation traces. The approach is enhanced by Baki et al. [2014] to learn the rule
execution control.

Except for the work of Strommer and colleagues [Strommer et al. 2007; Strommer
and Wimmer 2008], where a single string operator is considered, all current MTBE
contributions do not support complex target value derivations that involve string ma-
nipulations or arithmetic operations. Moreover, to our best knowledge, none of the
contributions above can derive rules that require testing string attribute values or ex-
ploring a global context except for Baki et al. [2014] where the result returned by a
user-defined query can be used in rule conditions. We also noticed that most MTBE
contributions illustrate their respective approaches using simplified transformation

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:10 I. Baki et H. Sahraoui

problems or toy examples without showing the complexity and correctness of the rules
that can be learned.

4.2. Demonstration-based Model Transformations
Brosch et al. [2009a; 2009b] propose an approach to alleviate the complexity of de-
veloping model refactoring operations. Their contribution derives semi-automatically
endogenous MT specifications by analyzing user editing actions when refactoring mod-
els. The derivation process consists of two phases. During the first phase all atomic
operations performed by the user are collected by performing a state-based compari-
son between the initial and final models. A unique ID is automatically assigned to all
elements of the initial model to allow a precise detection of all atomic changes. In the
second phase, the collected operations are saved in a diff model and a set of pre- and
post-conditions of the refactoring operations is proposed to the user for manual refine-
ment. The refinement step can also include the definition of complex value derivations
that should be used during the transformation. Finally, the diff model and the revised
pre- and post-conditions are used for the transformation sought.

Langer et al. [2010] extend Brosch et al.’s contributions to support exogenous model
transformations. The learning process consists of three steps. As in the previous con-
tributions, the user is first invited to create the source and corresponding target el-
ements in his favorite modeling environment. The user can select a context prior to
certain editing actions to express rule dependencies. During the second phase, the
transformation scenario is generalized in a set of transformation templates than can
be manually refined. A final phase produces the sought transformation rules from the
refined templates using a higher-order transformation.

Sun et al. [Sun et al. 2009; Sun et al. 2011] propose a similar approach for deriving
endogenous MTs. Unlike, the contributions from Brosch et al. and Langer et al., an
extension is added to the modeling environment in order to monitor the user editing
actions. The recorded operations are then analyzed to remove incoherent and unnec-
essary ones. An inference engine is subsequently used to express user intentions as
reusable transformation patterns. Similarly to Brosch et al.’s approach, certain com-
plex value derivation are supported. These derivations must be demonstrated by the
user rather than added manually during a distinct refinement phase.

5. APPROACH OVERVIEW
In this paper, we present a process to learn complex exogenous model transformations.
Our process takes as input source and target metamodels as well as a set of source and
target model pairs supplemented with their traces. It produces as output a declarative
and executable transformation program. For the sake of simplicity, we describe our
approach using a single example pair, but we also explain how multiple example pairs
are handled at each step of our process in Section 6.

As illustrated in Section 3, learning a complex model transformation can involve
exploring a very large search space that cannot be achieved in a reasonable time when
using standard meta-heuristics. We believe that many strategies have to be combined
in order to reduce the size of the search space and to ease the convergence towards
an acceptable transformation solution. Our approach is based on two such strategies:
multi-phase learning rather than a single phase one, and adaptive-search techniques
rather than classical search techniques.

5.1. Multi-Phase Learning
As mentioned earlier, dependencies on context and state are two major reasons of the
search-space explosion that makes MT learning challenging. To deal with these consid-
erations, the sought transformation program is derived incrementally in three phases,

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Multi-step learning and adaptive search for learning complex model transformations from examplesA:11

as illustrated in Figure 5. We leverage transformation traces that are split into several
pools in order to reduce the size of the search space to be explored in each phase.

Fig. 5. The process of learning a model transformation.

Analyzing transformation traces. The goal of the first phase is to analyze the
mappings between source and target fragments of the input example pair. During the
analysis, the traces are split into pools (Figure 5 - 1), so that each pool contains only
source fragments of the same type (cf. Section 6.1) that are transformed identically.
When two source fragments of the same type are transformed into two similar target
fragments, this means that the source fragments have contexts and states that trigger
the same transformation. Conversely, source fragments of the same type mapped to
different target fragments implies that the contexts and/or states are important in
choosing the transformation alternatives.

Learning transformation rules. Now that in each pool, traces of the same type
are mapped to similar target fragments, it is possible to learn the transformation rules
of each pool (in parallel) without exploring the contexts and states, which reduces con-
siderably the size of the search space. The search of the best transformation program
of each pool is performed by a genetic programming algorithm [Koza 1992], to produce
a transformation program (a set of rules) per pool (Figure 5 - 2). Each transformation
program is then automatically processed to eliminate incorrect and redundant rules
before starting the final phase.

Refining the transformation program. In the third phase, the transformation
programs of all the pools are merged into a single program that is used as the initial
solution to be refined by a simulated annealing algorithm [Aarts and Korst 1988] (Fig-
ure 5 - 3). Some of the merged rules, which were learned in different pools, will search
for the same source fragment types but produce different target fragments because
the contexts and states are not tested. To solve this issue, the refinement algorithm

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:12 I. Baki et H. Sahraoui

must explore the possibilities of enriching rules with more sophisticated conditions
that may consider a wider context, test source element states, check the absence of
constructs (negative conditions), or add implicit control through target-pattern testing
in the rules.

5.2. Adaptive Search
The proposed 3-steps process reduces the search space by learning basic rules in the
second phase and by sophisticating/specializing these rules in the final phase. Still, the
third space-explosion consideration, i.e., complex value derivation is not yet addressed.
Whereas the LHS of the rules (the conditions) are incrementally built by the second
and third phases of the learning process, their RHS (actions) are exclusively derived
during the second phase carried out by the genetic programming algorithm.

Genetic programming, as for many population-based heuristic algorithms, is subject
to the premature convergence problem [Andre et al. 2001], when parents near local op-
tima breed many similar offsprings. As such, it is necessary to implement mechanisms
to ensure that GP dynamically adapts to the search progression in order to achieve a
good trade-off between performance (optimal solution found) and exploration power.
For our problem, we propose to use two techniques to increase convergence towards a
good transformation solution: adaptive mutations and memory-based mutations.

6. APPROACH
6.1. Analyzing Transformation Traces
Given a source-target model example pair (SM,TM), we define a transformation
trace, as a set of mappings TR = {T1, T2, ..., Tm} where each mapping is a pair of
source and target fragments T i = (SFi, TFi), i ∈ [1..m]. A source (resp. target) frag-
ment is a set of interconnected source (resp. target) elements. Each source fragment
contains one main element that is the element being transformed. More formally,
T i = ({sei0, ..., seip}, {tei0, ..., teiq}) p > 0, q > 0 where sei0 is the main element of SFi.
We then say that a trace is of type t, denoted as T t

i , if its main source element is of type
t ∈ SMM .

Since we use a search-based algorithm, we do not require traces to be precise. For
instance, the target fragment mapped to a 1-n association can include the referenced
table in addition to the referencing table with its foreign key. We hold that, in practice,
experts may identify fragments rather than specific target elements. However, we do
assume that mappings are consistent.

After gathering the set of traces associated with a source-target example pair, each
trace is automatically completed by supplying its source fragment with elements ref-
erenced by its main element, but not present in the trace (according to the minimal
cardinalities expressed in the source metamodel). Elements referenced by the main
element are likely to be used to transform it. In our example, if the expert defines a
mapping between a 1-1 association and a table with a source fragment that contains
only the association itself, we will complete this fragment with the two classes that are
referenced by the association.

Transformation traces are then analyzed and conflicting traces are separated into
distinct pools. We say that two traces are conflicting if their source fragments are of
the same type but are transformed differently. Such cases are identified by comparing,
on the one hand, the structural similarity of their respective target fragments, and
on the other, the lexical similarity between string source and target attribute values
in each trace. This latter operation is performed to identify cases where the source
fragments of two traces are mapped to two structurally-similar target fragments but
where source attributes are mapped to different target attributes in each trace.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Multi-step learning and adaptive search for learning complex model transformations from examplesA:13

Fig. 6. Identification of conflicting traces.

For instance, consider Figure 6 that depict five traces of type association. These
traces are separated into four different pools because they are all transformed differ-
ently except for the two 1-∗ associations that will be grouped into pool no4. The reason
we separate such traces across multiple pools is that since we neither explore the con-
text nor test the state of an element, learning a transformation in one pool using traces
with similar source but different target fragments will lead to contradictory rules that
have the same conditions and different actions.

Depending on the number of conflicts in each type of trace, n pools may be built (see
Figure 5 - 2). Each pool Pk, k ∈ [1..n], contains a set of traces TRk = {Tk1 , Tk2 , ..., Tkmk

}.
Traces of a given type that are all transformed in the same manner, are just duplicated
across all the pools. In Figure 6 all the traces of types class and inheritance are simply
copied into each pool. Thus, we have TR =

⋃n
k=1 TRk and

⋂n
k=1 TRk 6= ∅.

Finally, for each pool (SMk,TMk), the initial model example pair is modified to re-
move elements that are not in the pool traces. For instance, given that association
traces are split as illustrated in Figure 6, SM1 the source model of pool no1 is pre-
sented in Figure 7.

Multiple example pairs are handled similarly to a single example pair. The set of
traces analyzed is the union of the traces of each example pair. Traces are then an-
alyzed without considering their origin, and similar traces of different example pairs
are grouped in the same pool.

6.2. Learning Transformation Rules using GP
The goal of this phase is to derive a transformation program TPk for each pool Pk such
that TPk(SMk) = (TMk). To this end, we use genetic programming. In the following

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:14 I. Baki et H. Sahraoui

Fig. 7. Source model of pool no1 of Figure 6.

subsections, we first introduce GP. Then, we detail how we adapt GP to our learning
phase.

6.2.1. Genetic Programming. GP is a variant of genetic algorithms whose goal is to au-
tomatically creates computer programs to solve problems [Poli et al. 2008]. It evolves
a population of programs into new, hopefully better ones, through an iterative process
inspired by Darwinian evolution.

Figure 8 shows the typical steps of genetic programming. The algorithm starts with
an initial population of programs randomly generated. Each program is represented
with a tree-like structure having functions as internal nodes and terminals (variables
and constants) as leafs. The set of functions and terminals is problem dependent, and
it defines the search space to be explored. In the next step, each program is evalu-
ated using a fitness function in order to assess its ability to solve the given problem.
The fitness function is the main mechanism that communicates to the computer the
description of the task to be accomplished, i.e., direct the search.

Then, new generations are iteratively derived from existing ones by applying genetic
operators, namely, reproduction, crossovers, and mutations. Indeed, at each iteration,
programs are probabilistically selected to reproduce and survive based on their fitness
(ability to solve the given problem). Reproduction consists in simply copying the se-
lected individuals into the new population. The crossover operator mimics the sexual
recombination of organisms. It recombines two individuals by exchanging two ran-
domly selected sub-trees from each parent. Finally, mutations allow to introduce new
genetic material into the population by randomly altering a terminal or a sub-tree of
the selected individual. The execution of the genetic program is carried on until the
stop criterion is met, and the best program is then returned.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Multi-step learning and adaptive search for learning complex model transformations from examplesA:15

Fig. 8. Flowchart of genetic programming.

The execution of a GP is controlled by a set of parameters such as the size of the
population, the probability of selecting each genetic operator, and the stop criterion,
e.g., a maximum number of generations or a given result that must be achieved by the
best program.

In the subsequent paragraphs, we explain how GP is adapted to derive a transfor-
mation program in each pool. We discuss, in particular, how rule sets are encoded,
evaluated and derived.

6.2.2. Rule Set Encoding. For a given pool Pk, we define a candidate transformation
program TPk as a set of rule groups TPk = {RGt

k, t ∈ SMM} where each rule group

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:16 I. Baki et H. Sahraoui

RGt
k = {Rt

k1
, Rt

k2
, ..., Rt

kx
} transforms traces of type t ∈ SMM . Each transformation

rule is encoded as a couple Rt
ki

=< LHSt
ki
, RHSt

ki
>, i ∈ [1..x]. LHSt

ki
is a pattern

to search for in the source model SMk and RHSt
ki

is the pattern to instantiate in the
target model. For example, Listing 2 shows a rule that transforms an inheritance rela-
tionship into a foreign key. LHSt

ki
determines the conditions to be satisfied by SMk for

the rule to be fired. It is composed of one or more interconnected bricks (see Listing2).
A brick is a set of interconnected source model elements with a main element. A brick
is self-contained, i.e., respects the minimum cardinality of its main element as defined
in the metamodel. Thus, a brick of type class would contain a single element whereas
an inheritance brick contains three elements, i.e., the inheritance, the subclass, and
the superclass as illustrated in Listing 2 (three first lines after the rule name). We say
that a brick is of type t if its main source element is of type t ∈ SMM . For instance,
the LHS of the rule depicted in Listing 2 contains two bricks, one of type inheritance
and the other of type attribute (two lines before the symbol ”=>”).
LHSt

ki
can contain an arbitrary number of bricks. However, it must contain at least

one brick of type t, the type of traces transformed by the rule group to which it belongs.
Moreover, LHSt

ki
cannot contain an element of type t′ ∈ SMM if t′ does not appear in

source fragments of the set of traces of type t in the pool k. Finally, the bricks must be
interconnected to be matched by concrete model fragments during the transformation
execution. The interconnection is made through a common element. For example, in
Listing 2, the superclass ?c10 of the inheritance brick is the class ?c10 to which belong
the attribute ?a20 in the second brick. Note that in this phase, LHS does not include
negative conditions, target model bricks, navigation primitives or attribute values test-
ing.

Listing 2. Example of a rule.
(defrule Inheritence to ForeignKey
(inheritance (c lass ? c00) (superclass ? c10))
(c lass (name ?c00))
(c lass (name ?c10))

(at tr ibute (name ?a20) (c lass ? c10) (unique ?a22))
(c lass (name ?c10))
=>
(assert (fk (column ?a20) (table ? c00) (fktable ? c10))))

The RHS of the rule contains the target elements to be created if the rule is fired.
As for LHSt

ki
, RHSt

ki
cannot contain a target element of type t′ ∈ TMM if t′ does not

appear in the target fragments of the set of traces of type t in the pool k. The attributes
of target elements can be initialized with three types of terminals: attributes from the
LHS, constants defined by enumeration types of TMM , or functions that can take as
parameters the two previous types of terminals. When performing the binding of a
target attribute only terminals of a compatible type are considered. Furthermore, for
string target attributes, a vector of lexical similarities built from the analysis of the
pool traces is used to reduce the number of candidate terminals and introduce more
effectively functions as they become the only binding candidates of a target attribute
when its lexical similarity vector reveals no full match amongst constants and LHS
variables.

The derivation of a transformation program using GP requires the creation of an
initial population of programs. The size of the initial (and subsequent) population is
determined by the generation size parameter. Each program of the initial population
has as many rule groups as there are types t ∈ SMM . The number of rules to be cre-
ated for each group is chosen randomly from a given interval. Each rule is then created

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Multi-step learning and adaptive search for learning complex model transformations from examplesA:17

by generating a random number of bricks for its LHS and a random number of target
elements for its RHS. Random source and target elements of each rule are selected
amongst elements present in the set of traces transformed by the rule owning group.
Next, each target element attribute is bound to a random compatible terminal (LHS
variable, constant or a computed function). The generation algorithm ensures that the
obtained rules are syntactically (w.r.t Jess) and semantically (w.r.t the metamodels)
correct.

6.2.3. Rule Set Evaluation. Each candidate transformation program TPki, where i ∈
[1..generation size], is run with SMk as input. The fitness of TPki is then evaluated
by comparing its output model TMki to the expected one TMk. Programs that produce
target models more similar to the expected ones will have a higher fitness and are thus
favored during the breeding of the next generation.

The similarity between the produced models and the expected ones is computed by
comparing the elements of each model. The comparison considers the type of elements
produced in order to avoid a bias towards frequent elements of a certain type. For TTMk

the set of target types defined by the target metamodel, the fitness function is defined
as the average of the result obtained by the comparison of elements of type t ∈ TMM
(Equation 1).

fi(TMk, TMki) =
∑

t∈TTMk

f ti (TMk, TMki)

|TTMk
|

(1)

f ti (TMk, TMki) = αfmt + βpmt, with α+ β = 1 (2)
Comparing TMk and TMki for a type t is performed by first identifying produced

elements that fully match the expected ones. Two elements that fully match have the
exact same attribute values and references. Elements are removed when they match
so that each produced element is not matched to more than one expected element and
vice versa. For the remaining elements, partial matches are identified for same-type
elements that were not selected in the first phase. Partial matches are considered
when evaluating programs in order to favor partially correct rules over completely
incorrect ones. f t(TMk, TMki) is then computed according to Equation 2 where fmt

(resp. pmt) are the percentages of full (resp. partial) matches. The weights α and β
were empirically set to respectively 0.8 and 0.2.

When the learning process involves multiple example pairs, each candidate trans-
formation program TPki is run once for each example pair. The fitness of the candidate
is then computed as the average of the fitness score obtained at each run.

Each rule set is composed of groups where a groupRGt
k contains rules that transform

traces of type t ∈ SMM . An alternative evaluation to the one described previously is to
evaluate each group RGt

k on traces of its type rather than evaluated all the groups on
the source model SMk. However, as we do not require the traces to be precise, this will
result in several rules creating the same element. For instance, the target fragment
of an association may contain two tables and their respective foreign keys. Evaluating
rules of such groups on the corresponding traces would drive those rules to produce
not only the expected foreign-key elements but the tables as well, whereas these table
elements were likely also derived by the rule group responsible for transforming the
class type.

6.2.4. Rule Set Derivation. After evaluating each candidate program of the current gen-
eration, a new generation of programs is derived. First, an elitist operator is used to
insert the x fittest individuals into the new generation. Then and until the new pop-
ulation is complete, two individuals are selected from the previous generation using a

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:18 I. Baki et H. Sahraoui

binary selection tournament, and are subject to a crossover with a given probability
in order to produce two child candidates. These are, in turn, possibly mutated before
joining the new population.

Crossover: the crossover that we defined operates on the group level with a one-
cut-point strategy. It consists in producing two child rules set from two existing ones
by selecting a cut-point and then exchanging the groups of each side. For instance,
consider the two transformation program candidates TPk1={RGt1

k1,RGt2
k1,RGt3

k1,RGt4
k1}

and TPk2={RGt1
k2,RGt2

k2,RGt3
k2,RGt4

k2}. As groups must be maintained in the children (i.e.
each candidate rule set must transform all source fragment types), the same crossover
point is used for both parents, let us say 3. The offsprings obtained are the candidates
Ok1={RGt1

k1,RGt2
k1,RGt3

k1,RGt4
k2} and Ok2={RGt1

k2,RGt2
k2,RGt3

k2
,RGt4

k1}.
Mutation: each offspring can be the subject of a random mutation with a given prob-

ability. Mutations can occur at two levels: at the rule groups level by adding or deleting
a rule from a randomly selected group, or at the rules level where seven mutations can
be used. The first three mutations are applied on the LHS of the rule and consist in:
adding a brick, deleting one, or recreating the LHS. For example, the rule in Listing 3
was mutated by enforcing a new condition that requires the n-m association not to
have a class-as reference. The four other rule level mutations apply to the RHS of a
rule by adding or deleting an element, recreating the whole RHS, or finally, rebinding
the attributes and references of RHS. An example of the latter case is presented in
Listing 4

Listing 3. Example of a LHS Rule mutation.

Rule before the mutation
(defrule R347261
(associationnm (name ?s00) (c l a s s f r ? c00) (c lass to ? c10) (c lassas ?s03))
(c lass (name ?c00))
(c lass (name ?c10))
=>
(assert (table (name ?s00) (altername n i l))))

Rule a f ter the mutation
(defrule R347261
(associationnm (name ?s00) (c l a s s f r ? c00) (c lass to ? c10) (c lassas ?s03))
(c lass (name ?c00))
(c lass (name ?c10))

(test (eq ?s03 nil))
=>
(assert (table (name ?s00) (altername n i l))))

Mutations at the group level must prevent empty groups and respect the group size
limitation. At the rule level changes that occur on the LHS must be propagated to the
RHS to avoid, for instance, having rules with a RHS referencing variables that do
not exist anymore in their LHS. Finally, mutations at the rule set level (i.e adding or
deleting groups) cannot be possible since we expect a rule set to transform all source
model types that are involved in the transformation.

Listing 4. Example of a RHS Rule mutation.

Rule before the mutation
(defrule R438783
(association1n (c l a s s f r ? c00) (c lass to ? c10))
(c lass (name ?c00))
(c lass (name ?c10))

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Multi-step learning and adaptive search for learning complex model transformations from examplesA:19

(column (name ?o20) (table ? c00) (pk 1))
(table (name ?c00) (altername ? t21))
=>
(assert (fk (column ?o20) (table ?c00) (fktable ?c10))))

Rule a f ter the mutation
(defrule R438783
(association1n (c l a s s f r ? c00) (c lass to ? c10))
(c lass (name ?c00))
(c lass (name ?c10))

(column (name ?o20) (table ? c00) (pk 1))
(table (name ?c00) (altername ? t21))
=>
(assert (fk (column ?o20) (table ?c10) (fktable ?c00))))

6.2.5. Adaptive Search. Many population-based optimization algorithms are subject to
the premature convergence problem [Andre et al. 2001; Syrjakow et al. 1998] when par-
ents near the local optima area breed many similar offsprings. In genetic algorithms,
this can be circumvented by increasing the exploration power of the algorithm. How-
ever, this results in a population that reaches the global optimum very slowly. A lot of
contributions have therefore been proposed to tackle this problem. In our approach, we
consider mutations as the main mechanism that allows the exploration of the search
space. Crossover has always been the most popular operator in GA and GP (this is
mostly due to the building-block hypothesis [Holland 1975]). However, much research
has cast doubt on the superiority of crossover over mutation in GP [Luke and Spec-
tor 1998]. Moreover, since the comparison of models is costly, our approach builds on
rather a small population size with which mutation seems to be more successful [Luke
and Spector 1998; Srinivas and Patnaik 1994]. We thus regard mutation as the most
critical factor in the success of our GP algorithm.

Adaptive Mutations In [Yang and Uyar 2006], an adaptive mutation mechanism
is proposed. The mutation probability of each locus is correlated to statistics about the
gene-based fitness and the gene-based allele distributions in each gene locus. In our
approach, we use a similar mechanism while taking advantage of our ability to eval-
uate subsets of each individual transformation program. When the GP produces the
same fitness value during several generations, the program switches from performing
regular mutations to selective mutations. We chose such starting criterion to avoid
tuning an adaptive mutation parameter according to the beginning of each transfor-
mation problem on which the approach is applied.

During selective mutations, in addition to evaluate a candidate transformation pro-
gram TPki on the example pair (SMk, TMk), each group of rules RGt

ki is evaluated on
the set of traces of type t ∈ SMM that the group aims to transform. During each mu-
tation, a binary tournament is conducted to elect the group that will be mutated. Two
groups that participate to the tournament are randomly chosen, then the group with
the lowest fitness win the tournament. The goal of this strategy is to focus on source
elements that are not transformed correctly in order to allow a faster convergence
toward the global optimum.

Using Memory Many contributions in the field of GP were directed towards pro-
tecting desirable partial solution in the genotype: Automatically Defined Functions
(ADF) [Koza et al. 1996], Module Acquisition (MA) [Angeline and Pollack 1993],
Adaptive Representation through Learning (ARL) [Rosca 1995], and Collective Mem-
ory(CM) [Bearpark and Keane 2005]. In this contribution, we implement a similar idea

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:20 I. Baki et H. Sahraoui

by storing and reusing rules learned during earlier generations. We circumvent the
difficulty of identifying good components of a transformation program by conducting a
second evaluation on the fittest individuals in which rules are evaluated individually.
This mechanism allows a faster convergence by protecting important material from
disruptions caused by crossover and mutation operators.

In our implementation, we gradually enrich a memory of rules during generations in
which the highest fitness score improves. We first evaluate each group RGt

kt ∈ SMM
of the best individual on the set of traces of its type TRt

k. Groups that achieve a higher
score than earlier generations are selected. Each rule of the group is then evaluated
individually on the same set of traces. If the rule produces a full match, it is inserted
into the collective memory. As in the transformation programs, rules are grouped in-
side the memory according to the type of fragment they transform. When adaptive
mutations are launched, a new memory mutation operator is added to the two muta-
tions available at the rule group level. The mutation selects a rule Rt

i, t ∈ SMM , from
the memory storage and adds it to the rule group RGt

k that transform the type t in the
candidate transformation program.

Post-Processing Transformation Programs At this stage, a transformation pro-
gram for each pool is derived by a distinct GP run. Before merging all the transfor-
mations into a single transformation program, we conduct a cleaning step. First, rules
that produce more than one target element are split into several rules with one tar-
get element each. This is done to make sure that each element is transformed when
specific conditions are met, conditions that will be learned in the third phase. Rules
are then evaluated independently in their pools on their respective source-target ex-
ample pairs to remove those that do not produce matches. The remaining rules are
analyzed to remove duplicate conditions. Next, duplicate rules are removed. Duplicate
rules are identified by analyzing their respective LHS and RHS. Finally, rules that
produce the same elements are analyzed to check if the LHS of one rule is subsumed
by the other. After each processing action, the transformation program is evaluated on
the pool’s example pair to make sure that its fitness did not decrease. After correcting
and cleaning each transformation program, the rules of all the produced transforma-
tions are merged into a single program. Rules that belong to conflicting groups (i.e.
groups that transform conflicting traces) are all copied into the final program. For
non-conflicting groups, each group is evaluated on the initial source-target example
pair, and the group with the highest score is inserted into the final program. After
building the final program, this latter is subject to the same processing conducted on
each pool’s transformation program.

6.3. Refining the Transformation Program
The refinement phase is carried out when a model transformation has been learned
across several pools. After merging the pools’ programs, we expect the derived rules to
have incomplete LHS, as conditions that distinguish conflicting traces are not learned
yet. The merged transformation program has a low precision (i.e. generates elements
that are not expected) when applied on the original example pair. For example, con-
sider the association rules derived by each pool of Figure 6. Each of these rules will
have a rudimentary initial set of conditions that will match all the association el-
ements of the initial source model and produce different target fragments for each
match 5.

Listing 5. Two contradictory rules learned in different pool.

A Rule learned in Pool 1
(defrule R 174272
(MAIN: : assoc iat ion (name ?s00) (c l a s s f r ? c00) (c lass f r card ?s02)

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Multi-step learning and adaptive search for learning complex model transformations from examplesA:21

(c lass to ? c10) (c lasstocard ?s04) (c lassas ?s05))
(MAIN: : c lass (name ?c00))
(MAIN: : c lass (name ?c10))
=>
(assert (MAIN: : table (name ?s05) (altername n i l))))

A Rule learned in Pool 3
(defrule R 374137
(MAIN: : assoc iat ion (name ?s00) (c l a s s f r ? c00) (c lass f r card ?s02)
(c lass to ? c10) (c lasstocard ?s04) (c lassas ?s05))
(MAIN: : c lass (name ?c00))
(MAIN: : c lass (name ?c10))
=>
(assert (MAIN: : table (name ?c10) (altername (sym−cat ? c10 ?c00)))))

For instance, association rules of the first pool have to be triggered only by associa-
tion elements with ∗−∗ cardinalities (state condition), whereas association rules of the
third pool have to learn that only 1-1 association elements with a participating class
that have no other link are merged (state and context conditions) (see Listing 6).

Listing 6. A refined class merge rule

(defrule R 2252064
(MAIN: : assoc iat ion (name ?s00) (c l a s s f r ? c00) (c lass f r card ?s02)
(c lass to ? c10) (c lasstocard ?s04) (c lassas ?s05))

(MAIN: : c lass (name ?c00))
(MAIN: : c lass (name ?c10))

; Conditions to learn during the third phase
(and (and
(tes t (eq ?s02 1))
(t es t (eq ?s04 1)))
(t es t (eq (count−query−resul ts MAIN: : a l lAssoc iat ion ?c00) 1)))
=>
(assert (MAIN: : table (name ?c10) (altername (sym−cat ? c10 ?c00)))))

Hence, the goal of this phase is to refine the LHS of the rules. Given a transformation
program T̃P , we define the refinement phase as a combinatorial optimization problem
(S, f) where S is a finite space of all possible solutions and f is the fitness function
defined in paragraph 6.2.3, f : S → [0, 1], for s ∈ S. Our objective is to find TP = s∗
such as f(s∗) > f(s),∀s ∈ S. We use to this end a Simulated Annealing (SA) algorithm.

6.3.1. Simulated Annealing. Simulated Annealing is a generic heuristic approach for
global optimization problem that drives inspiration from the field of statistical ther-
modynamics [Aarts and Korst 1988]. As described in Algorithm 1, it starts with an
initial solution from which it moves to a neighbor trial solution. If the neighbor solu-
tion is better than the current one, it is selected as the current solution. If not, it still
can be selected with a certain probability.

To ensure an overall improvement of the solutions found, the acceptance of less-good
solutions is done in a controlled manner inspired by the way thermodynamic energy
is reduced when a substance is subject to a controlled cooling. Thus, the probability
of accepting non-improving solutions is proportional to the system temperature and
inversely proportional to the degradation sustained when accepting the less-good so-
lution. The temperature of the system is gradually reduced as the simulation proceeds
according to a schedule, thus increasingly favoring better moves over worse ones. The
feature of accepting non-improving moves distinguishes SA from tradition local-search

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:22 I. Baki et H. Sahraoui

methods and gives it the ability to escape local optima. In fact, the SA algorithm pro-
vides a statistical guarantee that an optimal solution is reached when using a loga-
rithmic annealing schedule [Ingber et al. 2012].

6.3.2. Solution Representation and Generation. At each iteration a new trial neighbor so-
lution sc is obtained by mutating the current solution TPc. Unlike the initial conditions
that compose each rule LHS, the additional conditions that we learn during this phase
are combined through AND and OR operators to form a binary tree (with a fixed max-
imum size). The OR operator is introduced to handle rules that should fire in multiple
situations since we do not add rules nor duplicate existing ones. A mutation operator
is used to derive a new neighbor at each iteration by selecting a rule randomly from
the current solution, then it either adds, modifies or deletes a condition from the bi-
nary tree part of the rule LHS. The conditions that can be added may involve source
and target patterns, negation patterns, attribute values and reference testing, as well
as navigation primitives, which explore the source model. Target patterns are used for
the implicit control of transformations. When a learned condition in a rule tests the
presence of a target element, it implicitly states that this rule cannot be fired before
the ones that generate this target element. The initial conditions learned during the
GP phase remain unchanged.

6.3.3. Solution Evaluation. The trial solution sc is evaluated on the initial source-target
example pair (SM,TM) using the fitness function defined in paragraph 6.2.3. TPc

is replaced with sc if this latter has a higher fitness or if the condition expressed in
Algorithm 1-15 is satisfied. The best solution that was found since the beginning of the
algorithm is stored in TPbest.

As explained in Section 6.2.3, for a learning process involving multiple example
pairs, the fitness of a candidate solution sc is computed as the average of the fitness
score obtained when evaluating the solution on each example pair.

6.3.4. Annealing Schedule. Four parameters must be determined to set up the anneal-
ing schedule of the algorithm: the initial temperature, the temperature decrement
function, the number of iterations at each temperature, and the stop criterion. In our
implementation, we set the initial temperature to 1. This temperature is hot enough
to allow the algorithm to move to any neighborhood solution while preventing it from
performing a random search in its early stages. Regarding the temperature decre-
ment, we employ the widely used geometric cooling schedule Tempt = Temp0 ∗αt with
α set between 0.9 and 0.99. At each temperature, we experimented with different iter-
ation numbers Nbreps ranging from tens to thousands to find out which configuration
(temperature decrement - iteration number) was the more appropriate. Finally, the SA
algorithm terminates when the system is frozen, i.e. no solution is accepted, for several
successive temperature values.

7. VALIDATION
As explained in Section 4 (see Table I), none of the existing automated approaches con-
siders transformation problems with, at same time, context and state dependencies as
well as the complex derivation of attribute values. Thus the addressed problems have
a limited search space (transformation of simplified models). Our validation aims to
show that despite the consideration of context and state dependencies, and complex
derivation of attribute values, which together increase dramatically the search space,
our approach can learn the transformation rules. To this end, we evaluated our ap-
proach on seven model transformation problems in order to investigate the following
research questions:

RQ1. Are the target models produced by the learned transformations correct?

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Multi-step learning and adaptive search for learning complex model transformations from examplesA:23

Algorithm 1 Simulated annealing

1: TPc ← T̃P

2: TPbest ← T̃P
3: Temp← Temp0
4: while stop = false do
5: for i = 0, Nbreps do
6: sc = N(TPc)
7: σ ← f(sc)− f(TPc)
8: if σ > 0 then
9: TPc ← sc

10: if f(TPc) > f(TPbest) then
11: TPbest ← TPc

12: end if
13: else
14: u← U([0, 1])
15: if u < exp(σ/Temp) then
16: TPc ← sc
17: end if
18: end if
19: end for
20: Temp← Temp ∗ α
21: end while

RQ2. Are the transformation programs correct themselves?
RQ3. Are the results achieved by the approach steady over the different executions?
RQ4. Are the obtained results attributable to the approach itself or to the volume
of explored solutions?

We first describe our experimental setting. Then, we answer each research question,
and finally discuss the threats that could affect the validity of our study.

7.1. Approach Implementation
We implemented the three steps of our approach in Java. The candidate transforma-
tion programs were encoded as Jess rule sets. The metamodels are encoded as Jess
fact templates and the models as Jess facts. For the calculation of the fitness scores
of candidate transformations, we use the Jess java library version 7.0, including the
rule engine1. Additionally, we used logging, testing and chart libraries (Log4j, JUnit,
JFreeChart). The latter allows us to report visually on the progress of the learning
process.

7.2. Experiment Setting
7.2.1. Transformation Problems. We selected seven model transformations that exhibit

diverse requirements. Except for SPEM2BPMN transformation case [Debnath et al.
2007], all the transformations were selected from the ATL database2. The model trans-
formations are briefly described below.

UML Class Diagram to Relational Schema (CL2RE): We use this well-known model
transformation to evaluate the ability of our approach to learn complex structural
transformations. The specification we considered includes transforming associations

1http://www.jessrules.com/
2http://www.eclipse.org/atl/atlTransformations/

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:24 I. Baki et H. Sahraoui

with and without an association class as well as merging 1-1 associations when possi-
ble, which requires context exploration. Our specification also involves value compu-
tations, as merging two classes entails the concatenation of their respective names. A
specification of this transformation can be found in [Kessentini 2010].

Domain Specific Language to Kernel Metamodel (DSL2KM3): This case was selected
from a transformation chain proposed as a bridge between Microsoft Domain Specific
Language (DSL) and Eclipse Modeling Framework (EMF). As for CL2RE, this prob-
lem exhibits interesting structural transformations. DSL and KM3 metamodels are
fairly similar. However, KM3 supports multiple inheritance whereas DSL does not.
Moreover, DSL’s classes and relationships have the same properties (i.e. relationships
can have attributes and supertypes) whereas this is not the case for KM3. Simple
DSL relationships are thus transformed into reference pairs whereas complex ones
are transformed into KM3 classes.

Ant to Maven (ANT2MAVEN): This transformation specifies how to generate a
Maven file from an Ant file. Considering that Maven is an extension of Ant, this trans-
formation is relatively simple with many one-to-one mappings. We selected this case,
however, for two reasons. First, the source and target metamodels are large and the
transformation requires 26 rules. Second, most of the model elements have many at-
tributes, which allows us to assess how our approach responds to the proliferation
of attributes, a characteristic that hampered our previous contributions [Baki et al.
2014].

Software Process Engineering Metamodel to Business Process Management Notation
(SPEM2BPMN) : We consider a transformation specification described in [Debnath
et al. 2007] which aims to automate the management of software development activ-
ities. SPEM activities are mapped to BPMN sub-processes, which can then be trans-
lated into a specification in a standard language such as BPEL (Business Process Exe-
cution Language). One interesting feature of this case is that a source element can be
transformed into different target elements depending on its references and attribute
values.

Microsoft Excel to XML (EXCEL2XML): This transformation aims to generate an
Excel workbook (a well-formed Excel XML file) from an Excel model that conforms to
the simplified Spreadsheet-ML metamodel. We consider only the first part of the spec-
ification as it encompasses all the transformation logic. The second part of the specifi-
cation is an XML extraction which consists in serializing the XML model into a valid
XML file. This transformation is interesting because many target element attributes
are mapped to constants rather than to source attribute values.

Table to SVG Bar Charts (TB2BC): The goal of this transformation is to generate a
bar chart expressed in a Scalable Vector Graphics model (SVG) according to the data
present in a table supplied as input. The SVG model includes graph elements, rect-
angle elements having dimensions and coordinates as well as text elements placed
according to their coordinate elements. This transformation specification entails the
use of arithmetic operations and functions to compute dimension and coordinate at-
tributes for the rectangle and text elements generated in the target SVG model.

UML Model to Amble (UML2AMBLE): This case describes a transformation from a
set of interrelated UML models expressing different aspects of a distributed program
into an implementation of it, in the Amble programming language (a distributed pro-
gramming language based on Objective Caml). The UML models consist of multiple
state diagrams, each diagram representing a type of process involved in the Amble
program, and a single class diagram that describes the different processes (as classes)
and their communication channels (as associations). The specification of this transfor-
mation requires context exploration, testing reference and attribute values, and the

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Multi-step learning and adaptive search for learning complex model transformations from examplesA:25

derivation of some complex target attribute values. Additionally, this transformation
involves many source models.

7.2.2. Data Set. As mentioned earlier, we used in our setting Jess, a declarative rule-
based programming language. Metamodels were represented as fact templates and
models as facts. After representing all the metamodels in Jess, we defined two source-
target model pairs for each transformation problem. Table II shows the number of
elements in each example pair. We chose to design each source model in order to meet
all the specifications of the transformation problem in a single example pair. As ground
truth, we also wrote the transformation program associated with each transformation
case, tested them on the defined model pairs and inspected each target model to make
sure that they were correct with respect to the transformation specifications.

Table II. The size of the example models in number of elements.

Transformation First Pair Second Pair Written Pgm
Source Target Source Target Nb. Rules

CL2RE 30 42 42 59 25
DSL2KM3 31 38 46 60 9

ANT2MAVEN 26 29 33 36 25
SPEM2BPMN 14 14 22 23 9
EXCEL2XML 18 22 31 47 10

TB2BC 13 42 17 54 12
UML2AMBLE 41 33 62 66 14

We evaluated our process on each transformation problem using a 2-fold cross-
validation strategy. For each transformation problem, the process is run with the first
example pair to learn the sought program. This latter is then evaluated on the sec-
ond example pair. For the second fold, the pairs are exchanged and the process is
launched a second time. For each case, we thus built the traces associated with both
source-target example pairs, as mentioned in Section 6.1, we tried to mimic a real-life
scenario by avoiding precise traces where a source fragment is mapped to the exact
target element that would be produced by applying the corresponding transformation
rule.

7.2.3. Algorithm Parameters. We ran our approach once for each transformation prob-
lem with the learning example pair and its traces as input. The runs of the genetic
program were all made of 200 generations and 100 programs. Crossover and mutation
probabilities were both set to 0.9 and elitism to five programs. Regarding the simu-
lated annealing algorithm, we opted for a slowly decreasing temperature with a small
number of iterations each time. We thus set the α parameter of the annealing sched-
ule to 0.99 with only 10 iterations at each temperature value. The learning process,
including the post-processing at the end of the second phase, was fully automated and
did not involve any human intervention.

The genetic program was each time supplied with functions and constants specific to
the source and target domains. To avoid injecting knowledge about each transforma-
tion, we also added functions that are not used by the transformation. For instance, the
TB2BC case requires the derivation of the total number of rows and the maximum cell
values. We then supplied the algorithm with many functions such as count, minimum,
maximum, and sum that could be applied to all the numerical attributes. In addition
to domain-specific constants and functions, we included in the seven cases, basic string
and integer operations (string concatenation, addition, subtraction, etc.).

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:26 I. Baki et H. Sahraoui

7.2.4. Validation Method. To answer RQ1, we assess each derived transformation pro-
gram by comparing its produced target model with the expected one. The comparison
is done automatically using the precision and recall measures. We define the recall as
the ratio between the number of expected elements that are produced and the total
number of expected elements, whereas the precision is the ratio between the num-
ber of expected elements produced and the total number of produced elements. We
say that an expected element is produced if there is an exact match with an expected
element, i.e., its name, attribute values, and references are the same. Unlike in the fit-
ness function defined for the GP and SA programs, the reported results exclude partial
matches, thus, an element is considered as incorrect even if only one of its attribute
is incorrectly derived. For PE and EE, respectively the set of produced elements and
the set of expected elements, the evaluation of the target models consists in the two
following formulas:

RecTM =
|EE ∩ PE|
|EE|

(3)

PrecTM =
|EE ∩ PE|
|PE|

, (4)

We answer RQ2 in two ways. First, we run the derived transformations on the eval-
uation example pairs (unseen pairs) and assess the precision and recall. Second, we
manually inspect each derived transformation program. Indeed, at the program level,
we check if the target elements are produced only by the rule groups that are supposed
to produce them, at the rule-group level, we assess on one hand, the completeness and
the correctness of the conditions that should be satisfied to produce an element. On
the other hand, we check to what extent were the target attributes correctly derived.

To assess the steadiness of the obtained results (RQ3) considering the probabilistic
aspect of our approach, we run the learning process 30 times on the first pair of the
CL2RE transformation problem, and we report and analyze the variations observed in
the recorded results.

Finally, we answer RQ4 in two ways. Firstly, we assess the benefits of our learning
process by comparing the fitness scores obtained for the transformation problem used
in RQ3 (CL2RE) with two other samples obtained respectively by a random exploration
of the search space, and a single-phase standard GP search as the described in Baki et
al. [2014] and Faunes et al. [2013]. Secondly, we run the second phase of our approach
several times with and without its adaptive features to assess the benefits brought by
the proposed mutation strategies.

To have a fair Approach vs Random comparison, we consider transformations pro-
grams obtained by a 30 random exploration of the search space (to compare with the
30 programs derived for RQ3). In each random exploration, we selected the best trans-
formation program from a pool of randomly-generated transformation programs. The
total number of random programs in the pool is equal to the number of solutions that
are explored by the whole process of our approach (GP and SA) with the parameters
given above. This resulted in pools of approximately 100 000 programs. Each random
generation is performed in a similar way to the one used to build the initial popu-
lation of GP, particularly by exploiting the transformation traces of the first CL2RE
example pair. However, unlike GP programs, the random algorithm can explore the
whole search space, i.e., it may include conditions that test the context and/or state of
elements.

The Approach vs GP comparison is performed by contrasting the data gathered in
RQ3 with an equal number of programs obtained using a single-step standard GP

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Multi-step learning and adaptive search for learning complex model transformations from examplesA:27

algorithm. The algorithm is similar to the one described in Baki et al [Baki et al. 2014]
except it uses transformation traces to reduce the size of the search space. Unlike for
the proposed approach, the standard GP algorithm aims to learn all the transformation
program in a single step. As for the random strategy, it, therefore, can explore the
whole search space, including element states and context. The standard GP algorithm
is run with the same parameters used in our approach on the first CL2RE example
pair as well.

7.3. Results and Interpretation

Table III. Fitness, Recall and Precision for the pool learning with GP (TPk) and after the rule integration (T̃ P).

Transformation Pools Pair TPk T̃ P
Avg(Fitness) Avg(Recall) Avg(Precision) Fitness Recall Precision

CL2RE 5 1st 96.2% 97% 95.5% 53.4% 100% 37%
2nd 96.6% 96.9% 96.4% 53.5% 100% 37.6%

DSL2KM3 2 1st 98.3 100% 96.9% 73.5% 100% 64.9%
2nd 98% 100% 96.2% 79.6% 100% 70.1%

ANT2MAVEN 2 1st 100% 100% 100% 99.3% 100% 98.8%
2nd 97.9% 97.6% 98.6% 100% 100% 100%

SPEM2BPMN 2 1st 94.9% 97.3% 93.7% 92.4% 100% 88%
2nd 95.1% 100% 92.8% 92.4% 100% 88%

EXCEL2XML 1 1st 100% 100% 100% 100% 100% 100%
2nd 100% 100% 100% 100% 100% 100%

TB2BC 1 1st 93.3% 90.0% 100% 93.3% 90.0% 100%
2nd 93.3% 90.0% 100% 93.3% 90.0% 100%

UML2AMBLE 4 1st 93.5% 94.4% 95.1% 78.5% 96.9% 71.9%
2nd 93.9% 94.2% 95.8% 78.8% 95.8% 73%

Table III shows the results achieved on the training example pairs at each step of the
learning process. Five of the seven studied problems contained conflicting traces and
were thus separated into multiple pools. For these cases, a high fitness ranging from
93% to 100% is reached in each pool. When the transformation programs are merged
and post-processed into a single program T̃P , a perfect recall is achieved for four of the
five cases. However, and as expected after the merge, the precision of each resulting
program drops, which results in a relatively low fitness ranging from 50% to 80% for
three cases CL2RE, DSL2KM3 and UML2AMBLE. After conducting the final step, the
quality of each transformation plan is considerably enhanced and a fitness higher than
92% is observed on both pairs of all the transformation cases having conflicting traces.

Regarding transformation problems learned in a single pool, our approach reached
a perfect score for the Excel2XML transformation case, whereas for TB2BC, although
the precision was 100%, only 90% of the expected elements were produced on both
learning pairs. For these transformation cases, the simulated annealing phase was not
conducted as all the rules were learned from a single pool. The final program of each
case thus corresponds to the post-processed version of the genetic program’s output.

7.3.1. Target Model Correctness (RQ1). There are two transformation problems where
the recall in T̃P , although very high, was not perfect, TB2BC and UML2AMBLE.
When inspecting each program rules we found out that in the TB2BC, there are two
situations that our approach could not handle. First, in certain elements, a target at-
tribute is computed through an addition of a source attribute and the value returned
by a function (nested functions). Second, some elements contained not one but many
attributes requiring complex value derivation. Rules responsible for producing such el-
ements were not learned, see, for example, Listing 7 where R11 is successfully learned
whereas R12 is not. This is because our fitness function does not evaluate attributes

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:28 I. Baki et H. Sahraoui

Table IV. Fitness, Recall and Precision after the refinement step with SA.

Transformation Pools Pair TP
Fitness Recall Precision Nb. Rules

CL2RE 5 1st 93.8% 95.2% 92.8% 21
2nd 93.5% 92.1% 95.3% 22

DSL2KM3 2 1st 100% 100% 100% 9
2nd 99.4% 98.9% 100% 9

ANT2MAVEN 2 1st 100% 100% 100% 30
2nd 100% 100% 100% 29

SPEM2BPMN 2 1st 100% 100% 100% 9
2nd 100% 100% 100% 9

EXCEL2XML 1 1st 100% 100% 100% 10
2nd 100% 100% 100% 10

TB2BC 1 1st 93.3% 90.0% 100% 12
2nd 93.3% 90.0% 100% 12

UML2AMBLE 4 1st 95.6% 95.8% 97.2% 16
2nd 94.9% 93.5% 99% 20

independently, and if a complex value is derived correctly but another is not, the ele-
ment will not be favored against other partial matches. Regarding the UML2AMBLE
case, our algorithm could not derive two attributes of a particular element because
they require building an ordered collection of elements and navigating through this
collection to compute values.

Listing 7. Derivation of multiple complex attributes.

(defrule R11
(row (name ? r) (value ?v) (number ?nb) (table ? t))
(table (name ? t) (posx ?x) (posy ?y))
=>
(assert (abscoord (re f ? r) (x ?x) (y (+ ?y ?nb)))))

(defrule R12
(row (name ? r) (value ? txt) (number ?nb) (table ? t))
(table (name ? t) (posx ?x) (posy ?y))
(c e l l (name ?n) (value ?v) (re f ? r))
=>
(assert (abscoord (re f ? txt) (y (+ ?y ?nb)) (x (+ ?x ?v)))))

It is important to stress out that we do not expect pool transformations to achieve a
perfect recall or precision. This is because when building each pool model pair, some
elements may be added despite not being transformed in the pool itself because they
are referenced by a main element in that pool. For example, in the first learning pair
of SPEM2BPMN, the average pool recall and precision are respectively 97.3% and
93.7%, when merged, the transformation program has a recall of 100% and a similar
precision after the refinement phase. Regarding the CL2RE and UML2AMBLE case,
it is worth mentioning that we obtained a perfect score for the final programs TP in an
alternative setting in which, we increased the size of the additional condition tree of
each rule LHS in the refinement phase. However, when applying the derived programs
to the validation pair, a large variability was recorded in the results. Allowing complex
condition trees while using a single example drove the SA algorithm to learn conditions
sometimes specific to the example pair that did not always hold for the validation pair.

7.3.2. Rule Quality (RQ2). For the second research question, Table V shows the results
obtained when we applied the final transformation programs TP on the validation ex-
amples. For single-pool transformations, the results were identical to those achieved on
the training pairs, whereas for the four other cases, the reported results were slightly
lower except for SPEM2BPMN where a perfect score is obtained for the validation case

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Multi-step learning and adaptive search for learning complex model transformations from examplesA:29

Table V. Fitness, Recall and Precision when evaluating on the
validation example pairs.

Transformation Pair TP
Fitness Recall Precision

CL2RE 1st 93.8% 95.1% 92.8%
2nd 93.5% 92.1% 95.3%

DSL2KM3 1st 98.4% 97.9% 98.9%
2nd 98.5% 100% 97.2%

ANT2MAVEN 1st 100% 100% 100%
2nd 100% 100% 100%

SPEM2BPMN 1st 100% 100% 100%
2nd 100% 100% 100%

EXCEL2XML 1st 100% 100% 100%
2nd 100% 100% 100%

TB2BC 1st 93.3% 90.0% 100%
2nd 93.3% 90.0% 100%

UML2AMBLE 1st 90.3% 92.1% 92.7%
2nd 90.8% 95.8% 90.9%

as well. These results confirm that the derived transformations are not specific to the
learning examples and can be successfully applied to new models.

Regarding the quality of the learned rules, during the GP phase, we found out that
elements are always produced by the rule groups that are supposed to produce them.
However, given that we do not require precise traces, we also came across groups that
produced elements they were not supposed to, which resulted in the same elements
produced twice. These cases were handled by the post-processing phase. In the exam-
ple of Listing 8, the second rule is deleted because its conditions subsume that of the
first one.

Complex and correct conditions were also successfully learned in the SA phase. For
instance, in the rule of Listing 9, a role end in DSL2KM3 is transformed into a refer-
ence to the corresponding class only if the DSL relationship is not complex. Otherwise,
it is transformed into a KM3 class. The derived rule verifies if the relationship is sim-
ple by ensuring that it has not a value property, and that it is not involved in an
inheritance.

Listing 8. A post-processing case.

(defrule R 649407
(MAIN: : c lass (name ?c00))
=>
(assert (MAIN: : table (name ?c00) (altername n i l))))

(defrule R 649408
(MAIN: : at tr ibute (name ?a00) (c lass ? c00) (unico 0))
(MAIN: : c lass (name ?c00))
=>
(assert (MAIN: : table (name ?c00) (altername n i l))))

7.3.3. Results steadiness(RQ4). The first line of Table VI shows the results obtained
when executing the learning process 30 times on the first example pair of the CL2RE
transformation problem. The stop criterion for the SA algorithm was modified to en-
sure the same number of iterations in each run. The score of derived transformation
programs ranges between 92.2% and 100%.

Listing 9. A complex derived rule.

(defrule R 514281
(ro le (name ? ro00) (source ? c00) (rtype ? c10)

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:30 I. Baki et H. Sahraoui

(re lat ionship ? re00) (min ? ro04) (max ? ro05) (isordered ? ro06))
(c lass (name ?c00) (supertype ? c01))
(c lass (name ?c10) (supertype ? c11))
(re lat ionship (name ? re00) (supertype ? re01) (isembedding ? re02))

; Conditions learned during second phase
(and (and (not (re lat ionship (name ?re1800) (supertype ? re00) (isembedding ? re1802)))
(not (valueproperty (name ?vp800) (vtype ?vp801) (owner ? re00))))
(not (re lat ionship (name ? re01) (supertype ? re3121) (isembedding ? re3122))))
=>
(assert (reference (name ?c00) (owner ? c10) (rtype ? c00) (lower ? ro04) (upper ? ro05)

(iscontainer ? re02) (opposite ? c10))))

7.3.4. RQ4 - Approach vs GP & Random. In order to confirm that the results achieved
by our approach are due to a better exploration of the search space, we compare the
quality (fitness) of the transformation programs derived by our approach to one of the
programs obtained by a random exploration of the search space or a single-phased
standard GP search. The results obtained for the three experiments are summarized
in Table VI. The scores of the best randomly-generated programs ranged from 54% to
61% with an average fitness of 61%. The standard GP approach achieved, on the other
hand, better results with an average of 76% over the 30 runs and a maximum of a 80%
fitness score.

Table VI. Descriptive statistics of each group.

Group N Min Max Mean Std. Dev. Std. Err.
Approach 30 0.92 1 0.95 0.018 0.003

GP 30 0.63 0.8 0.76 0.056 0.01
Random 30 0.54 0.61 0.56 0.012 0.002

To confirm that the observed disparity of results achieved by the different alterna-
tives is statistically significant, we perform a mean difference t-test (the three sam-
ples being normally distributed). The results are shown in Table VII. The difference
in quality of the programs derived by our approach and the ones produced by a ran-
dom exploration approximates 40% in average. This difference is around 20% for the
comparison with a standard GP approach. Both differences are statistically significant
with a p-value <0.001.

7.3.5. RQ4 - Adaptive GP. Answering the second part of RQ4, we executed our approach
with and without the adaptive features, i.e., adaptive and memory mutations. We ob-
served, in general, that for complex transformations (those that require more explo-
ration in the GP phase) such as CL2RE and UML2Amble, the better fitness values are
reached quickly when adaptive features are used.

Table VII. Significance testing for mean differences of fitness.

t-Test
t df Significance (2-tailed) Mean difference

vs Random 96.122 49.9 <0.001 0.393
vs GP 96.122 35.4 <0.001 0.194

Figure 9 illustrates such a pattern for one pool of the CL2RE transformation. The
adaptive GP run outperforms its opponent and converges more quickly. It achieves a
perfect score around the 145th generation, whereas the standard GP run got stuck in
a local optima with a fitness of 96.7%. This pattern, however, was not observed for all
our transformation problems, especially for the simple ones.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Multi-step learning and adaptive search for learning complex model transformations from examplesA:31

7.4. Threats to validity
Although our approach produced good results on seven model transformations, a
threat to the validity of our results resides in the generalization of our approach to all
exogenous model transformations. While our sample – and then our approach– does
not cover all transformation scenarios, especially complex non-deterministic transfor-
mations [Huszerl et al. 2002], we believe that it is representative enough of a wide
range of real transformation problems.

Regarding the applicability of our approach to other transformation languages, we
believe that our approach can be tailored to declarative MT languages as we are using
a fully declarative language without sophisticated features. The only particularity of
Jess is that, unlike other MT languages, creating the same model element (asserting
a same fact) twice does not results in two model elements. We mitigated this threat by
ensuring that all the transformation programs do not assert the same fact more than
once through our post-processing step. The applicability of our approach is also con-
cerned with the types of metamodels that can be considered. Indeed, in our approach,
we make the assumption that metamodel elements have unique names and use these
names to represent the relations between them (e.g., the use of class names in source
and target slots of a fact representing an association). When such elements do not have
unique names, our approach is not able to learn rules that transform them.

Fig. 9. Evolution of the fitness function for standard and adaptive GP run.

Another threat to the validity of our results relates to the use of a single example
pair to learn each transformation program. We chose this alternative (instead of gath-
ering a set of examples that cover the transformation specification) to simplify our ex-
periment. We do believe that the approach would perform equally when using several
example pairs, provided that they cover the transformation specifications. Moreover,
our process could be run each time a new example pair is added to enhance to quality
of the learned transformation since our process is not time consuming (few hours) and
that the identification of traces can be tool-supported.

Finally, the last aspect to consider given these results is the quality of the trans-
formation traces provided to the algorithm. When provided with imperfect traces in

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:32 I. Baki et H. Sahraoui

another scenario, our algorithm may erroneously separate coherent traces into dis-
tinct pools. Such cases are handled by the post-processing step to eliminate duplicate
rules. Considering that we use a search-based approach, we conjecture that our pro-
cess is robust enough to such imperfections as long as the fraction of imperfect traces
is small.

8. DISCUSSION
8.1. Using Transformation Traces
Unlike our previous contributions, the approach proposed in this paper requires the
user to supply transformation mappings along with each example pair (as for most
MTBE contributions). While this can be seen as a limitation, it is necessary when
learning complex model transformations. We also mitigate the overload of defining
transformation traces manually by accepting imprecise traces.

While the extra work needed for defining such traces is largely justified by the ben-
efits of MTBE, we believe that it can be further reduced by assisting the expert with
a tool, especially when dealing with large models. For instance, the expert could de-
fine the mapping of one source element, and the tool would then analyze the defined
mapping and suggests mappings for similar elements.

8.2. Learning Complex Rules
During the validation of the approach, the algorithm did not produce all the expected
elements (recall < 100% in T̃P in Table III) for two transformations. For TB2BC, nested
functions and multiple-attribute computations were required. The latter can be cir-
cumvented by defining a more fine-grained fitness function that ranks partial matches
depending on the ratio of well-derived attributes. This, however, comes at the cost of
much more sophisticated evaluations (model comparison).

The second type of rule that could not be learned is the one of UML2Amble where it
required iterating on an ordered collection of source elements while computing values.
It is possible to deal with this situation by adding sets’ operators (ordering and itera-
tions) and by allowing functions/operators composition. Here again, this will increase
dramatically the size of the search space.

8.3. Rules Generalization
When conducting our experiments, we were always able to achieve full precision after
the refinement phase by increasing the size of the condition tree. The approach tends,
however, to learn conditions specific to the example. This is because there are usually
many transformation programs that can produce a target model from a source model.
In order to improve the correctness of the programs, more examples are required. The
learning can also be iterative, i.e., test-driven [Kappel et al. 2012], by running the
process each time the example base is enriched with a new model pair, and if the
transformation is not satisfactory, the expert can revise the defined mappings or the
transformation program.

8.4. Rules Quality
During the refinement phase, we aim to learn the implicit transformation control by
testing target elements in rule conditions. In some cases, this results in rules, harder
to understand and to debug. A possible solution is to add a quality measurement to
the fitness function to favor source pattern testing. Further investigation should de-
termine how this could be done without affecting implicit control learning.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Multi-step learning and adaptive search for learning complex model transformations from examplesA:33

8.5. Scalability
Regarding the scalability, we measured the execution time and average heap usage at
each phase of the learning process. All the executions were run on a desktop computer
with Intel Core i7 3.40GHz and 32 gigabytes of memory. Table VIII details the results
obtained for each transformation case when launching the learning process with the
parameters given in Section 7. For transformation problems involving multiple GP
pools, the average execution time is reported. Results for both time and memory usage
were rounded up to the upper whole number.

The average execution time for the GP learning phase ranged from 32 to 92 minutes.
The ANT2MAVEN registered the highest execution time and average heap usage dur-
ing the second phase. This is most likely due to the size of the transformation programs
derived in each pool that reached 30 rules for this transformation. The execution time
of the SA phase varied greatly depending on the complexity of the refinements to per-
form. It took only 2 minutes the merge and refine the final transformation program
for the ANT2MAVEN and SPEM2BPMN transformation cases, whereas it took be-
tween 11 and 19 minutes for DSL2KM3, CL2RE and UML2AMBLE transformation
problems.

Table VIII. Execution Time (min) and Average Heap Usage (MB) at each phase of the Learning
Process

Transformation Phase 1 Phase 2 (GP) Phase 3 (SA)
Time AVG Heap AVG Time AVG Heap Time AVG Heap

CL2RE <1 13 39 23 14 30
DSL2KM3 <1 25 32 13 11 13

ANT2MAVEN <1 16 92 43 2 17
SPEM2BPMN <1 15 35 16 2 13
EXCEL2XML <1 25 36 15 - -

TB2BC <1 25 30 16 - -
UML2AMBLE <1 20 49 28 19 23

Although the approach would certainly take longer when using multiple example
pairs, we believe that this can be easily dealt with by distributing the evaluation step
of both the genetic programming and simulated annealing phases across multiple ma-
chines.

Note that in our validation, we use the tuning strategy to determine the algorithms’
parameter values. We, consequently, applied these predefined parameters uniformly
to all the problems in the experiments. Many transformations, such as EXCEL2XML
and ANT2MAVEN, were fully learned faster and did not require to explore all the
generations. Additionally, in some transformations, longer runs were required in the
GP phase whereas, in others such as DSL2KM3, SA phase was responsible for learning
the most complex patterns. A more sophisticated way of determining each algorithm
parameters [Eiben et al. 1999; Eiben et al. 2007] would increase the efficiency of our
approach.

9. CONCLUSION
In this paper, we propose an MTBE, search-based, approach to learn complex model
transformations from a set of interrelated source-target model example pairs. The ex-
ample traces are analyzed and split into non-conflicting pools, which are used to de-
rive preliminary transformation programs by means of an adaptive genetic program-
ming algorithm. The derived transformations are then combined into a single program
which is refined using a simulated annealing algorithm to improve the rules with more
complex conditions. We evaluated our approach on seven transformation problems.
Our validation shows that the approach generally produces good transformations on

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:34 I. Baki et H. Sahraoui

some complex problems that require mechanisms such as context exploration, source-
attribute value testing and complex target-attribute derivation. Despite these encour-
aging results, there is still room for improvement. Concretely, we plan to (1) investigate
the applicability of our approach on a more common environment such as the Eclipse
Modeling Framework, (2) develop a graphical tool to assist experts in defining domain
mappings between source and target models, and (3) assess with human subjects to
what extent does our process facilitate developing model transformations. Regarding
the approach itself, we will explore the idea of learning elements with multiple com-
plex attribute values through a more fine-grained fitness function and/or using mem-
ory to store correct derivation functions. We also plan to handle collections in a more
complete way. Another improvement axis worth investigating is the use of parameter
control [Eiben et al. 1999; Eiben et al. 2007] to cope with the particularities of each
transformation problem.

ACKNOWLEDGMENTS

This work was partially supported by NSERC, grant RGPIN-2014-06702.

REFERENCES
Emile Aarts and Jan Korst. 1988. Simulated annealing and Boltzmann machines: a stochastic approach to

combinatorial optimization and neural computing. Wiley.
Jerome Andre, Patrick Siarry, and Thomas Dognon. 2001. An improvement of the standard genetic algo-

rithm fighting premature convergence in continuous optimization. Advances in engineering software 32,
1 (2001), 49–60.

Peter Angeline and Jordan Pollack. 1993. Evolutionary module acquisition. In Proceedings of the second
annual conference on evolutionary programming. Citeseer, 154–163.

Iman Avazpour, John Grundy, and Lars Grunske. 2015. Specifying model transformations by direct manip-
ulation using concrete visual notations and interactive recommendations. Journal of Visual Languages
and Computing 28 (2015), 195 – 211.

Islem Baki, Houari Sahraoui, Quentin Cobbaert, Philippe Masson, and Martin Faunes. 2014. Learning Im-
plicit and Explicit Control in Model Transformations by Example. In Model-Driven Engineering Lan-
guages and Systems. Springer, 636–652.

Zoltan Balogh and Dániel Varró. 2009. Model transformation by example using inductive logic programming.
Software and Systems Modeling 8 (2009), 347–364. Issue 3.

Keith Bearpark and Andy J Keane. 2005. The use of collective memory in genetic programming. In Knowl-
edge Incorporation in Evolutionary Computation. Springer, 15–36.

Petra Brosch, Philip Langer, Martina Seidl, Konrad Wieland, Manuel Wimmer, Gerti Kappel, Werner Rets-
chitzegger, and Wieland Schwinger. 2009b. An example is worth a thousand words: Composite operation
modeling by-example. In Model Driven Engineering Languages and Systems. Springer, 271–285.

Petra Brosch, Philip Langer, Martina Seidl, and Manuel Wimmer. 2009a. Towards end-user adaptable model
versioning: The by-example operation recorder. In Proceedings of the 2009 ICSE Workshop on Compar-
ison and Versioning of Software Models. IEEE Computer Society, 55–60.

Sabine Buckl, Alexander M Ernst, Josef Lankes, Christian M Schweda, and André Wittenburg. 2007. Gen-
erating Visualizations of Enterprise Architectures using Model Transformations.. In EMISA, Vol. 2007.
33–46.

Krzysztof Czarnecki and Simon Helsen. 2006. Feature-based survey of model transformation approaches.
IBM Systems Journal 45, 3 (2006), 621–645.

Narayan Debnath, Fabio Zorzan, German Montejano, and Daniel Riesco. 2007. Transformation of BPMN
subprocesses based in SPEM using QVT. In Electro/Information Technology, 2007 IEEE International
Conference on. IEEE, 146–151.

Xavier Dolques, Marianne Huchard, Clémentine Nebut, and Philippe Reitz. 2010. Learning Transformation
Rules from Transformation Examples: An Approach Based on Relational Concept Analysis. In Interna-
tional Conference on Enterprise Distributed Object Computing Workshops. 27 –32.

Alexander Egyed. 2002. Automated abstraction of class diagrams. ACM Transactions on Software Engineer-
ing and Methodology (TOSEM) 11, 4 (2002), 449–491.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Multi-step learning and adaptive search for learning complex model transformations from examplesA:35

Agoston Eiben, Zbigniew Michalewicz, Marc Schoenauer, and James Smith. 2007. Parameter control in
evolutionary algorithms. In Parameter setting in evolutionary algorithms. Springer, 19–46.

Agoston Endre Eiben, Robert Hinterding, and Zbigniew Michalewicz. 1999. Parameter control in evolution-
ary algorithms. Evolutionary Computation, IEEE Transactions on 3, 2 (1999), 124–141.

Martin Faunes, Houari Sahraoui, and Mounir Boukadoum. 2012. Generating Model Transformation Rules
from Examples using an Evolutionary Algorithm. In Automated Software Engineering. 1–4.

Martin Faunes, Houari Sahraoui, and Mounir Boukadoum. 2013. Genetic-Programming Approach to
Learn Model Transformation Rules from Examples. In Theory and Practice of Model Transformations.
Springer, 17–32.

Charles Forgy. 1982. Rete: A fast algorithm for the many pattern/many object pattern match problem. Arti-
ficial intelligence 19, 1 (1982), 17–37.

Iván Garcı́a-Magariño, Jorge J. Gómez-Sanz, and Rubén Fuentes-Fernández. 2009. Model Transforma-
tion By-Example: An Algorithm for Generating Many-to-Many Transformation Rules in Several Model
Transformation Languages. In Proceedings of the International Conference on Theory and Practice of
Model Transformations. 52–66.

Birgit Grammel, Stefan Kastenholz, and Konrad Voigt. 2012. Model matching for trace link generation in
model-driven software development. Springer.

Ernest Friedman Hill. 2003. Jess in Action: Java Rule-Based Systems. Manning Greenwich, CT.
John H Holland. 1975. Adaptation in natural and artificial systems: An introductory analysis with applica-

tions to biology, control, and artificial intelligence. U Michigan Press.
Gábor Huszerl, István Majzik, András Pataricza, Konstantinos Kosmidis, and Mario Dal Cin. 2002. Quan-

titative analysis of UML statechart models of dependable systems. The computer journal 45, 3 (2002),
260–277.

Lester Ingber, Antonio Petraglia, Mariane Rembold Petraglia, and Maria Augusta Soares Machado. 2012.
Adaptive simulated annealing. In Stochastic global optimization and its applications with fuzzy adap-
tive simulated annealing. Springer, 33–62.

Gerti Kappel, Philip Langer, Werner Retschitzegger, Wieland Schwinger, and Manuel Wimmer. 2012. Model
transformation by-example: a survey of the first wave. In Conceptual Modelling and Its Theoretical
Foundations. Springer, 197–215.

Marouane Kessentini. 2010. Transformation by example. Ph.D. Dissertation. University of Montreal,
Canada.

Marouane Kessentini, Houari Sahraoui, and Mounir Boukadoum. 2008. Model transformation as an opti-
mization problem. In Model Driven Engineering Languages and Systems. Springer, 159–173.

Marouane Kessentini, Houari Sahraoui, Mounir Boukadoum, and Omar Ben Omar. 2012. Search-based
model transformation by example. Software and System Modeling 11, 2 (2012), 209–226.

Marouane Kessentini, Manuel Wimmer, Houari Sahraoui, and Mounir Boukadoum. 2010. Generating trans-
formation rules from examples for behavioral models. In Proc. of the 2nd Int. Workshop on Behaviour
Modelling: Foundation and Applications. Article 2, 2:1–2:7 pages.

Anneke G Kleppe, Jos Warmer, Wim Bast, and Explained. 2003. The model driven architecture: practice
and promise. (2003).

John Koza, David Andre, Forrest Bennett III, and Martin Keane. 1996. Use of automatically defined func-
tions and architecture-altering operations in automated circuit synthesis with genetic programming. In
Proceedings of the First Annual Conference on Genetic Programming. MIT Press, 132–140.

John R Koza. 1992. Genetic programming: on the programming of computers by means of natural selection.
Vol. 1. MIT press.

Philip Langer, Manuel Wimmer, and Gerti Kappel. 2010. Model-to-model transformations by demonstration.
In Theory and Practice of Model Transformations. Springer, 153–167.

Sean Luke and Lee Spector. 1998. A revised comparison of crossover and mutation in genetic programming.
Genetic Programming 98, 55 (1998), 208–213.

Parastoo Mohagheghi, Wasif Gilani, Alin Stefanescu, Miguel A Fernandez, Bjørn Nordmoen, and Mathias
Fritzsche. 2013. Where does model-driven engineering help? Experiences from three industrial cases.
Software & Systems Modeling 12, 3 (2013), 619–639.

Franois Pfister, Vincent Chapurlat, Marianne Huchard, and Clémentine Nebut. 2012. A proposed tool and
process to design domain specific modeling languages. (2012).

Riccardo Poli, William B Langdon, Nicholas F McPhee, and John R Koza. 2008. A field guide to genetic
programming. Lulu. com.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:36 I. Baki et H. Sahraoui

Nicolas Revault, Houari A Sahraoui, Gilles Blain, and Jean-François Perrot. 1995. A Metamodeling tech-
nique: The METAGEN system. In Technology of Object-Oriented Languages and Systems, TOOLS EU-
ROPE, Vol. 16. Prentice Hall, 127–139.

Justinian P Rosca. 1995. Genetic Programming Exploratory Power and the Discovery of Functions.. In Evo-
lutionary Programming. Citeseer, 719–736.

Hajer Saada, Xavier Dolques, Marianne Huchard, Clémentine Nebut, and Houari Sahraoui. 2012a. Gen-
eration of operational transformation rules from examples of model transformations. In International
Conference on Model Driven Engineering Languages and Systems.

Hajer Saada, Xavier Dolques, Marianne Huchard, Clémentine Nebut, and Houari Sahraoui. 2012b. Learn-
ing Model Transformations from Examples using FCA: One for All or All for One?. In CLA’2012: 9th
International Conference on Concept Lattices and Applications. 45–56.

Hajer Saada, Marianne Huchard, Clémentine Nebut, and Houari Sahraoui. 2013. Recovering model trans-
formation traces using multi-objective optimization. In Automated Software Engineering (ASE), 2013
IEEE/ACM 28th International Conference. IEEE, 688–693.

Douglas C Schmidt. 2006. Model-driven engineering. IEEE Computer Society 39, 2 (2006), 25.
Mika P Siikarla and Tarja J Systa. 2008. Decision reuse in an interactive model transformation. In Software

Maintenance and Reengineering, 2008. CSMR 2008. 12th European Conference on. IEEE, 123–132.
Mandavilli Srinivas and Lalit Patnaik. 1994. Adaptive probabilities of crossover and mutation in genetic

algorithms. Systems, Man and Cybernetics, IEEE Transactions on 24, 4 (1994), 656–667.
Michael Strommer, Marion Murzek, and Manuel Wimmer. 2007. Applying model transformation by-example

on business process modeling languages. In Advances in Conceptual Modeling–Foundations and Appli-
cations. Springer, 116–125.

Michael Strommer and Manuel Wimmer. 2008. A Framework for Model Transformation By-Example: Con-
cepts and Tool Support. In Objects, Components, Models and Patterns. Springer, 372–391.

Yu Sun, Jeff Gray, and Jules White. 2011. MT-Scribe: an end-user approach to automate software model
evolution. In Proceedings of the 33rd International Conference on Software Engineering. ACM, 980–982.

Yu Sun, Jules White, and Jeff Gray. 2009. Model Transformation by Demonstration. In International Con-
ference on Model Driven Engineering Languages and Systems. Springer, 712–726.

Helena Syrjakow, Matthias Szczerbicka, and Michael Becker. 1998. Genetic algorithms: a tool for modelling,
simulation, and optimization of complex systems. Cybernetics & Systems 29 (1998), 639–659.

Daniel Varró. 2006. Model Transformation by Example. In International Conference on Model Driven Engi-
neering Languages and Systems. Springer, 410–424.

Manuel Wimmer, Michael Strommer, Horst Kargl, and Gerhard Kramler. 2007. Towards Model Transforma-
tion Generation By-Example. In Annual Hawaii International Conference on System Sciences. 285–295.

Shengxiang Yang and Şima Uyar. 2006. Adaptive mutation with fitness and allele distribution correlation
for genetic algorithms. In Proceedings of the 2006 ACM symposium on Applied computing. ACM, 940–
944.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

