
Concerned about separation 

Hafedh Mili1, Houari Sahraoui2, Hakim Lounis1, Hamid Mcheick1,                   
Amel Elkharraz1,2 

1 LATECE, Université du Québec à Montréal, Montréal (QC), Canada 
{hafedh.mili, hakim.lounis}@uqam.ca, hamid_mcheick@uqac.ca 

2 GEODES, Université de Montréal, Montréal (QC), Canada 
{sahraouh, ekharraz}@iro.umontreal.ca 

Abstract. The separation of concerns, as a conceptual tool, enables us to man-
age the complexity of the software systems that we develop. There have been a 
number of approaches aimed at modularizing software around the natural 
boundaries of the various concerns, including subject-oriented programming, 
composition filters, aspect-oriented programming, and our own view-oriented 
programming. The growing body of experiences in using these approaches has 
identified a number of fundamental issues such as what is a concern, what is an 
aspect, which concerns are inherently separable, and which aspects are com-
posable. To address these issues, we need to focus on the semantics of separa-
tion of concerns, as opposed to the mechanics (and semantics) of aspect-
oriented software development methods. We propose a conceptual framework 
based on a transformational view of software development. Our framework af-
fords us a unified view of the different aspect-oriented development techniques 
which enables us a simple expression for the separability issue.  

1   Introduction 

“Separation of concerns” is a general problem-solving idiom that enables us to break 
the complexity of a problem into loosely-coupled, easier to solve, subproblems. Un-
derlying this idiom is the hope that, 1) the subproblems are easier to solve, and 2) the 
solutions to these subproblems can be composed relatively easily to yield a solution 
to the original problem. The history of programming languages may be seen as a 
perennial quest for modularisation boundaries that best map (back) to “natural modu-
larisation boundaries” of requirements. Aspect-oriented software development meth-
ods are no different. However, most of the research on AOSD has focused on the 
semantics of aspects and aspect composition, i.e. the solution domain, as opposed to 
the semantics of concerns and concern separation and composition, i.e. the problem 
domain. Yet, the early case studies have shown that these conceptually elegant tech-
niques weren’t intuitive to use (see [9], [8], [7]). Further, a great number of users of 
these techniques were caught up in the “how-to” of language constructs, with no 
regard for the conceptual appropriateness of the AOSD technique for the problem at 
hand. Further, the various techniques seem to offer orthogonal, but nonetheless useful 
constructs, with no clear guidelines (which method is appropriate for which problem).  



We believe that better understanding of the AOSD techniques will result from a 
characterization of, 1) the input of software development, and 2) the process of soft-
ware development, to help characterize, if not identify, which concerns are separable, 
and which development steps are most likely to affect the separation (or separability) 
of the resulting artifacts. We propose a conceptual framework based on a transforma-
tional view of software development. In this context, all the requirements on a soft-
ware product, be they functional (related to input/output relations) or otherwise (re-
lated to how the output is produced), are inputs in these transformations. These re-
quirements fit into general areas, or concerns, which may end up embodied in sepa-
rate or same artifacts. We distinguish essential separability and inseparability, which 
characterize requirements, from accidental separability and inseparability, which 
characterize the realizations of those requirements in development artifacts. Acciden-
tal inseparability can be remedied by better language design and user education. Ac-
cidental separability should even be discouraged as the conceptual complexity is 
often increased, and maintenance of the resulting program is often made harder. 

2   Understanding the separation of concerns problem 

Design is a very complicated cognitive task bringing to bear a host of knowledge 
types and sources and a myriad of problem solving skills [4]. When the artifacts, 
themselves, are complex, a number of the conceptual and methodological tools fall 
apart because of scalability problems. Many researchers have shown that complexity 
is an essential property of design activities in general, due in part to the inevitably 
incomplete formulation of the problem, and in part to our inability to cope simultane-
ously with all of the constraints of a given problem (our bounded rationality [16]). 

The separation of concerns technique is a general problem solving heuristic that 
consists of solving a problem by addressing its constraints, first separately, and then 
combining the partial solutions with the expectation that, 1) they be composable, and 
2) the resulting solution is nearly optimal. For this heuristic to yield satisfactory re-
sults, the concerns that we are trying to treat separately must be fairly independent, to 
start with, so that they don’t interfere with each other. Further, the problem solving 
activity itself needs to yield solutions that are composable. In this section, we try to 
define the separation of concerns problem for the case of software. In this case, the 
“problem” is a set of requirements, and the “problem solving” process is the software 
development process. We first start by characterizing the software development proc-
ess. In section 2.2, we try frame the separation of concerns problem. 

2.1   A transformational view of software development  

Software development is a complex activity involving a variety of skills and a variety 
of conceptual and formal tools. For the purposes of reasoning about software devel-
opment—and perhaps automating some of its steps— researchers and practitioners 
alike have found it useful to view software development as the process of going from 
specifications of what is to be done (requirements), to precise specifications of how it 



is to be done. Dasgupta identified two kinds of requirements in any design problem, 
empirical requirements, which specify externally observable or empirically determin-
able qualities that are desired of the artifacts, and conceptual requirements, which 
specify adherence to a particular style [4]. For the case of software, there are two 
kinds of externally observable qualities, functionality—the what—on one hand, and 
run-time behavior—the how, including performance, and the like. Accordingly, we 
see three major categories of requirements for software development: 
1. Requirements of functionality. These requirements specify an input/output relation-

ship. To satisfy these requirements, we need a function that takes an input/output 
relationship and returns a function that returns the output for a given input  

2. Run-time requirements. These are requirements on run-time behavior such as per-
formance, distribution, the underlying machine (virtual or otherwise), etc. 

3. Requirements on the software artifacts. These requirements deal with things such 
as modularity, reusability, choice of language, etc.  
These correspond closely to the categories of architectural qualities identified by 

[2]. Describing a program using an executable specification language may be seen as 
performing a first step of the design process, i.e. ensuring functionality. Later steps 
can worry about run-time behavior and artifact quality. In practice, these three sets of 
requirements are addressed simultaneously. Further, except in new projects where a 
complete system is built from the ground up, new functionality often has to integrate 
into an existing architecture, which embodies a specific point in the design space that 
addresses a set of run-time and artifact requirements. However, for the purposes of 
our presentation, we will assume that the three major design dimensions are commu-
tative; two design transformations T1 and T2 are said to be commutative if given Di, 
the description of the software at step i, we have T2 οT1 (Di) = T1 οT2 (Di) (see e.g. 
[3]). With this mind, let us propose a first-cut description of software development.  

Handling functional requirements. Given a relation R: A×B, we need to obtain a 
function f: A → B, such that for all a ∈ A,  f(a) ∈ ImageR(a). We say that f(.) is an 
implementation of R. R describes the relationship that must exist between the input 
and the output; f(.) provides an effective procedure for computing the output, given 
the input. If R(.,.) is not a function (i.e. some elements of A have more than one 
image), then f(.) picks one element. Automatic programming consists, to a great 
extent, of automating the “operationalization of requirements”. This transformation 
may be described by a relation OR: {R}×{f(.)} from the set of relations to the set of 
functions. Let R be the set of relations and F the set of functions. OR is thus a subset 
of R×F. This relation may be known intensionally, or extensionally (through 
exemplar pairs). Automating this step consists of finding a function g: R → F such 
that given a relation R∈R, g(R(.,.)) = f(.) where (R , f(.)) ∈ OR. We say that g is an 
implementation of OR. 

Handling run-time requirements. These include performance requirements and 
execution model. These requirements are handled differently from functional ones. 
Whereas the operationalization of requirements associates a requirement with any 
function that implements the requirement, here we are picky about the properties of 



such functions. For example, such functions have to be efficiently computed. Instead 
of the relation OR shown below, we now have a subrelation EOR (Efficient 
Operationalization of Requirements) such that EOR ⊆OR, where Domain (EOR) = 
Domain (OR), but ImageEOR(R) ⊆ ImageOR(R). In other words, out of all the functions 
that implement R, we pick the ones that are efficient. 

Issues related to the execution model include things such as distribution, synchro-
nization, and security. This does not change the function that is computed but changes 
things about where the different pieces are executed and how. We can represent the 
execution of function f() as follows: EX: F × I × M  → O × M. EX takes three argu-
ments: a) the function to be computed, b) its input(s), and c) the initial state of the 
machine. EX produces a pair of outputs: the result of applying the function to its 
input, and new state of the machine. In other words, EX (f(.), i, s) = <f(i), s’> where 
s’ is the state of the machine after it has finished execution of function f(.) on input i. 
The state changes consist of the side effects of the execution and may involve things 
such as establishing or terminating connections, modifying the state of data on per-
manent storage, logging, collecting statistics, etc..  

Generally speaking, EX is a composition of several functions. For example, with a 
virtual machine architecture, we have the hardware machine executing the virtual 
machine, and the virtual machine executing the actual program. The execution of the 
virtual machine itself could be written as VM (f(.), i, s) = <f(i),s’>. The hardware 
machine, in turn, is executing the function VM on its inputs, and changes state. The 
input of the VM consists of the triple <f(.), i, s>, where f(.) is the function to be exe-
cuted—written in “virtual machine language”—i is the input of f(.), and s the state of 
VM. Let the hardware machine be represented by the function HM, we have HM 
(VM(.,.,.), (f(.), i, s), hs) = <<f(i), s’>, hs’>. And so forth. The virtual machine itself 
consists of a set of layered (composed) services or parallel services. An example of 
layered services is VM(f(.), i) = VM1ο VM2(f(.),i,s). An example of parallel services 
is represented as < VM1;VM2>(f(.),i,s) where VM1 and VM2 are two services that are 
performed in parallel but such that the end result is the pair <f(i),s’>. It may be that 
one service computes the result (VM1(f(.),i,s) = f(i)) while the other changes the state 
of the machine (VM2(f(.),i,s) = s’). We could also have situations where VM1 and 
VM2 modify different parts of the state of the executing machine. The output itself 
may be computed by one or two of the virtual machines.  

Handling requirements on the artifacts. This involves taking into account the 
packaging of the function f(.) based on a number of criteria, including a reasonable 
division of labor, reusability, cohesion and coupling of the resulting modules, etc. It 
also includes things such as the choice of a programming language, programming 
style, etc. Note that requirements on artifacts may lead us to implement more than the 
initial requirements. For example, reusability considerations may compel us to 
implement more generic classes to accommodate the needs of other applications 
within the same domain. It may also compel us to break down functions differently to 
identify common parts, without necessarily implementing more functionality than 
required. Let us take a problem R(.), and its realization, some function f(.). Idem for a 
problem R’() with realization f’(). If we can write f = fpost  ο g ο fpre and f’ = f’post  ο g ο 
f’pre, then we reduce the amount of new code to be developed. 



2.2   Framing the separation of concerns problem 

For the purposes of our discussion, we define a concern as a set of related require-
ments. Elements of the set may be defined extensively (enumerated) or intensively, by 
referring to a domain (e.g. security). Simply put, requirements are sets of properties 
that must be satisfied by the solution. If we use predicate logic to express require-
ments, a number of intuitions that we have about requirements have a simple expres-
sion in logic [21]. The basic premise of separation of concerns approaches to software 
development is that requirements have nice properties, and to the extent that we can 
associate artifacts with concerns, we would like the artifacts to have similar proper-
ties! Precisely, the “separation of concerns” methods rely on the existence of a devel-
opment homomorphism such as the one illustrated in Figure 1. Assume that require-
ments are represented by predicates, and let AP = OR(P(.)) be the artifact that corre-
sponds to predicate P(.). Development (represented by the thick arrow) is a homo-
morphism if there exists an operator ⊕ defined on artifacts such that OR(P(.) Λ Q(.)) 
≡OR(P(.)) ⊕ OR(Q(.)). 

 
 

R1(.,.) 

R2(.,.) 

∪

R(.,.) 

AR1 

AR2 

⊕

AR 

?

 
Fig1. Development is a homomorphism from requirements to artifacts. 

We have some intuitions about cases where this homomorphism between require-
ments and artifacts holds. For example, given two requirements defined by relations 
R1: A → B, and R2: B → C, we know of several operators ⊕ such that OR(R2ο R1) 
≡OR(R1) ⊕ OR(R2). For example, if the implementation adopts the call-and-return 
style, the operator ⊕ consists of the call relationship between procedures. If the pub-
lish-and-subscribe style is used, the operator ⊕ consists of registering OR(R1) as a 
publisher of some message, and OR(R2) as a subscriber to that message. Etc. 

The advantages of this homomorphism include reusability, configurability, and 
separate maintenance. A number of object-oriented programming constructs and 
design idioms may be seen in this light. The new generation of separation of concerns 
techniques may be seen as defining new modularization boundaries for requirements, 
that are different from the ones afforded by regular object-oriented programming, and 
that are realizable in artifacts that are composable according to some composition 
operator. For example, OORAM uses role models [18] as new behavioral modules, 
and role synthesis to compose role models. Subject-oriented programming defined 
subjects [6] as new modular structures, and subject composition, as a composition 
mechanism [14]. Aspect oriented programming defines aspects as new module 
boundaries, and aspect-weaving as a way of composing aspects with regular classes 
[10]. Our own view-oriented programming uses viewpoints as a way of representing 



domain-independent business processes, and view instantiation and attachment as a 
way of adding that behavior to objects [12],[13]. All of these techniques may be col-
lectively referred to as aspect oriented development techniques, where composition 
filters, subjects, aspects à la Kiczales et al., and our views may all be referred to as 
aspects. Thus, we can talk about functional aspects which are associated with func-
tional concerns or architectural aspects which are associated with architectural con-
cerns. 

Notwithstanding the case of OORAM, where the emphasis is on requirements 
level separation (role models) and composition, much of the so-called aspect-oriented 
development techniques have focused on the mechanics of artifact composition, 
sometimes losing sight of, 1) the requirements that these artifacts are supposed to 
embody, and 2) whether that composition (or separation) makes sense, from a re-
quirements point of view. Further, even in those cases where AO techniques seemed 
appropriate, there were sometimes better non-aspect oriented solutions (see e.g. [15]). 

If we view requirements as predicates on the solution, then requirements are 
clearly composable using logical composition (∧)—whether the resulting conjunction 
has solutions or not [21]. However, for the homomorphism of Figure 1 to hold, (1) 
the requirements that we need to compose have to be independent, and (2) the devel-
opment transformations have to preserve such independence so that the resulting 
artifacts (aspects) may be combined. 

3   All concerns/aspects are functional 

We identified in section 2.1 three distinct kinds of requirements, requirements of 
functionality, run-time requirements, and requirements on the software artifacts them-
selves. Before we talk about the conditions under which different requirements (or 
concerns) may be separable, and whether we should try to untangle or compose their 
associated artifacts, we look for a common framework that would enable us to look at 
all three kinds of requirements, and that would enable us to take a simpler view of the 
separability and composability issue. We start our discussion by first characterizing 
the ways in which requirements in each category are handled (individually). We will 
argue that run-time requirements can be represented as functional requirements on the 
virtual machine; requirements on artifacts are more difficult to formalize.  

3.1   Handling run-time requirements 

We consider  run-time requirements to be functional requirements on an imaginary 
virtual machine that will execute the program in the context of the real machine. The 
virtual machine will add a number of services including distribution, persistence, 
security, and others. Persistence services may be seen as providing the program with 
an execution environment (a virtual machine) that persists automatically the objects 
that the program manipulates. Most object-oriented databases operate this way (Ver-
sant, ObjectStore): developers write programs that manipulate persistent objects in a 
seamless fashion. It is as if databases come with their own run-time object model, 



built on top of the host language object model. We later see how this is actually im-
plemented—interestingly, a limited form of aspect-oriented programming. 

Distribution is similar to persistence in principle. Lest we oversimplify, distribu-
tion may be seen as providing a virtual machine whose run-time representation of 
objects accommodates remote objects, with what that implies in terms of referencing 
and in terms of method invocation. Consider the following CORBA or RMI-like code 
sequence: 
Bank bank = 
naming.bind(“//www.mycompagny.com/mybusinessdomain/bank
23”);  
Client cl = bank.getCustomer(“JohnDoe234”);  
String address = cl.getAddress(); 

Notwithstanding the first line, which suggests the use of a naming service, the sub-
sequent lines are indifferent from the location of the objects. We could imagine the 
same program being run in local mode, where the default Java virtual machine run-
time representation of objects is used, and “a distributed Java virtual machine” that 
uses a level of indirection for run-time object representation to access remote objects, 
and that invokes an ORB to execute methods. Existing implementations of distribu-
tion use a slightly different implementation but the idea is the same. In fact, some 
researchers have even attempted to distribute regular OO applications using As-
pectJ™ [17]. 

The way distribution and persistence have been commonly implemented present 
some commonality. Transparency to the developer dictates a virtual machine meta-
phor. However, both techniques instrument user code with service-specific code that 
invokes those services (persistence or remote access). With Java-style persistence 
(e.g. ObjectStore), the code that is injected is added directly to the compiled Java 
bytecodes. With distribution, the IDL compiler injects, along with user code, code 
that is meant to be executed by the distribution virtual machine. 

The same can be said about some aspects of security. Both authentication and en-
cryption can be easily (and naturally) implemented at the virtual machine level: one 
involves encrypting exchanged data (through method calls), and the other authenti-
cates the caller. In fact, Java’s own security model is supported and enforced by the 
virtual machine, which can be thought of as submitting method execution requests to 
a security manager. J2EE’s security model is enforced by the containers—a higher 
level yet virtual machine. 

One reason why virtual machine-like implementations of these services are not 
common—with the exception of security, for which we want no loopholes—is per-
formance. The other is selectivity: because these services involve an overhead, if we 
embed it in the virtual machine, then all objects will use it, whether they need it or 
not. With this code injection mechanism, the code will only be injected in those ob-
jects/classes that need it. 

As mentioned above, common implementations of persistence use a variant of as-
pect oriented programming: persistence code is added into designated class files 
(typically specified in configuration files) so that object creation, accessing, and 
modification access the database client. The same is true for distribution, where cli-
ent-side stubs (proxies) go through the ORB to get the data they need. Viewing run-



time requirements as functional requirements on the virtual machine helps us under-
stand which services are separable and/or composable, and also helps us understand 
which solutions are feasible under which situations, and understand some of the 
anomalies that arise from composing virtual machine-level services. 

3.2   Handling requirements on the artifacts 

Requirements on the artifacts deal with development-time “abilities”, with no regard 
for functionality or performance. Such requirements include understandability, reus-
ability, maintainability, etc. Let R(.) be a functional requirement, and f(.) be an opera-
tionalization of R(.), i.e. f(.) ∈ OR(R(.)). The various “abilities” on the artifacts can 
typically be written as constraints on various metrics on the artifacts, such as: 
• Mi(f(.)) = MINg ∈ OR(R(.)) (Mi(g(.)) (relative constraint) or 
• Mi(f(.))  ≤ α, for some constant α (absolute constraint) 

These meta-level constraints determine the packaging of the functionality.  
Separation of concerns is a requirement on software artifacts that is being ad-

dressed with AOSD techniques. Thus, our discussion of how development affects 
separation of concerns will be limited to the development activities related to accom-
modating functional requirements and those related to handling run-time require-
ments. 

3.3   Concerns are functional while aspects may not be 

Notwithstanding requirements on the artifacts themselves, we have functional re-
quirements and run-time requirements. Run-time requirements are either measurable 
quality constraints (e.g. performance, space usage), or architectural services. We have 
shown in section 3.1 that the latter may be thought of as  functional requirements on 
the virtual machine that executes the program. If we take this view, we could view 
both SOP and AOP, say, as being both concerned with the composition of functional 
concerns (or the corresponding aspects), with the difference that: 
1. SOP (and our own method, VOP) manipulates functional concerns and aspects of 

the user program directly 
2. AOP translates functional concerns on the virtual machine that executes a program 

P, into non-functional aspects to be woven into program P. 
In fact, a number of researchers have recognized that the kind of concerns that 

AOP handles well are best (most simply) expressed at the meta-level, and a number 
of successors to Kiczlaes’s AOP use a meta-level architecture to add functionality to 
the way these machines execute programs—mostly for intercepting message  sends to 
perform processing before or after. In fact, Kiczales himself has said on many occa-
sions that he developed AspectJ™ as a more constrained/safer version of the MOP to 
enable “average developers” to add pervasive behavior without compromising the 
integrity of the VM. Filman & Friedman consider quantification and obliviousness as 
essential features of AOP [5]. Both properties can be naturally expressed at the virtual 
machine level. Steimann that there are no aspects à la AspectJ™ for domain models 



[19]: aspects are solution  (read: software) artifacts, and should have no place in do-
main models or in object-oriented analysis. 

If we accept that aspects à la AspectJ™ are functional aspects on the virtual ma-
chine, we can immediately see that functional concerns and run-time concerns are 
orthogonal, and we can address them separately, at least up to the analysis step. We 
can also see that we shouldn’t even try to combine functional aspects of the pro-
gram(s) that we are developing with functional aspects of the machines that execute 
them! At least not conceptually. And yet, that is what AspectJ™’s weavers were 
explicitly created for! 

Composition filters are based on the message passing (and interception) metaphor, 
but the filters can be either functional, in which case we deal with the normal func-
tional composition, or architectural, in which case, they too, could be handled at the 
virtual machine level. Thus, for the purposes of understanding the separabil-
ity/composability of requirements, and the corresponding composability of the asso-
ciated software artifacts, we need only to focus on the functional separately or com-
posability of (functional) requirements. 

4   Characterizing the separability of requirements 

In this section, we attempt the overly ambitious goal of answering two dual questions: 
1. Given two requirements, under what conditions can they be “developed” sepa-

rately, and can their realizations (aspects) be composed at will. The answer to this 
question will help determine the domain or operating range of the development 
homomorphism we illustrated in Figure 1. We refer to this problem as the compos-
ability of requirement realizations. 

2. Given a realization that addresses several concerns, under what conditions can that 
realization be untangled into separable aspects, each of which addressing a subset 
of concerns. The answer to this question may help us assess which systems may be 
re-engineered in such a way that different concerns are addressed in separate—and 
readily reusable—aspects. We refer to this problem as the separability of require-
ment realizations. 
In addition to its practical importance, an answer to the second question will also 

help us understand why case studies have not been as convincing as the textbook 
cases that the original method authors have presented in support of their techniques. 

Section 4.1 looks at the composability of requirement realizations problem for the 
case of functional requirements. We examine the problem from a purely mathematical 
point of view, reducing the separability of two requirements, seen as (input,output) 
relations, to conditions on their domains and ranges. This will enable us to address 
composability issues between runtime requirements or between functional require-
ments, but not between a functional requirement and a run-time requirement. Section 
4.2 tries to answer the separability of requirement realizations for functional re-
quirements by looking at the problem of decomposing a function into separate sub-
functions. We look at a range of decomposition/recomposition operators with differ-
ent semantics preserving properties. 



4.1   Composable requirements 

Given a development transformation T, we consider two requirements R1 and R2 to be 
T-composable if: 
1. we can associate separate realizations to them (T(R1) and T(R2)), and 
2. there exists a composition operator ⊗ on their realizations that satisfies them both, 

i.e. T(R1 Λ R2) = T(R1) ⊗ T(R2) 
We showed in section 2.1 that functional requirements are transformed using an 

operationalization operator—OR, turning an input-output relation into a function that 
produces the output given the input. Having argued in section 3.1.1 that run-time 
requirements are nothing but functional requirements on the virtual machine, we look 
at the problem of composing two functional requirements through the operationaliza-
tion operator. 

We would like the operationalization of functional requirements to be additive at 
least in those cases where the two requirements have disjoint domains. Consider two 
relations R and R’ such that Domain(R) ∩ Domain(R’)  = Φ.The simplest way of 
implementing R∪ R’ is by taking f(.)⊕f’(.), where f(.)⊕f’(.) = g(x) such that: 

g(x)  = f(x), if  x ∈Domain( R) 
        = f’(x), if  x ∈Domain( R’) 

In other words, the simplest OR(.) would behave as OR(R∪ R’) = f(.)⊕f’(.) 
Note that if we take into account reuse, then we may be able to write f = fpost  ο g ο 

fpre and f’ = f’post  ο g ο f’pre. We do have Domain(f’pre) = Domain (f’) and Domain(fpre) 
= Domain (f), and thus Domain(fpre) ∩ Domain(f’pre) = Φ, but we don’t know whether 
Domain(fpost) and Domain(f’post) are disjoint, and we can’t write OR(R∪ R’) (or 
f(.)⊕f’(.)) as [fpost(.)⊕f’post(.)]ο g ο [fpre(.)⊕f’pre(.)]. 

If the relations have intersecting domains, we can define them as follows: R = R1∪ 
R2 and R’ = R’1∪ R’2 such that: Domain(R1) = Domain(R) - Domain(R’), Do-
main(R’1) = Domain(R’) - Domain(R), and Domain(R2) = Domain(R’2) = Domain(R) 
∩ Domain(R’). In this case, the relation to implement is R1 ∪ R’1∪ (R2∪ R’2), where 
R1, R’1, and R2 ∪ R’2 have mutually disjoint domains. Thus, we have OR(R1 ∪ R’1∪ 
(R2∪ R’2)) = OR(R1) ⊕ OR(R2) ⊕ OR(R2∪ R’2). 

This relationship is trivially satisfied in case R2 = R’2. This is the ideal case in the 
sense that both requirements agree on what the output should be for the same inputs. 
In that case, the two requirements (R1 and R2) may be seen as two restrictions of the 
same relationship defined on the domain Domain(R1) ∪ Domain(R’1). If the two 
relationships disagree on the output, then we have a problem. We see two levels of 
disagreement. The first level of disagreement is illustrated in the following example. 
Consider the two relations R1 = { (x,y) | 0 < x < 100, and x2 = y} and R2 = { (x,y) | 50 
< x < 150, and x2 = y}. The intersection of the two domains consists of the interval 
[50..100]. If both the realizations of R1 and R2 use the positive square root of x—or 
both use the negative square root—then we are fine. If they use different square roots, 
then we have a problem.  This incompatibility is due to an inconsistent choice of 
realizations, and is a common and acceptable course of action. Intuitively, what we 
need in this case to make sure that we use consistent realizations. This is not unlike 



the problem of choosing consistent specializations when we instantiate a framework, 
i.e. the kind of situations for which things such as the factory pattern is applicable.  

 Object slicing 
and 

aspect/subject 
composition 

Domain splitting 
and program 
dispatching 

Functional decomposition and 
program “piping” 

Input Output 
 

Fig2. Comparing three decomposition paradigms 

The second level of disagreement is the case where the requirements themselves 
disagree, i.e. ∃ x ∈ Domain(R1) ∩ Domain(R2) s.t. R1(x) ≠ R2(x) 

In our view, this is not a case for separation of concerns methods to handle: the re-
quirements disagree, so there is no point in trying to compose the artifacts.  

4.2   Separable requirements 

Given a development transformation T, we consider a requirement R (an element of 
the domain of T) to be T-separable if there exist, 1) two requirements R1 and R2, 2) a 
composition operator • defined on the domain of T—the requirements—and, 3) a 
composition operator ⊗ on the image of T—the artifacts—such that: 
1. R = R1 • R2  
2. T(R) = T(R1) ⊗ T(R2) 

This is the good old divide-and-conquer analytical development paradigm. With 
structured analysis and design (and programming), the operator is functional compo-
sition, in the mathematical sense, and ⊗ is “piping”, in the programming sense (the 
output of a program or procedure is used as an input to the other). Functional decom-
position is not only useful for reducing complexity, it is also useful for reuse. 

Another valuable pair of operators corresponds to the combination of domain split-
ting and dispatching. Consider the requirement R where domain(R) = D = D1 ⊕ D2.—
the symbol ⊕ referring to disjoint union (partition). Let T be the operationalization of 
requirements (OR(.)), and R1 = R|D1, and R2 = R|D2. Then: 

  if x ∈ D1 call OR(R1) 
OR(R(.)) = 
   if x ∈ D2 call OR(R2) 
We are all familiar with these two techniques, and have used them—and should 

continue to do so—to good measure. Aspect-oriented development techniques advo-
cate other pairs of decompose/recompose or split/join operators which are specific to 
the object-oriented context. These new pairs of operators operate simultaneously on 
functions and data, along the lines of object or class hierarchy slicing (see e.g. [20]). 
In this case, instead of considering the input domain (D) as consisting of simple 



value, we consider it as a tuple (of state variables), and functions (object methods) 
may operate on various “sub-tuples”. 

Figure 2 illustrates the three decomposition paradigms. For each paradigm, we 
mention the decomposition technique used on requirements, and the corresponding 
composition technique used on the corresponding artifacts. Now, we look more 
closely at the problem of sliceability of requirements. We start with a strict definition 
of sliceability which supports unrestricted (commutative) recomposition of the arti-
facts. We then propose a weaker form of sliceability which requires an ordered (non-
commutative) recomposition. 

Sliceability. Let R ⊆ A×B, let f(.) = OR(R), and assume that A = S1 ×S2 ×… ×Si 
×Si+1 ×… ×Sn×I and B = S1 ×S2 ×… ×Si ×Si+1 ×… ×Sn×O. We say that R (or f()) 
is sliceable if there exist two functions f1(x1,…,xi,i) et f2(xi+1,…,xn,i) such that 
f(x1,…,xi,xi+1,…,xn,i) =  f1(x1,…,xi,i) •f2(xi+1,…,xn,i). In other words, the 
function f() can be computed as the concatenation of two functions. 

The idea of sliceability is related to the idea that a relation may be written as a sub-
set of the product of two relations. For example, let R1 and R2 be two binary relations. 
We can define the relation R1× R2 as follows: <x1,x2,y1,y2> ∈ R1× R2 if and only if 
<x1,y1> ∈ R1 and <,x2,y2> ∈ R2.  

Intuitively, the sliceability corresponds to the case where we have two functions 
that take the same input and that use and modify different parts of an object, i.e. they 
correspond to two disjoint slices of the same data (or object). Sliceable functions can 
be put together, with no problem. Notice that we require that both functions take the 
input (which may be either a real input or a method selector), and that the output is 
produced between them. In the context of an object-oriented program, if we have a 
method that returns void but modifies the state of the object, then each subfunction 
will have modified its slice. If the function returns a value, then we might be able to 
find a subset of state variables based on which the output is computed, and the slice 
may be made along that. Note, however, that not all relations/functions are sliceable. 
A function that averages the state variables will not be sliceable. 

Subject-oriented programming (and hyperspaces) works best with this ideal case in 
mind. Problematic cases occur when the sliceability hypothesis fails. Interestingly, the 
broken delegation problem can be understood in terms of sliceability of functions. 
Broken delegation happens when a function that occurs on one side (i.e. in a single 
object fragment) calls a separable function that occurs on several object fragments 
(see e.g. [1]): the result is no longer separable. 

Effective sliceability. Let R ⊆ A×B, let f(.) = OR(R), and assume that A = S1× … × 
Si ×… × Sj ×… ×Sn×I and B = S1× … × Si ×… × Sj ×… ×Sn×O. Let f(…) be a 
function that implements R. Let f1(…) and f2(…) be two functions with domains S1× 
… × Si ×… × Sj ×… ×Sn×I. If f (x1,…,xi,xi+1,…,xn,i ) = < x’1,…,x’i,x’i+1,…,x’n,o>, we 
use the notation f|i to refer to the projection of f over the set Si , i.e., 
f|i(x1,…,xi,xi+1,…,xn,i ) = x’i. Similarly, we define f|S as the projection of f over the set 
S = Si ×… × Sj for some i and j. Let Ref(f) be the set of variables used in the 
computation of f(…) and Mod(f) be the set of variables modified by f(…) be the set of 
state variables that are modified by f, i.e. the set of variables { xi}i such that 



f|i(x1,…,xi,xi+1,…,xn,i ) = x’i ≠ xi. A function f(…) is said to be effectively sliceable if 
and only if there exist two functions f1(x1,… xn,i) and f2(x1,… xn,i) such that: 

Mod(f1) ∩ Ref(f2) =  Φ, Mod(f2) ∩ Ref(f1) =  Φ, Mod(f1) ∩ Mod(f2) =  Φ 
Mod(f1) ∪ Mod(f2) = Mod(f), 

f|Mod(f) (x1,…,xn,i) = f1|Mod(f1) (x1,…,xn,i) • f2|Mod(f2) (x1,…,xn,i), and 
f|o (x1,…,xn,i) = f1|o (x1,…,xn,i) • f2|o (x1,…,xn,i) 

 
for some ordering of the state variables x1,…,xn. Figure 3 illustrates the first three 
equalities in a Venn Diagram. Note that a sliceable function is also effectively slice-
able. An interesting property of effectively sliceable functions is that the component 
functions may be executed in any sequence. There are other cases of sliceability, but 
in this case, the subfunctions have to be executed in a particular order. We call this 
temporal sliceability. Temporal sliceability is a weaker condition than effective slice-
ability, and is described as follows. Let R ⊆ A×B, let f(.) = OR(R), and assume that A 
= S1×…×Si×…×Sj×…×Sn×I and B = S1×…×Si×…×Sj×…×Sn×O. Let f(…) be a func-
tion that implements R. Let f1(…) and f2(…) be two functions with domains 
S1×…×Si×…×Sj×…×Sn×I. Using the same notation as above, we say that function 
f(…) is said to be temporally sliceable if and only if there exist two functions f1(x1,… 
xn,i) and f2(x1,… xn,i) such that: 
f|Mod(f) (x1,…,xn,i) = f1|Mod(f1)–Mod(f2) (x1,…,xn,i) • f2| A-(Mod(f1)–Mod(f2)) (f1(x1,…,xn,i)). 

Mod(f1) - Mod(f2) represents the set of variables that are modified by f1 but not by 
f2. Some of these variables may, however, be referenced by f2 and we don’t care 
about that. Obviously, the relationship between f1 and f2 is not a symmetrical one, and 
the functions have to be executed in a particular order. 

 
 

Mod(f1) 

Ref(f1) 
Ref(f2) 

Mod(f2) 

S={S1,…,Sn}  
Fig3. A function is effectively sliceable if it can be written as the concatenation of two func-
tions that modify disjoint parts of an object, and don’t refer to the parts that the others modify 

In [11], we showed that provided that methods of objects do not modify objects 
other than the executing ones, any method that computes a function and modifies the 
receiver object can be decomposed into a sequence of pure functional and purely 
side-effectal functions. To compose two hybrid functions, we decompose them along 
the purely functional versus purely side-effectal dimensions, find the smallest granu-
larity decomposition between the two, and then compose them slice-by-slice. 

The major problem, of course, is our tendency to code “service-oriented func-
tions”, i.e. functions that are application level but that are coded at the domain class 
level. These functions are not composable because they address an application spe-
cific need, each. You would want to compose them because they embody a general 



behavior that is not encapsulated elsewhere. Obviously, not choosing the right granu-
larity is a problem, and leads to methods that are not composable. 

5   Discussion 

This is a very preliminary investigation into the principles of separation of concerns 
and the foundations of the techniques that promote separation of concerns. The yard-
stick by which innovations in software engineering are to be assessed has always 
been—and rightly so—to determine the problem that a given method, technique, or 
tool, solves. Separation of concerns is only useful to the extent that once the concerns 
have been addressed separately, we are able to re-combine the individual and partial 
solutions into one that addresses all of them.  

Some of the case studies that are available in the literature show cases where con-
cern separation is difficult in practice [9], [8], [7]. Others showed that aspect/subject 
composition is difficult, even in cases where the aspects or subjects embody distinctly 
different concerns [11], [9], [15]. We attempted to frame the separation of concerns in 
software development in terms of homomorphisms of development transformations, 
and then we tried to determine the “operating range” of these homomorphisms. This 
preliminary work raised more questions than it answered, and some of the answers 
are reassuringly common-sensical, but are worth stating: 
• Not all requirements (concerns) are composable in the sense that they lead to com-

posable artifacts. Viewing requirements as input-output relations, we identified 
simple conditions on the domains and images of these requirements, which essen-
tially say that the requirements should not be conflicting. In particular, method 
cancellation through subject composition or aspect weaving is no less dangerous 
than cancellation with inheritance: they are both a sign of either a violation of in-
tent, or of sloppy realization (implementation). 

• We should treat aspects that embody run-time requirements differently—and sepa-
rately—from aspects that embody functional (domain) requirements. We framed 
run-time requirements (persistence, fault-tolerance, etc.) in terms of functional re-
quirements of the virtual machine. In an ideal world, such concerns should also be 
handled by virtual machine—or more generally, meta-level—aspects, and a num-
ber of recent approaches have gone that route. However, other considerations, such 
as performance, security, integrity, or portability, may suggest otherwise at the risk 
of inducing composability problems. 

• Not all programs that implement several concerns can be reengineered into sepa-
rate aspects. The underlying concerns/requirements may not be separable (essential 
inseparability), or the current implementation may not lend itself to such a separa-
tion (accidental inseparability). Object slicing helps with accidental inseparability. 
We have started to take a closer look at the existing AOSD methods and the case 

studies to judge the usefulness of the above framework. We were able to explain 
known difficulties with subject-oriented composition (see e.g. [14]) and view attach-
ment [13] in terms of violations of some of the principles outlined above. We have 
also started looking at the broken delegation problem from the perspective of func-
tional composability and separability. The broken delegation problem manifests itself 



when we use aggregation (and message forwarding) as a way of compose behaviors. 
The problem is often referred to as an all-or-nothing problem. The “self” in an object 
component is either used to refer to the component—in which case we have broken 
delegation—or to the entire object, in which case, we do not have a problem. We 
have shown elsewhere that attempts to fix the broken delegation problem can seri-
ously compromise application security, and what we need is a more analytical ap-
proach to the problem. Our approach enables us to frame the problem. 

References 

1. D. Bardou & C. Dony, “Split objects: a disciplined use of delegation within objects,” in 
proc. OOPSLA’96, 1996. 

2. L. Bass, P. Clements & R. Kazman, Software Architecture in Practice, 1998. 
3. I. Baxter, “Design Maintenance Systems,” CACM, vol. 35, no. 4, April 1992, pp. 73-89. 
4. S. Dasgupta, “The Nature of Design Problems,” in Design Theory and Computer Science, 

Cambridge University Press, 1991, pp. 13-35. 
5. R. E. Filman & D. P. Friedman, “Aspect-oriented programming is quantification and 

obliviousness,” in proc. of OOPSLA workshop on Advanced Separation of Concerns, 2000. 
6. W. Harrison & H.Ossher, “Subject-oriented programming: a critique of pure objects,” in 

Proc. OOPSLA’93, 1993. 
7. S. Herrmann & M. Mezini, “On the Need for a Unified MDSOC Model: Experiences from 

Constructing a Modular Software Engineering Environment”, MSDOC workshop, 
OOPSLA’00, 2000 

8. E. A. Kendall. Role Model Designs and Implementations with Aspect Oriented Program-
ming. In Proc. OOPSLA’99, 1999 

9. M. Kersten & G. Murphy, “Atlas: a case study in building a Web-based learning environ-
ment using aspect-oriented programming", in proc. OOPSLA’99, 1999. 

10. G. Kiczales, J. Lamping, C. Lopez, “Aspect-Oriented Programming,” in Proc. ECOOP’97. 
11. H. Mili, “On behavioral descriptions in oject-oriented modeling”, Journal of Systems and 

Software, 1996. 
12. H. Mili, A. Mili, J. Dargham, O. Cherkaoui & R. Godin, "View Programming: Towards a 

Framework for Decentralized Development and Execution of OO Programs," Proceedings 
of TOOLS USA ‘99, 1999. 

13. H. Mili, H. Mcheick & J. Dargham, ‘‘CorbaViews: Distribting objects with several func-
tional aspects,’’ Journal of Object Technology, August 2002,. 

14. H. Ossher, M. Kaplan, W. Harrison, A. Katz, and V. Kruskal, “Specifying subject-oriented 
composition,” in TAPOS, 2(3), 1996. 

15. M. Robillard & G. Murphy, “Analyzing Concerns Using Class Member Dependencies,”  
Position paper for the ICSE Workshop on Advanced Separation of Concerns in SE, 2001. 

16. H. A. Simon, Models of bounded rationality, vol. 2, Cambridge, MA (MIT Press, 1982). 
17. T. Soued, N. Yahiaoui, L. Seinturier, B. Traverson, “Techniques d'aspect pour la gestion de 

la mémoire répartie dans un environnement CORBA/C++”, in proc. of NOTERE'05, 2005. 
18. T. Reenskaugh, in Working with Objects, Prentice-Hall, 1995. 
19. F. Steimann, “Domain Models are Aspect Free,” in Proc of MODELS’05, 2005. 
20. F. Tip, J-D Choi, J. Field, and G. Ramalingam, “Slicing class hierarchies in C++”, In Proc. 

of OOPSLA'96, 1966. 
21. P. Zave and M. Jackson, “Conjunction as Composition,” in ACM Trans. on Softw. Eng.  

Methodol., vol. 2, no. 4, pp. 379-411, 1993. 


