// Computer generated OOA from http://www.mathi.uni-heidelberg.de/~yves/Matritzen/OOAs/OOAMatIndex.html 3 // b (base) 7 // numCols 7 // numRows // outDigits= numRows 2187 // numPoints (=b^{numCols}) 26 // dim // 4 // Stregth (= numRows for (t,m,s)-nets) // in class DigitalNet // genMat[i][j] should be the j-th entry of the i-th row below // 1 1 0 0 2 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 // 2 2 1 0 2 0 0 0 0 2 1 0 0 0 0 1 1 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 // 3 2 2 0 1 0 0 0 0 2 1 2 0 0 0 2 2 0 2 1 0 0 0 0 0 2 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 // 4 1 1 0 1 0 0 0 2 1 1 2 0 0 0 2 0 0 1 0 0 0 2 1 0 2 0 0 0 1 1 0 2 1 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 // 5 1 1 0 2 0 0 0 2 1 0 1 0 0 0 1 0 1 0 0 0 0 2 0 0 1 1 0 0 2 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 // 6 2 1 0 1 0 0 0 1 0 1 1 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 1 // 7 1 2 0 2 0 0 0 1 1 1 2 0 0 0 1 0 0 0 0 0 0 1 0 0 2 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 // 8 2 2 0 1 0 0 0 2 0 1 1 0 0 0 0 0 0 2 0 0 0 2 1 0 1 0 0 0 0 0 0 2 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 // 9 1 2 0 2 0 0 0 1 1 1 2 0 0 0 2 2 0 2 0 0 0 1 0 0 0 1 0 0 2 1 0 0 0 0 0 1 0 0 2 0 1 0 1 0 0 1 0 0 1 // 10 2 2 0 2 0 0 0 2 2 1 2 0 0 0 2 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 2 0 0 1 0 1 0 1 0 0 1 0 0 1 // 11 2 2 1 2 0 0 0 2 2 1 2 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 2 0 0 0 1 1 0 2 0 0 0 1 0 0 1 0 0 1 // 12 2 1 0 2 0 0 0 2 0 1 0 0 0 0 1 2 0 0 0 0 0 0 1 0 1 0 0 0 2 0 0 1 1 0 0 2 0 0 2 0 1 0 1 0 0 1 0 0 1 // 13 2 2 0 2 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 2 0 0 0 0 1 0 1 0 0 0 0 0 1 // 14 2 2 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 2 0 2 0 0 0 1 0 0 2 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 // 15 1 1 0 2 0 0 0 0 1 1 1 0 0 0 1 1 0 1 0 0 0 2 0 0 2 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 // 16 2 2 0 1 0 0 0 1 0 1 2 0 0 0 1 0 0 1 0 0 0 2 1 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 // 17 1 1 0 1 0 0 0 2 2 1 2 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 2 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 // 18 1 0 0 2 0 0 0 2 0 1 1 0 0 0 0 2 0 1 0 0 0 1 2 0 0 0 0 1 2 1 0 0 1 0 0 1 0 0 2 0 1 0 0 0 0 1 0 0 0 // 19 2 2 0 2 0 0 0 1 1 1 1 0 0 0 1 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 2 1 0 0 2 0 0 2 0 1 0 1 0 0 1 0 0 1 // 20 2 1 0 2 0 0 0 1 0 1 1 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 1 1 0 0 2 0 0 1 0 1 0 1 0 0 1 0 0 1 // 21 2 1 1 2 0 0 0 1 1 1 2 0 0 0 0 1 0 2 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 // 22 2 2 0 1 0 0 0 2 2 1 1 0 0 0 2 1 0 0 0 0 0 1 1 0 2 1 0 0 0 0 0 2 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 // 23 1 2 0 1 0 0 0 1 2 1 1 0 0 0 0 0 0 2 0 0 0 2 1 0 2 1 0 0 2 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 // 24 1 2 1 2 0 0 0 1 1 1 0 0 0 0 2 1 0 0 0 0 0 2 1 0 2 0 0 0 1 1 0 1 1 0 0 0 0 0 2 0 1 0 1 0 0 1 0 0 1 // 25 2 2 0 1 0 0 0 0 2 1 0 0 0 0 0 0 0 2 0 0 0 2 1 0 1 0 0 0 1 0 0 2 1 0 0 2 0 0 0 0 1 0 1 0 0 1 0 0 1 // 26 1 0 1 1 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 1 0 2 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 // end of file