// Computer generated tms-net embeddings of codes of strength 3. // For information on the used codes of strength 3 see http://www.mathi.uni-heidelberg.de/~yves/Matritzen/CAPs/CAPMatIndex.html // base q nets transformed so that they can be used as if they were DigitalNet // details: an Element "a_i X^i" is represented as binary eq-tuple "a_i" // each "column" c of the GF(q) generator is replaced by the eq columns X^i c // so we have the eq-times numbers of columns and rows as in the GF(q) matrix // Note, the strength remains the GF(q) strength k, but there are many projections have strength in the range k to eq*k // check if everything that involves GF(q) multiplication (e.g. scrambling) gives the desired result 3 // b (base) 6 // numCols 6 // numRows // outDigits= numRows 729 // numPoints (=b^{numCols}) 10 // dim // 3 // Stregth, see comment above // in class DigitalNet // genMat[i][j] should be the j-th entry of the i-th row below // 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 // 2 0 1 1 1 0 0 1 2 1 0 0 0 0 1 1 0 0 0 1 2 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 // 3 0 1 2 2 0 0 1 2 2 0 0 0 0 2 1 0 0 0 2 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 // 4 1 2 2 2 0 0 2 2 2 0 0 0 0 1 1 0 0 0 1 2 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 // 5 2 2 2 0 0 0 2 0 0 2 0 0 2 0 1 0 0 0 0 2 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 // 6 2 1 2 0 0 0 1 1 0 2 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 // 7 1 2 1 1 0 0 2 2 1 0 0 0 0 2 1 0 0 0 2 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 // 8 2 1 1 0 0 0 1 1 0 1 0 0 2 0 1 0 0 0 0 2 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 // 9 2 2 1 0 0 0 2 0 0 1 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 // 10 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 // end of file