// MECF digital net of base q, with q^T points. If q=p^e the net is represented as net of base p with e-times more columns and rows Reference: Y. Edel, RS-Nets in prepertation 13 // b (base) 7 // numCols 7 // numRows // outDigits= numRows 62748517 // numPoints (=b^{numCols}) 13 // dim // 7 // Stregth // in class DigitalNet // genMat[i][j] should be the j-th entry of the i-th row below // 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1 0 1 0 0 // 2 1 0 0 0 0 0 0 2 0 0 0 0 0 12 4 0 0 8 0 0 0 8 0 4 0 0 0 0 3 2 0 0 0 0 0 6 4 0 0 0 6 0 12 8 8 0 3 0 0 // 3 1 0 0 0 0 0 0 4 0 0 0 0 0 1 3 0 0 12 0 0 0 12 0 3 0 0 0 0 9 4 0 0 0 0 0 10 3 0 0 0 10 0 1 12 12 0 9 0 0 // 4 1 0 0 0 0 0 0 8 0 0 0 0 0 12 12 0 0 5 0 0 0 5 0 12 0 0 0 0 1 8 0 0 0 0 0 8 12 0 0 0 8 0 12 5 5 0 1 0 0 // 5 1 0 0 0 0 0 0 3 0 0 0 0 0 1 9 0 0 1 0 0 0 1 0 9 0 0 0 0 3 3 0 0 0 0 0 9 9 0 0 0 9 0 1 1 1 0 3 0 0 // 6 1 0 0 0 0 0 0 6 0 0 0 0 0 12 10 0 0 8 0 0 0 8 0 10 0 0 0 0 9 6 0 0 0 0 0 2 10 0 0 0 2 0 12 8 8 0 9 0 0 // 7 1 0 0 0 0 0 0 12 0 0 0 0 0 1 1 0 0 12 0 0 0 12 0 1 0 0 0 0 1 12 0 0 0 0 0 12 1 0 0 0 12 0 1 12 12 0 1 0 0 // 8 1 0 0 0 0 0 0 11 0 0 0 0 0 12 4 0 0 5 0 0 0 5 0 4 0 0 0 0 3 11 0 0 0 0 0 7 4 0 0 0 7 0 12 5 5 0 3 0 0 // 9 1 0 0 0 0 0 0 9 0 0 0 0 0 1 3 0 0 1 0 0 0 1 0 3 0 0 0 0 9 9 0 0 0 0 0 3 3 0 0 0 3 0 1 1 1 0 9 0 0 // 10 1 0 0 0 0 0 0 5 0 0 0 0 0 12 12 0 0 8 0 0 0 8 0 12 0 0 0 0 1 5 0 0 0 0 0 5 12 0 0 0 5 0 12 8 8 0 1 0 0 // 11 1 0 0 0 0 0 0 10 0 0 0 0 0 1 9 0 0 12 0 0 0 12 0 9 0 0 0 0 3 10 0 0 0 0 0 4 9 0 0 0 4 0 1 12 12 0 3 0 0 // 12 1 0 0 0 0 0 0 7 0 0 0 0 0 12 10 0 0 5 0 0 0 5 0 10 0 0 0 0 9 7 0 0 0 0 0 11 10 0 0 0 11 0 12 5 5 0 9 0 0 // 13 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 // end of file