// MECF digital net of base q, with q^T points. If q=p^e the net is represented as net of base p with e-times more columns and rows Reference: Y. Edel, RS-Nets in prepertation // base q nets transformed so that they can be used as if they were DigitalNetBase2 // details: an Element "a_i X^i" is represented as binary eq-tuple "a_i" // each "column" c of the GF(q) generator is replaced by the eq columns X^i c // so we have the eq-times numbers of columns and rows as in the GF(q) matrix // Note, the strength remains the GF(q) strength k, but there are many projections have strength in the range k to eq*k // check if everything that involves GF(q) multiplication (e.g. scrambling) gives the desired result 2 // b (base) 16 // numCols 16 // numRows // outDigits= numRows 65536 // numPoints (=b^{numCols}) 16 // dim // 4 // Stregth, see comment above // in class DigitalNetBase2 // genMat[i] should be the i-th number below // 1 134217728 268435456 536870912 1073741824 134250496 268500992 537001984 1074003968 142606336 285212672 570425344 1140850688 143130624 286261248 572522496 1145044992 // 2 134217728 268435456 536870912 1073741824 268697600 536969216 1073938432 403046400 553648128 1107296256 469762048 830472192 1109393408 473956352 832045056 1664090112 // 3 134217728 268435456 536870912 1073741824 537264128 1074102272 402817024 805634048 436207616 872415232 1635778560 1526726656 1637351424 1529872384 778043392 1440219136 // 4 134217728 268435456 536870912 1073741824 1074069504 402882560 805765120 1611104256 1677721600 1501560832 721420288 1442840576 1449132032 1037565952 1923612672 2102394880 // 5 134217728 268435456 536870912 1073741824 403144704 805732352 1610907648 1476427776 696254464 1392508928 1040187392 1971322880 2057830400 1833959424 1270349824 258998272 // 6 134217728 268435456 536870912 1073741824 805339136 1610678272 1476526080 671350784 989855744 1979711488 2105540608 1786773504 196608000 393216000 670564352 1189609472 // 7 134217728 268435456 536870912 1073741824 1610874880 1476493312 671285248 1342570496 2113929216 1837105152 1249902592 218103808 1207435264 518520832 885522432 1619525632 // 8 134217728 268435456 536870912 1073741824 1476788224 671449088 1342341120 939851776 1300234240 176160768 352321536 595591168 1690828800 1485307904 688914432 1377828864 // 9 134217728 268435456 536870912 1073741824 671416320 1342406656 939982848 1879539712 310378496 620756992 1132462080 520093696 1360003072 975175680 1950351360 2040004608 // 10 134217728 268435456 536870912 1073741824 1342668800 939950080 1879343104 2013298688 1157627904 461373440 922746880 1736441856 2084569088 1771569152 1261436928 241172480 // 11 134217728 268435456 536870912 1073741824 939556864 1879113728 2013396992 1745092608 864026624 1728053248 1602224128 780140544 187695104 375390208 634912768 1118306304 // 12 134217728 268435456 536870912 1073741824 1879310336 2013364224 1745027072 1208352768 1593835520 796917760 1451229184 1015021568 1171783680 447217664 894435328 1673003008 // 13 134217728 268435456 536870912 1073741824 2013659136 1745190912 1208123392 134545408 1468006400 1048576000 1954545664 2021654528 1699741696 1538785280 795869184 1475870720 // 14 134217728 268435456 536870912 1073741824 1745158144 1208188928 134676480 268926976 1988100096 2088763392 1753219072 1224736768 1466957824 1073217536 1994915840 2093481984 // 15 134217728 268435456 536870912 1073741824 1208451072 134643712 268730368 536903680 1820327936 1216348160 150994944 301989888 2129133568 1825046528 1216872448 152043520 // 16 134217728 268435456 536870912 1073741824 32768 65536 131072 262144 8388608 16777216 33554432 67108864 524288 1048576 2097152 4194304 // end of file