// MECF digital net of base q, with q^T points. If q=p^e the net is represented as net of base p with e-times more columns and rows Reference: Y. Edel, RS-Nets in prepertation // base q nets transformed so that they can be used as if they were DigitalNetBase2 // details: an Element "a_i X^i" is represented as binary eq-tuple "a_i" // each "column" c of the GF(q) generator is replaced by the eq columns X^i c // so we have the eq-times numbers of columns and rows as in the GF(q) matrix // Note, the strength remains the GF(q) strength k, but there are many projections have strength in the range k to eq*k // check if everything that involves GF(q) multiplication (e.g. scrambling) gives the desired result 2 // b (base) 20 // numCols 20 // numRows // outDigits= numRows 1048576 // numPoints (=b^{numCols}) 16 // dim // 5 // Stregth, see comment above // in class DigitalNetBase2 // genMat[i] should be the i-th number below // 1 134217728 268435456 536870912 1073741824 134219776 268439552 536879104 1073758208 134742016 269484032 538968064 1077936128 142606336 285212672 570425344 1140850688 142639104 285278208 570556416 1141112832 // 2 134217728 268435456 536870912 1073741824 268441600 536883200 1073766400 402675712 538968064 1077936128 404226048 808452096 1090519040 436207616 872415232 1635778560 436469760 872513536 1635975168 1527119872 // 3 134217728 268435456 536870912 1073741824 536881152 1073762304 402667520 805335040 404226048 808452096 1616904192 1482162176 1644167168 1543503872 696254464 1392508928 696647680 1392869376 1040351232 1971650560 // 4 134217728 268435456 536870912 1073741824 1073772544 402679808 805324800 1610614784 1616904192 1482162176 673710080 1347420160 1409286144 964689920 1929379840 2113929216 2114256896 1837334528 1250361344 218595328 // 5 134217728 268435456 536870912 1073741824 402657280 805314560 1610629120 1476401152 673710080 1347420160 943194112 1886388224 2038431744 1795162112 1308622848 226492416 310870016 621182976 1132756992 520126464 // 6 134217728 268435456 536870912 1073741824 805318656 1610637312 1476417536 671098880 943194112 1886388224 2021130240 1751646208 184549376 369098752 629145600 1115684864 864059392 1728118784 1602355200 780402688 // 7 134217728 268435456 536870912 1073741824 1610633216 1476409344 671117312 1342208000 2021130240 1751646208 1212678144 134742016 1174405120 494927872 847249408 1694498816 1468268544 1048674304 1954742272 2022047744 // 8 134217728 268435456 536870912 1073741824 1476421632 671107072 1342179328 939528192 1212678144 134742016 269484032 538968064 1702887424 1518338048 754974720 1400897536 1820721152 1216708608 151158784 302317568 // 9 134217728 268435456 536870912 1073741824 671096832 1342193664 939530240 1879060480 269484032 538968064 1077936128 404226048 1384120320 1023410176 1937768448 2130706432 553975808 1107525632 470220800 830963712 // 10 134217728 268435456 536870912 1073741824 1342201856 939546624 1879058432 2013286400 1077936128 404226048 808452096 1616904192 2097152000 1803550720 1325400064 260046848 1678213120 1501986816 721715200 1442873344 // 11 134217728 268435456 536870912 1073741824 939538432 1879076864 2013296640 1744857088 808452096 1616904192 1482162176 673710080 192937984 385875968 662700032 1182793728 989888512 1979777024 2105671680 1787035648 // 12 134217728 268435456 536870912 1073741824 1879066624 2013267968 1744834560 1207967744 1482162176 673710080 1347420160 943194112 1191182336 528482304 914358272 1686110208 1300496384 176259072 352518144 595984384 // 13 134217728 268435456 536870912 1073741824 2013282304 1744836608 1207971840 134242304 1347420160 943194112 1886388224 2021130240 1736441856 1585446912 746586112 1350565888 1158021120 461733888 922910720 1736769536 // 14 134217728 268435456 536870912 1073741824 1744852992 1207969792 134238208 268449792 1886388224 2021130240 1751646208 1212678144 1451229184 1015021568 1887436800 2030043136 1594163200 797147136 1451687936 1015513088 // 15 134217728 268435456 536870912 1073741824 1207988224 134248448 268462080 536889344 1751646208 1212678144 134742016 269484032 2088763392 1753219072 1224736768 167772160 1988591616 2089189376 1753513984 1224769536 // 16 134217728 268435456 536870912 1073741824 2048 4096 8192 16384 524288 1048576 2097152 4194304 8388608 16777216 33554432 67108864 32768 65536 131072 262144 // end of file