// MECF digital net of base q, with q^T points. If q=p^e the net is represented as net of base p with e-times more columns and rows Reference: Y. Edel, RS-Nets in prepertation 23 // b (base) 5 // numCols 5 // numRows // outDigits= numRows 6436343 // numPoints (=b^{numCols}) 23 // dim // 5 // Stregth // in class DigitalNet // genMat[i][j] should be the j-th entry of the i-th row below // 1 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 0 1 1 0 1 0 // 2 1 0 0 0 0 5 0 0 0 4 2 0 2 0 0 10 5 0 0 0 4 2 0 10 0 // 3 1 0 0 0 0 2 0 0 0 16 4 0 4 0 0 8 2 0 0 0 16 4 0 8 0 // 4 1 0 0 0 0 10 0 0 0 18 8 0 8 0 0 11 10 0 0 0 18 8 0 11 0 // 5 1 0 0 0 0 4 0 0 0 3 16 0 16 0 0 18 4 0 0 0 3 16 0 18 0 // 6 1 0 0 0 0 20 0 0 0 12 9 0 9 0 0 19 20 0 0 0 12 9 0 19 0 // 7 1 0 0 0 0 8 0 0 0 2 18 0 18 0 0 6 8 0 0 0 2 18 0 6 0 // 8 1 0 0 0 0 17 0 0 0 8 13 0 13 0 0 14 17 0 0 0 8 13 0 14 0 // 9 1 0 0 0 0 16 0 0 0 9 3 0 3 0 0 2 16 0 0 0 9 3 0 2 0 // 10 1 0 0 0 0 11 0 0 0 13 6 0 6 0 0 20 11 0 0 0 13 6 0 20 0 // 11 1 0 0 0 0 9 0 0 0 6 12 0 12 0 0 16 9 0 0 0 6 12 0 16 0 // 12 1 0 0 0 0 22 0 0 0 1 1 0 1 0 0 22 22 0 0 0 1 1 0 22 0 // 13 1 0 0 0 0 18 0 0 0 4 2 0 2 0 0 13 18 0 0 0 4 2 0 13 0 // 14 1 0 0 0 0 21 0 0 0 16 4 0 4 0 0 15 21 0 0 0 16 4 0 15 0 // 15 1 0 0 0 0 13 0 0 0 18 8 0 8 0 0 12 13 0 0 0 18 8 0 12 0 // 16 1 0 0 0 0 19 0 0 0 3 16 0 16 0 0 5 19 0 0 0 3 16 0 5 0 // 17 1 0 0 0 0 3 0 0 0 12 9 0 9 0 0 4 3 0 0 0 12 9 0 4 0 // 18 1 0 0 0 0 15 0 0 0 2 18 0 18 0 0 17 15 0 0 0 2 18 0 17 0 // 19 1 0 0 0 0 6 0 0 0 8 13 0 13 0 0 9 6 0 0 0 8 13 0 9 0 // 20 1 0 0 0 0 7 0 0 0 9 3 0 3 0 0 21 7 0 0 0 9 3 0 21 0 // 21 1 0 0 0 0 12 0 0 0 13 6 0 6 0 0 3 12 0 0 0 13 6 0 3 0 // 22 1 0 0 0 0 14 0 0 0 6 12 0 12 0 0 7 14 0 0 0 6 12 0 7 0 // 23 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 // end of file