// MECF digital net of base q, with q^T points. If q=p^e the net is represented as net of base p with e-times more columns and rows Reference: Y. Edel, RS-Nets in prepertation // base 4 nets transformed so that they can be used as if they were DigitalNetBase2 // details: an Element "a+ b\omega" is represented as binary pair "a b" // each "column" c of the GF(4) generator is replaced by the two columns c, \omega c // so we have the double numbers of columns and rows as in the GF(4) matrix // Note, the strength remains the GF(4) strength k, but there are many projections have strength in the range k to 2k // check if everything that involves GF(4) multiplication (e.g. scrambling) gives the desired result 2 // b (base) 8 // numCols 8 // numRows // outDigits= numRows 256 // numPoints (=b^{numCols}) 4 // dim // 4 // Stregth, see comment above // in class DigitalNetBase2 // genMat[i] should be the i-th number below // 1 536870912 1073741824 545259520 1090519040 671088640 1342177280 704643072 1409286144 // 2 536870912 1073741824 1082130432 1627389952 1879048192 939524096 1040187392 1241513984 // 3 536870912 1073741824 1619001344 553648128 1476395008 1744830464 872415232 1577058304 // 4 536870912 1073741824 8388608 16777216 134217728 268435456 33554432 67108864 // end of file