// MECF digital net of base q, with q^T points. If q=p^e the net is represented as net of base p with e-times more columns and rows Reference: Y. Edel, RS-Nets in prepertation // base q nets transformed so that they can be used as if they were DigitalNetBase2 // details: an Element "a_i X^i" is represented as binary eq-tuple "a_i" // each "column" c of the GF(q) generator is replaced by the eq columns X^i c // so we have the eq-times numbers of columns and rows as in the GF(q) matrix // Note, the strength remains the GF(q) strength k, but there are many projections have strength in the range k to eq*k // check if everything that involves GF(q) multiplication (e.g. scrambling) gives the desired result 2 // b (base) 6 // numCols 6 // numRows // outDigits= numRows 64 // numPoints (=b^{numCols}) 8 // dim // 2 // Stregth, see comment above // in class DigitalNetBase2 // genMat[i] should be the i-th number below // 1 268435456 536870912 1073741824 301989888 603979776 1207959552 // 2 268435456 536870912 1073741824 603979776 1207959552 905969664 // 3 268435456 536870912 1073741824 1207959552 905969664 1811939328 // 4 268435456 536870912 1073741824 905969664 1811939328 2113929216 // 5 268435456 536870912 1073741824 1811939328 2113929216 1509949440 // 6 268435456 536870912 1073741824 2113929216 1509949440 301989888 // 7 268435456 536870912 1073741824 1509949440 301989888 603979776 // 8 268435456 536870912 1073741824 33554432 67108864 134217728 // end of file