// MECF digital net of base q, with q^T points. If q=p^e the net is represented as net of base p with e-times more columns and rows Reference: Y. Edel, RS-Nets in prepertation // base q nets transformed so that they can be used as if they were DigitalNetBase2 // details: an Element "a_i X^i" is represented as binary eq-tuple "a_i" // each "column" c of the GF(q) generator is replaced by the eq columns X^i c // so we have the eq-times numbers of columns and rows as in the GF(q) matrix // Note, the strength remains the GF(q) strength k, but there are many projections have strength in the range k to eq*k // check if everything that involves GF(q) multiplication (e.g. scrambling) gives the desired result 2 // b (base) 12 // numCols 12 // numRows // outDigits= numRows 4096 // numPoints (=b^{numCols}) 8 // dim // 4 // Stregth, see comment above // in class DigitalNetBase2 // genMat[i] should be the i-th number below // 1 268435456 536870912 1073741824 268959744 537919488 1075838976 301989888 603979776 1207959552 306184192 612368384 1224736768 // 2 268435456 536870912 1073741824 538443776 1076887552 808976384 1140850688 939524096 1711276032 956301312 1723858944 2105540608 // 3 268435456 536870912 1073741824 1076363264 805830656 1611661312 1744830464 1979711488 1543503872 1568669696 532676608 725614592 // 4 268435456 536870912 1073741824 807403520 1612185600 1882193920 1442840576 469762048 771751936 1262485504 843055104 1686110208 // 5 268435456 536870912 1073741824 1614282752 1881669632 1342701568 738197504 1308622848 973078528 1954545664 1493172224 381681664 // 6 268435456 536870912 1073741824 1880096768 1344274432 270008320 1040187392 1778384896 1912602624 650117120 1300234240 1069547520 // 7 268435456 536870912 1073741824 1345323008 272105472 539492352 2046820352 1375731712 335544320 1874853888 2067791872 1379926016 // 8 268435456 536870912 1073741824 524288 1048576 2097152 33554432 67108864 134217728 4194304 8388608 16777216 // end of file