
SSJ User’s Guide

Package markovchain

Structures for the Simulation of Simple Markov chains

Version: February 6, 2006

This package offers predefined tools for the simulation of simple Markov chains with
Monte Carlo and randomized quasi-Monte Carlo methods. It was developed in part to
experiment with the array-RQMC method studied in [1, 2]. In this method, an array of n
copies of a Markov chain are simulated in parallel, using RQMC at each step of the chain to
induce negative dependence across the copies to reduce the variance of the global average of
some performance measure.

February 6, 2006 CONTENTS 1

Contents

MarkovChain . 2

MarkovChainComparable . 4

MarkovChainComparableStop . 5

MarkovChainDouble . 6

MarkovChainDoubleStop . 8

ArrayOfComparableChains . 9

ArrayOfComparableChainsStop . 11

ArrayOfDoubleChains . 12

ArrayOfDoubleChainsStop . 13

LeftScrambledSobolSequence . 14

LeftScrambledFaureSequence . 15

February 6, 2006 2

MarkovChain

This class defines a generic Markov chain and provides basic tools to simulate it for a given
number of steps and recover the performance measure. Chains can be cloned, so one can
simulate many replicates in parallel. In a concrete subclass, it suffices to implement the
three abstract methods initialState, nextStep, and getPerformance to get things going.

package umontreal.iro.lecuyer.markovchain;

public abstract class MarkovChain implements Cloneable

Abstract methods

public abstract void initialState ()

Sets the Markov chain to its (deterministic) initial state and initializes the collectors for the
performance measure, ready to start a simulation.

public abstract void nextStep (RandomStream stream)

Simulates one more step of the chain, from its current state, using stream for the randomness.

public abstract double getPerformance ()

Returns the performance measure (total or average cost or gain) so far, for the current
simulation run.

Other methods

public Object clone () throws CloneNotSupportedException

Returns a clone of the chain.

public void simulSteps (int numSteps, RandomStream stream)

Starts a new simulation run and simulates numSteps steps of the Markov chain, using the
given stream.

public void simulRuns (int n, int numSteps, RandomStream stream,
Tally statRuns)

Performs n simulation runs of the chain, for numSteps steps per run, using the given stream.
The statistics on the performance for the n runs are placed in statRuns.

public void simulRunsWithSubstreams (int n, int numSteps,
RandomStream stream, Tally statRuns)

Same as simulRuns, except that the stream is first reset to its initial seed and then reset to
the next substream after each run.

February 6, 2006 MarkovChain 3

public void simulRQMC (PointSet p, int m, int numSteps,
RandomStream noise, Tally statReps)

Performs m independent replicates of n simulation runs of the chain, using the points of the
RQMC point set p, where n is the number of points in p. Each run goes for numSteps steps.
For each replicate, a randomization is added to the point set using the stream noise, an
iterator is created, and each run uses a different substream of this iterator (i.e., a different
point). The statistics on the performance for the m independent replications are placed in
statReps.

public String simulRunsFormat (int n, int numSteps, RandomStream stream,
Tally statRuns)

Same as simulRuns but also returns the results as a formatted string.

public String simulRunsWithSubstreamsFormat (int n, int numSteps,
RandomStream stream, Tally statRuns)

Same as simulRunsWithSubstreams but also returns the results as a formatted string.

public String simulRQMCFormat (PointSet p, int m, int numSteps,
RandomStream noise, Tally statReps)

Same as simulRQMC but also returns the results as a formatted string.

public String testImprovementRQMC (PointSet p, int m, int numSteps,
RandomStream noise, double varMC, Tally statReps)

Similar to simulRQMCFormat, but also gives the variance improvement factor with respect
to MC, assuming that varMC gives the variance per run for MC.

public String formatResults (Tally stat)

Returns a string that contains the mean, the variance, and a 90% confidence interval for
stat.

public String formatResultsRQMC (Tally stat, int numPoints)

Returns a string that contains the mean, the variance multiplied by numPoints, and a 90%
confidence interval for stat.

February 6, 2006 4

MarkovChainComparable

A subclass of Markov chain for which there is a total ordering between the states. A list of
Markov chains can then be sorted according to their states at a given step, using sort.

package umontreal.iro.lecuyer.markovchain;

public abstract class MarkovChainComparable extends MarkovChain
implements Comparable

Methods

public abstract int compareTo (Object other)

If the current state of this chain is less than that of other, returns −1; if it is equal, returns
0, otherwise returns 1.

February 6, 2006 5

MarkovChainComparableStop

A generic Markov chain which can stop at a (possibly random) stopping time. When the
stopping time is reached, the compareTo method should conclude that the state of this chain
is larger than that of any other chain that has not yet reached its stopping time (so the chain
should be placed in a special state considered larger than any other state).

Each chain has a boolean indicator stopped that should be set to false before starting
the simulation and to true (in the nextStep method) when the stopping time is reached.

package umontreal.iro.lecuyer.markovchain;

public abstract class MarkovChainComparableStop extends MarkovChainComparable

Methods

public void simulSteps (int numSteps, RandomStream stream)

Starts a new simulation run and stops whenever numSteps are done or the stopping time is
reached (the first of these two events), using the given stream.

public void simulSteps (RandomStream stream)

Starts a new simulation run and simulates until the stopping time is reached, using the given
stream. Same as simulSteps (Integer.MAX_VALUE, stream)

February 6, 2006 6

MarkovChainDouble

A special kind of Markov chain whose state space is a subset of the real numbers. Methods
are provided to initialize the chain, advance by a number of steps, and get statistics on the
performance. The method nextStepDouble makes it possible to simulate several copies of
this chain in parallel without cloning and without maintaining the state of the chain in a
local variable. The states can be maintained in an external vector and at each step, one
passes the current state to the method nextStepDouble, which returns the next state. This
is exploited in the implementation of ArrayOfDoubleChains.

The methods initialState, nextStep, getPerformance and compareTo, which are
abstract in MarkovChainComparable, all have a default implementation that uses inter-
nal variables to memorize the state, step number and total number of steps. They up-
date and use these variables by invoking the initialStateDouble, nextStepDouble, and
getPerformance(numSteps) methods implemented in subclasses. This is used internally by
other methods in MarkovChain. On the other hand, the abstract methods specified in the
present class do not necessarily update these variables.

package umontreal.iro.lecuyer.markovchain;

public abstract class MarkovChainDouble extends MarkovChainComparable

Abstract Methods

public abstract double initialStateDouble ()

Same as initialState() but also returns the initial state.

public abstract double nextStepDouble (int step, double s,
RandomStream stream)

Advances the chain by one step, from state s to the next state and using the current stream,
assuming that we are at step step. Saves and returns the new state, but not necessarily the
step number. The first call should be with step = 0.

public abstract void initStats ()

Initializes the statistics (collector) for this chain.

public abstract double getPerformance (int numSteps)

Returns the performance measure accumulated so far, which may depend on the number of
steps.

February 6, 2006 MarkovChainDouble 7

Other Methods

public double simulStepsDouble (int numSteps, RandomStream stream)

After invoking InitStats starts a new simulation run, simulates numSteps steps of the
Markov chain using the given stream, and returns the state. The simulSteps method does
the same, but returns nothing.

February 6, 2006 8

MarkovChainDoubleStop

Defines a generic Markov chain over the real numbers, where the number of steps of the
chain is a (possibly random) stopping time. When the stopping time is reached, the state of
the chain is set to Double.POSITIVE_INFINITY.

package umontreal.iro.lecuyer.markovchain;

public abstract class MarkovChainDoubleStop extends MarkovChainDouble

Methods

public double getPerformance ()

Can be used when the performance does not depend on the number of steps.

public double simulStepsDouble (int numSteps, RandomStream stream)

Starts a new simulation run and stops whenever numSteps are done or the stopping time is
reached (the first of these two events), using the given stream.

public void simulSteps (int numSteps, RandomStream stream)

Same as simulStepsDouble (numSteps, stream), but returns nothing.

public void simulSteps (RandomStream stream)

Starts a new simulation run and simulates until the stopping time is reached, using the given
stream. Same as simulSteps (Integer.MAX_VALUE, stream).

public void simulRQMC (PointSet p, int m, int numSteps,
RandomStream noise, Tally statReps)

Same as MarkovChain.simulRQMC, except the simulation of any given chain stops whenever
it reaches its stopping time.

February 6, 2006 9

ArrayOfComparableChains

Permits one to simulate an array of comparable Markov chains using the array-RQMC
method of [2], where n copies of the chain are simulated in parallel, sorted in increasing
order of their states at each step of the chain, and where the transitions of the n chains at
any given step are determined from the n points of a d-dimensional RQMC point set, where
d is the number of uniforms required at each step of the chain.

package umontreal.iro.lecuyer.markovchain;

public class ArrayOfComparableChains

Constructor

public ArrayOfComparableChains (MarkovChainComparable baseChain)

Creates an array of the comparable chain baseChain. The method makeCopies must be
called to make the copies.

Methods

public void makeCopies (int n)

Creates n copies (clones) of the chain baseChain and put them in a list, ready for the array
RQMC simulation.

public double simulArrayRQMC (PointSet p, int numSteps,
RandomStream noise)

Simulates the n copies of the chain, numSteps steps for each copy, using point set p, where n
is the current number of copies (clones) of the chain and is assumed to equal the number of
points in p. At each step, the points are randomized using noise. The dimension of p must
be at least as large as the number of uniforms required to simulate one step of the chain.
Returns the average performance per run.

public String simulReplicatesArrayRQMC (PointSet p, int m, int numSteps,
RandomStream noise, Tally statReps)

Performs m independent replications of an array-RQMC simulation as in simulArrayRQMC.
The statistics on the m corresponding averages are collected in statReps and the results are
also returned in a string.

public String simulReplicatesArrayRQMC2 (PointSet p, int m, int numSteps,
PointSet p2, RandomStream noise, Tally statReps)

Similar to simulReplicatesArrayRQMC, except that an iterator on a randomized version
of p2 is used in place of the noise stream to randomize p at the different steps of the
chain. The dimension of p2 must equal the number of uniforms required to randomize p,
and its number of points must equal the number of steps in the chain. One point of p2 is

February 6, 2006 ArrayOfComparableChains 10

used to randomize p at each step. The stream noise is used to randomize p2 between the
independent replications.

public String testImprovementArrayRQMC (PointSet p, int m, int numSteps,
RandomStream noise, double varMC,
Tally statReps)

Similar to simulReplicatesArrayRQMC, but also gives the variance improvement factor with
respect to MC, assuming that varMC gives the variance per run for MC.

public String testImprovementArrayRQMC2 (PointSet p, int m, int numSteps,
PointSet p2, RandomStream noise, double varMC,
Tally statReps)

Similar to simulReplicatesArrayRQMC2, but also gives the variance improvement factor
with respect to MC, assuming that varMC gives the variance per run for MC.

February 6, 2006 11

ArrayOfComparableChainsStop

Similar to ArrayOfComparableChains, except that each chain stops whenever it reaches its
stopping time. Simulation and sorting (at each step) is continued only for the chains that
have not yet reached their stopping time. This is pursued until either all chains have stopped
or the maximum number of steps has been reached.

package umontreal.iro.lecuyer.markovchain;

public class ArrayOfComparableChainsStop extends ArrayOfComparableChains

Constructor

public ArrayOfComparableChainsStop (MarkovChainComparableStop baseChain)

Methods

public double simulArrayRQMC (PointSet p, int numSteps,
RandomStream noise)

The simulation of each chain stops whenever it reaches its stopping time or numSteps steps.
To simulate each copy of the chain until the stopping time is reached, it suffices to set
numSteps = Integer.MAX_VALUE.

February 6, 2006 12

ArrayOfDoubleChains

Similar to ArrayOfComparableChains, except that instead of working with n clones of a
MarkovChain, we use a single MarkovChainDouble object for all the chains. The states of
the chains are maintained in an array of real numbers (double) and the nextStepDouble

method is used to advance each chain by one step. The performance measure is assumed
to be additive over all steps of all copies of the chain. The sum is cumulated in a single
accumulator for all copies of the chain, updated at each step of each copy.

package umontreal.iro.lecuyer.markovchain;

public class ArrayOfDoubleChains extends ArrayOfComparableChains

Constructor

public ArrayOfDoubleChains (MarkovChainDouble baseChain)

Creates a virtual array for the chain baseChain. The method makeCopies must be called
to make the copies.

Methods

public void makeCopies (int n)

Creates the vector of states for n copies of the base chain.

February 6, 2006 13

ArrayOfDoubleChainsStop

Similar to ArrayOfDoubleChains, except that each chain stops whenever it reaches its stop-
ping time. When simulating the array of chains, any chain that has reached its stopping
time is put in the state ∞. Simulation and sorting (at each step) is continued only for the
chains that have not yet reached their stopping time. This is pursued until either all chains
have stopped or the maximum number of steps has been reached.

package umontreal.iro.lecuyer.markovchain;

public class ArrayOfDoubleChainsStop extends ArrayOfDoubleChains

Constructor

public ArrayOfDoubleChainsStop (MarkovChainDoubleStop baseChain)

Methods

public double simulArrayRQMC (PointSet p, int numSteps,
RandomStream noise)

Here, the simulation of a chain stops whenever it reaches its stopping time or numSteps
steps. To simulate each copy of the chain until the stopping time is reached, it suffices to
set numSteps = Integer.MAX_VALUE.

February 6, 2006 14

LeftScrambledSobolSequence

A Sobol sequence randomized by a left matrix scramble followed by a digital random shift.

package umontreal.iro.lecuyer.markovchain;

public class LeftScrambledSobolSequence extends SobolSequence

Constructor

public LeftScrambledSobolSequence (int k, int w, int dim)

Same as SobolSequence(k, w, dim), except that its randomize method will do a left
matrix scramble followed by a random digital shift.

February 6, 2006 15

LeftScrambledFaureSequence

A Faure sequence randomized by a left matrix scramble followed by a digital random shift.

package umontreal.iro.lecuyer.markovchain;

public class LeftScrambledFaureSequence extends FaureSequence

Constructor

public LeftScrambledFaureSequence (int b, int k, int r, int w, int dim)

Same as FaureSequence(b, k, r, w, dim), except that its randomize method will do a
left matrix scramble followed by a random digital shift.

February 6, 2006 REFERENCES 16

References

[1] C. Lécot and B. Tuffin. Quasi-Monte Carlo methods for estimating transient measures of
discrete time Markov chains. In H. Niederreiter, editor, Monte Carlo and Quasi-Monte
Carlo Methods 2002, pages 329–343, Berlin, 2004. Springer-Verlag.

[2] P. L’Ecuyer, C. Lécot, and B. Tuffin. Randomized quasi-Monte Carlo simulation of
Markov chains with an ordered state space. In H. Niederreiter and D. Talay, editors,
Monte Carlo and Quasi-Monte Carlo Methods 2004, 2005. To appear.

	MarkovChain
	MarkovChainComparable
	MarkovChainComparableStop
	MarkovChainDouble
	MarkovChainDoubleStop
	ArrayOfComparableChains
	ArrayOfComparableChainsStop
	ArrayOfDoubleChains
	ArrayOfDoubleChainsStop
	LeftScrambledSobolSequence
	LeftScrambledFaureSequence

