SSJ User’s Guide

Package randvar

Generating Non-Uniform Random Numbers

Version: May 21, 2008

This package implements random number generators from various standard distributions.
It also provides an interface to the C package UNURAN.

CONTENTS i

Contents
Overviewl e 2
|General Classes| 4
[RandomVariateGenl o 4
[RandomVariateGenlntl 5
[RandomVariateGenWithCachel o 0oL 6
|Generators for Discrete Distributions over the Integers| 8
BinomialGenl oo
(BinomialConvolutionGenl oo Lo 9
(GeometricGenl. 10
[HypergeometricGen|. 11
[LogarithmicGen|. 12
[NegativeBinomialGen|. oo o 13
[PascalConvolutionGen| 14
PoiSsonGenl . . .« « ¢ v v e 15
[PoissonTIACGen| o oo o o 16
UniformIntGenl 17
G for Conti Disitbitions 18
BetaGenl oo 18
[BetaRejectionLoglogisticGen|.o 19
[BetaStratiiedRejectionGen|o 20
[BetaSymmetricalGenlo 21
[BetaSymmetricalPolarGen|o 22
[BetaSymmetricalBestGen|o 23
auchyGen| 24
ChiGenl e 25
[ChiRatioOfUniformsGenl o000 26
[ChiSquareGen|. 27
FrlangGenlo 28
[ErlangConvolutionGen|o 29

CONTENTS 1

31
32
33
GammaGenl 34
(GammaAcceptanceRejectionGen|o 35
(GammaRejectionLoglogisticGen| 0000000 36
[HyperbolicSecantGen|. 37
MverseGaussianGenlo 38
[KernelDensityGen| 39
[KernelDensityVarCorrectGen| 41
....................................... 42
....................................... 43
[LoglogisticGen| 44
[LognormalGenl 45
[LognormalSpecialGen| oo 46
NormalGenl o 47
48
49
50
51
52
53
54
5}
56
57
58
59
60
60
61
[(UnuranEmpiricall 62

[Unurankxception|o 63

CONTENTS 2

Overview

This package provides a collection of classes for non-uniform random variate generation,
primarily from standard distributions.

Each non-uniform random variate generator requires at least one RandomStream object
(from package rng), used to generate the underlying uniform random numbers. With some
variate generation methods (e.g., the rejection method), the number of uniforms required
to get a single non-uniform variate varies from one call to the next. In that case, an aux-
iliary stream is often used to preserve the synchronization between random variates when
implementing variance-reduction methods [23]. The main random number stream is called a
fixed number of times per non-uniform variate generation. If more uniform random numbers
are needed, they are obtained from the auxiliary stream. For these types of generators, two
RandomStream objects should be passed to the constructor. Otherwise, by default, the same
stream will be used for all uniforms.

The generic classes RandomVariateGen and RandomVariateGenInt permit one to con-
struct a random variate generator from a random stream and an arbitrary distribution
(from the package Distribution). To generate random variates by inversion from an
arbitrary distribution over the real numbers, using a given random stream, one can con-
struct a RandomVariateGen object with the desired (previously created) Distribution and
RandomStream objects, and then call its nextDouble method. For discrete distributions over
the integers, one can construct a RandomVariateGenInt object that contains the desired
DiscreteDistributionInt and RandomStream, and call its nextInt method. By default,
these generators simply call the inverseF method from the specified distribution object.

To generate random variates by other methods than inversion, one can use specialized
classes that extend RandomVariateGen or RandomVariateGenInt. Such classes are provided
for a variety of standard discrete and continuous distributions. For example, NormalGen
extends RandomVariateGen and provides normal random variate generators based on inver-
sion. Subclasses of NormalGen implement various non-inversion normal variate generation
methods. To generate random variates with a specific method, it suffices to invoke the
constructor of the appropriate subclass and then call its nextDouble method.

In most cases, the specialized classes maintain local copies of the distribution parameters
and use them for variate generation. If the parameters of the contained distribution objects
are later modified, this may lead to inconsistencies: the variate generator object will keep
using the old values. In fact, the constructors of the specialized classes often precompute
constants and tables based on these parameter values, which would have to be recomputed
if the parameters are changed. On the other hand, the generic classes RandomVariateGen
and RandomVariateGenInt call directly the inverseF method of the contained distribution
object, so they will always use the new parameter values whenever the parameters in the
distribution object are changed.

o

! From Pierre: It seems to me that in the future, only the constructors of RandomVariateGen and
RandomVariateGenInt should require a distribution object. In the subclasses, we should directly pass the
required parameters and there would not necessarily be a distribution object created. We should examine
the implications of such a change.

CONTENTS 3

Static methods in the specialized classes allow the generation of random variates from
specific distributions without constructing a RandomVariateGen object.

This package also provides an interface to the UNURAN (Universal Non-Uniform RAN-
dom number generators) package, a rich library of C functions designed and implemented by
the ARVAG (Automatic Random VAriate Generation) project group in Vienna [24]. This
interface can be used to access distributions or generation methods not available directly in
SSJ. To get a UNURAN generator, it suffices to instantiate one of the UNURAN interface
classes: UnuranDiscretelInt for discrete random variates, UnuranContinuous for continuous
ones (in one dimension), and UnuranEmpirical for quasi-empirical distributions based on
experimental data. The type of distribution and its parameters are specified to UNURAN
via its String API (see the UNURAN documentation). Only univariate distributions are
supported because the UNURAN String API does not support the multivariate ones yet.

In the UNURAN interface classes, nextDouble and nextInt can be invoked as usual to
generate variates, but these methods are slowed down significantly by the overhead in the
interactions between code on the native side and on the Java side. When several random
variates are needed, it is much more efficient to generate them in a single call, via the methods
nextArray0fDouble and nextArrayOfInt.

RandomVariateGen

This is the base class for all random variate generators over the real line. It specifies the
signature of the nextDouble method, which is normally called to generate a real-valued
random variate whose distribution has been previously selected. A random variate generator
object can be created simply by invoking the constructor of this class with previously created
RandomStream and Distribution objects, or by invoking the constructor of a subclass. By
default, all random variates will be generated via inversion by calling the inverseF method
for the distribution, even though this can be inefficient in some cases. For some of the
distributions, there are subclasses with special and more efficient methods to generate the
random variates.

For generating many random variates, creating an object and calling the non-static
method is more efficient when the generating algorithm involves a significant setup. When
no work is done at setup time, the static methods are usually slightly faster.

package umontreal.iro.lecuyer.randvar;

public class RandomVariateGen

Constructor

public RandomVariateGen (RandomStream s, Distribution dist)

Creates a new random variate generator from the distribution dist, using stream s.

Methods

public double nextDouble()

Generates a random number from the continuous distribution contained in this object. By
default, this method uses inversion by calling the inverseF method of the distribution
object. Alternative generating methods are provided in subclasses.

public void nextArrayOfDouble (doublel[] v, int start, int n)

Generates n random numbers from the continuous distribution contained in this object.
These numbers are stored in the array v, starting from index start. By default, this method
calls nextDouble () n times, but one can override it in subclasses for better efficiency.

public RandomStream getStream()
Returns the RandomStream used by this generator.

public void setStream (RandomStream stream)
Sets the RandomStream used by this generator to stream.

public Distribution getDistribution()
Returns the Distribution used by this generator.

RandomVariateGenlnt

This is the base class for all generators of discrete random variates over the set of integers.
Similar to RandomVariateGen, except that the generators produce integers, via the nextInt
method, instead of real numbers.

package umontreal.iro.lecuyer.randvar;

public class RandomVariateGenInt extends RandomVariateGen

Constructor

public RandomVariateGenInt (RandomStream s, DiscreteDistributionInt dist)

Creates a new random variate generator for the discrete distribution dist, using stream s.

Methods

public int nextInt()

Generates a random number (an integer) from the discrete distribution contained in this
object. By default, this method uses inversion by calling the inverseF method of the
distribution object. Alternative generating methods are provided in subclasses.

public void nextArrayOfInt (int[] v, int start, int n)

Generates n random numbers from the discrete distribution contained in this object. The
results are stored into the array v, starting from index start. By default, this method calls
nextInt () n times, but one can reimplement it in subclasses for better efficiency.

RandomVariateGenWithCache

This class represents a random variate generator whose values are cached for more efficiency
when using common random numbers. An object from this class is constructed with a
reference to a RandomVariateGen instance used to get the random numbers. These numbers
are stored in an internal array to be retrieved later. The dimension of the array increases
as the values are generated. If the nextDouble method is called after the object is reset, it
gives back the cached values instead of computing new ones. If the cache is exhausted before
the generator is reset, new values are computed and added to the cache.

Such caching allows for a better performance with common random numbers, when gener-
ating random variates is time-consuming. However, using such caching may lead to memory
problems if a large quantity of random numbers are needed.

package umontreal.iro.lecuyer.randvar;

public class RandomVariateGenWithCache extends RandomVariateGen

Constructors

public RandomVariateGenWithCache (RandomVariateGen rvg)

Constructs a new cached random variate generator with internal generator rvg.

public RandomVariateGenWithCache (RandomVariateGen rvg,
int initialCapacity)

Constructs a new cached random variate generator with internal generator rvg. The
initialCapacity parameter is used to set the initial capacity of the internal array which
can grow as needed; it does not limit the maximal number of cached values.

Methods

public boolean isCaching()

Determines if the random variate generator is caching values, default being true. When
caching is turned OFF, the nextDouble method simply calls the corresponding method on
the internal random variate generator, without storing the generated values.

public void setCaching (boolean caching)

Sets the caching indicator to caching. If caching is turned OFF, this method calls
clearCache to clear the cached values.

public RandomVariateGen getCachedGen()

Returns a reference to the random variate generator whose values are cached.

public void setCachedGen (RandomVariateGen rvg)

Sets the random variate generator whose values are cached to rvg. If the generator is
changed, the clearCache method is called.

RandomVariateGenWithCache 7

public void clearCache()

Clears the cached values for this cached generator. Any subsequent call will then obtain
new values from the internal generator.

public void initCache()

Resets this generator to recover values from the cache. Subsequent calls to nextDouble
will return the cached random values until all the values are returned. When the array of
cached values is exhausted, the internal random variate generator is used to generate new
values which are added to the internal array as well. This method is equivalent to calling
setCacheIndex.

public int getNumCachedValues()

Returns the total number of values cached by this generator.

public int getCacheIndex()

Return the index of the next cached value that will be returned by the generator. If the cache
is exhausted, the returned value corresponds to the value returned by getNumCachedValues,
and a subsequent call to nextDouble will generate a new variate rather than reading a
previous one from the cache. If caching is disabled, this always returns 0.

public void setCacheIndex (int newIndex)

Sets the index, in the cache, of the next value returned by nextDouble. If newIndex is 0O,
this is equivalent to calling initCache. If newIndex is getNumCachedValues, subsequent
calls to nextDouble will add new values to the cache.

public DoubleArraylList getCachedValues()

Returns an array list containing the values cached by this random variate generator.

public void setCachedValues (DoubleArrayList values)

Sets the array list containing the cached values to values. This resets the cache index to
the size of the given array.

BinomialGen

This class implements random variate generators for the binomial distribution. It has pa-
rameters n and p with mass function

n!

p(zr) = <Z)px(1 —p)"t = m pP(l—p)"® forx =0,1,2,....n (1)

where n is a positive integer, and 0 < p < 1.

No local copy of the parameters n and p is maintained in this class. The (non-static)
nextInt method simply calls inverseF on the distribution.

package umontreal.iro.lecuyer.randvar;

public class BinomialGen extends RandomVariateGenInt

Constructors

public BinomialGen (RandomStream s, BinomialDist dist)

Creates a new random variate generator for the binomial distribution dist and the random
stream s.

Methods

public static int nextInt (RandomStream s, int n, double p)

Generates a new integer from the binomial distribution with parameters n = n and p = p,
using the given stream s.

BinomialConvolutionGen

Implements binomial random variate generators using the convolution method. This method
generates n Bernouilli random variates with parameter p and adds them up. Its advantages
are that it requires little computer memory and no setup time. Its disadvantage is that it is
very slow for large n. It makes sense only when n is small.

A local copy of the parameters n and p is maintained in this class.

package umontreal.iro.lecuyer.randvar;

public class BinomialConvolutionGen extends BinomialGen

Constructors

public BinomialConvolutionGen (RandomStream s, BinomialDist dist)

Creates a new random variate generator for distribution dist and stream s.

10

GeometricGen

This class implements a random variate generator for the geometric distribution. Its has
parameter p and mass function

p(z) =p(1l —p)* forz=0,1,2,..., (2)

where 0 < p < 1. Random variates are generated by calling inversion on the distribution
object.

package umontreal.iro.lecuyer.randvar;

public class GeometricGen extends RandomVariateGenInt

Constructors

public GeometricGen (RandomStream s, GeometricDist dist)

Creates a new generator for the distribution dist, using stream s.

Methods

public static int nextInt (RandomStream s, double p)

Generates a new geometric random variate with parameter p = p, using stream s, by inver-
sion.

11

HypergeometricGen

This class implements random variate generators for the hypergeometric distribution. Its
mass function is (see, e.g., [14, page 101])

(DG
(:)

where m, [and k are integers that satisfy 0 <m <l and 0 < k <.

p(x) =

for + = max(0,k — [+ m),..., min(k,m), (3)

The generation method is inversion using the chop-down algorithm [20]

package umontreal.iro.lecuyer.randvar;

public class HypergeometricGen extends RandomVariateGenInt

Constructors

public HypergeometricGen (RandomStream s, HypergeometricDist dist)

Creates a new generator for distribution dist, using stream s.

Methods

public static int nextInt (RandomStream s, int m, int 1, int k)

Generates a new variate from the hypergeometric distribution with parameters m =m, [=1
and k = k, using stream s.

12

LogarithmicGen

This class implements random variate generators for the (discrete) logarithmic distribution.
Its mass function is

() = o
P =% log(1 —0)
where 0 < 6 < 1. It uses inversion with the LS chop-down algorithm if 6 < 6y and the LK
transformation algorithm if 6 > 6y, as described in [2I]. The threshold 6, can be specified

forx=1,2,..., (4)

when invoking the constructor. Its default value is 6y = 0.96, as suggested in [21]. @

A local copy of the parameter # is maintained in this class.

package umontreal.iro.lecuyer.randvar;

public class LogarithmicGen extends RandomVariateGenInt

Constructors

public LogarithmicGen (RandomStream s, LogarithmicDist dist)

Creates a new generator with distribution dist and stream s, with default value 6y = 0.96.

public LogarithmicGen (RandomStream s, LogarithmicDist dist, double thetal)

Creates a new generator with distribution dist and stream s, with 6y = theta0.

Methods

public static int nextInt (RandomStream s, double theta)

Uses stream s to generate a new variate from the logarithmic distribution with parameter
0 = theta.

2 From Pierre: Does this work for any 6y? Should we add constraints?

13

NegativeBinomialGen

This class implements random variate generators having the negative binomial distribution.
Its mass function is

p(x):<n+§_1>pn(1—p)x for 2 = 0,1,..., (5)

wheren > 1 and 0 < p < 1.

No local copy of the parameters n and p is maintained in this class. The (non-static)
nextInt method simply calls inverseF on the distribution.

package umontreal.iro.lecuyer.randvar;

public class NegativeBinomialGen extends RandomVariateGenInt

Constructors

public NegativeBinomialGen (RandomStream s, NegativeBinomialDist dist)

Creates a new generator for the distribution dist, using stream s.

Methods

public static int nextInt (RandomStream s, int n, double p)

Generates a new variate from the negative binomial distribution, with parameters n = n and
p = p, using stream s.

14

PascalConvolutionGen

Implements Pascal random variate generators by the convolution method (see [23]). The
method generates n geometric variates with probability p and adds them up.

The algorithm is slow if n is large. A local copy of the parameters n and p is maintained
in this class.

package umontreal.iro.lecuyer.randvar;

public class PascalConvolutionGen extends NegativeBinomialGen

Constructors

public PascalConvolutionGen (RandomStream s, PascalDist dist)

Creates a new generator for the distribution dist, using stream s.

15

PoissonGen

This class implements random variate generators having the Poisson distribution. Its mass
function is
e AN

o forx=0,1,..., (6)

p(z) =
where A\ > 0 is a real valued parameter equal to the mean.

No local copy of the parameter A = lambda is maintained in this class. The (non-static)
nextInt method simply calls inverseF on the distribution.

package umontreal.iro.lecuyer.randvar;

public class PoissonGen extends RandomVariateGenInt

Constructor

public PoissonGen (RandomStream s, PoissonDist dist)

Creates a new random variate generator using the Poisson distribution dist and stream s.

Methods

public static int nextInt (RandomStream s, double lambda)

A static method for generating a random variate from a Poisson distribution with parameter
A = lambda.

16

PoissonTIACGen

This class implements random variate generators having the Poisson distribution (see
PoissonGen). Uses the tabulated inversion combined with acceptance complement (TTAC')
method of [2]. The implementation is adapted from UNURAN [24].

A local copy of the parameter lambda is maintained in this class.

package umontreal.iro.lecuyer.randvar;

public class PoissonTIACGen extends PoissonGen

Constructor

public PoissonTIACGen (RandomStream s, PoissonDist dist)

Creates a new random variate generator using the Poisson distribution dist and stream s.

17

UniformIntGen

This class implements a random variate generator for the uniform distribution over integers,
over the interval [z, j]. Its mass function is

1

e forz=id,i+1,...,j (7)

p(x)

and 0 elsewhere.

package umontreal.iro.lecuyer.randvar;

public class UniformIntGen extends RandomVariateGenInt

Constructors

public UniformIntGen (RandomStream s, UniformIntDist dist)

Creates a new generator for the distribution dist, using stream s.

Methods

public static int nextInt (RandomStream s, int i, int j)

Generates a new uniform random variate over the interval [z, j], using stream s, by inversion.

18

BetaGen

This class implements random variate generators with the beta distribution with shape pa-
rameters o > 0 and [> 0, over the interval (a,b), where a < b. The density function of this
distribution is

I'(a+0)
L(a)T(B)(b — a)tr1

(x —a)* (b —2)! for a < x <0, (8)

fz) =

and f(z) = 0 elsewhere, where I'(z) is the gamma function defined in ((19)).

Local copies of the parameters «, (3, a, and b are maintained in this class. The (non-static)
nextDouble method simply calls inverseF on the distribution.

package umontreal.iro.lecuyer.randvar;

public class BetaGen extends RandomVariateGen

Constructors

public BetaGen (RandomStream s, BetaDist dist)

Creates a new generator for the distribution dist, using stream s.

Methods

public static double nextDouble (RandomStream s,
double alpha, double beta,
double a, double b)
Generates a variate from the beta distribution with parameters @ = alpha, 3 = beta, over
the interval (a,b), using stream s.

19
BetaRejectionLoglogisticGen

Implements Beta random variate generators using the rejection method with log-logistic
envelopes from [I0]. The method draws the first two uniforms from the main stream and
uses the auxiliary stream for the remaining uniforms, when more than two are needed (i.e.,
when rejection occurs).

The current implementation is adapted from UNURAN.

package umontreal.iro.lecuyer.randvar;

public class BetaRejectionlLoglogisticGen extends BetaGen

Constructors

public BetaRejectionLoglogisticGen (RandomStream s, RandomStream aux,
BetaDist dist)

Creates a new generator for the distribution dist, using stream s and auxiliary stream aux.
The main stream is used for the first uniforms (before a rejection occurs) and the auxiliary
stream is used afterwards (after the first rejection).

public BetaRejectionLoglogisticGen (RandomStream s, BetaDist dist)

Same as BetaRejectionLoglogisticGen (s, s, dist). The auxiliary stream used will be
the same as the main stream.

Methods

public RandomStream getAuxStream()

Returns the auxiliary stream associated with that object.

20

BetaStratifiedRejection(zen

This class implements Beta random variate generators using the stratified rejection/patchwork
rejection method from [20], 28]. This method draws one uniform from the main stream and
uses the auxiliary stream for any additional uniform variates that might be needed.

package umontreal.iro.lecuyer.randvar;

public class BetaStratifiedRejectionGen extends BetaGen

Constructors

public BetaStratifiedRejectionGen (RandomStream s, RandomStream aux,
BetaDist dist)

Creates a new generator for the distribution dist, using the given stream s and auxiliary
stream aux. The auxiliary stream is used when a random number of variates must be drawn
from the main stream.

public BetaStratifiedRejectionGen (RandomStream s, BetaDist dist)

Same as BetaStratifiedRejectionGen(s, s, dist). The auxiliary stream used will be
the same as the main stream.

Methods

public RandomStream getAuxStream()

Returns the auxiliary stream associated with this object.

21

BetaSymmetricalGGen

This class implements random variate generators with the symmetrical beta distribution with
shape parameters « = 3, over the interval (0, 1).

package umontreal.iro.lecuyer.randvar;

public class BetaSymmetricalGen extends BetaGen

Constructors

public BetaSymmetricalGen (RandomStream s, BetaSymmetricalDist dist)

Creates a new generator for the distribution dist, using stream s.

Methods

public static double nextDouble (RandomStream s, double alpha)

22

BetaSymmetricalPolarGen

This class implements symmetrical beta random variate generators using Ulrich’s polar
method [29]. The method generates two uniform random variables x € [0,1] and y € [—1, 1]
until 22 + y? < 1. Then it returns

1 ay

5 5 1 — §2/(2a-1) (9)

where S = 2% + 9%, and « is the shape parameter of the beta distribution. The method is
valid only when a@ > 1/2.

package umontreal.iro.lecuyer.randvar;

public class BetaSymmetricalPolarGen extends BetaSymmetricalGen

Constructors

public BetaSymmetricalPolarGen (RandomStream stream, RandomStream s2,
BetaSymmetricalDist dist)

Creates a new generator for the distribution dist, using stream stream to generate z, and
stream s2 to generate y as described in eq. @ above. Restriction: dist must have oo > 1/2.

public BetaSymmetricalPolarGen (RandomStream stream, BetaSymmetricalDist dist)

Creates a new generator for the distribution dist, using only one stream stream. Restric-
tion: dist must have a > 1/2.

Methods

public static double nextDouble (RandomStream sl1, RandomStream s2,
double alpha)

Generates a random number using Ulrich’s polar method. Stream s1 generates x and stream
s2 generates y [see eq. (9)]. Restriction: o > 1/2.

public static double nextDouble (RandomStream s, double alpha)

Generates a random number using Ulrich’s polar method with only one stream s. Restriction:
a>1/2.

public RandomStream getStream?2()

Returns stream s2 associated with this object.

23

BetaSymmetricalBestGen

This class implements symmetrical beta random variate generators using Devroye’s one-liner
method. It is based on Best’s relation [6] between a Student-t variate and a symmetrical
beta variate:

L 1 T2o<
Bio==|14 ——— | .
’ 2(\/2a+T22a>

If S is a random sign and Uy, Uy are two independent uniform [0, 1] random variates, then
the following gives a symmetrical beta variate [12]:

1
Ba,a é). + S (10)

9 1
2\/1 + (Ul—l/a,1> cos2(2nUz)

valid for any shape parameter a > 0.

package umontreal.iro.lecuyer.randvar;

public class BetaSymmetricalBestGen extends BetaSymmetricalGen

Constructors

public BetaSymmetricalBestGen (RandomStream stream, RandomStream s2,
RandomStream s3, BetaSymmetricalDist dist)

Creates a new generator for the distribution dist, using stream stream to generate Uj,
stream s2 to generate Us and stream s3 to generate S as given in equation (|10)).

public BetaSymmetricalBestGen (RandomStream stream,
BetaSymmetricalDist dist)

Creates a new generator for the distribution dist, using only one stream stream.

Methods
public static double nextDouble (RandomStream sl1, RandomStream s2,
RandomStream s3, double alpha)
Generates a random number using Devroye’s one-liner method. Restriction: o > 0.

public static double nextDouble (RandomStream s, double alpha)

Generates a random number using Devroye’s one-liner method with only one stream s.
Restriction: a > 0.

public RandomStream getStream2()
Returns stream s2 associated with this object.

public RandomStream getStream3()
Returns stream s3 associated with this object.

24

CauchyGen

This class implements random variate generators for the Cauchy distribution. The density
is (see, e.g., [18] p. 299):

g
ml(z —) + 52

for —oo <z < 0. (11)

fx) =

where > 0.

No local copy of the parameters o and § is maintained in this class. The (non-static)
nextDouble method simply calls inverseF on the distribution.

package umontreal.iro.lecuyer.randvar;

public class CauchyGen extends RandomVariateGen

Constructors

public CauchyGen (RandomStream s, CauchyDist dist)

Create a new generator for the distribution dist, using stream s.

Methods

public static double nextDouble (RandomStream s, double alpha, double beta)

Generates a new variate from the Cauchy distribution with parameters o = alpha and
(3 = beta, using stream s.

25

ChiGen

This class implements random variate generators for the chi distribution. It has v > 0
degrees of freedom and its density function is (see [I8], page 417)

—x2 —
ez/qul

f(l') = m for z > 0, (12)

where I'(z) is the gamma function defined in ((19)).

No local copy of the parameter v is maintained in this class. The (non-static) nextDouble
method simply calls inverseF on the distribution (slow).

package umontreal.iro.lecuyer.randvar;

public class ChiGen extends RandomVariateGen

Constructors

public ChiGen (RandomStream s, ChiDist dist)

Create a new generator for the distribution dist, using stream s.

Methods

public static double nextDouble (RandomStream s, int nu)

Generates a random variate from the chi distribution with v = nu degrees of freedom, using
stream s.

26

ChiRatioOfUniformsGen

This class implements Chi random variate generators using the ratio of uniforms method
with shift.

A local copy of the parameter v is maintained in this class.

package umontreal.iro.lecuyer.randvar;

public class ChiRatioOfUniformsGen extends ChiGen

Constructors

public ChiRatioOfUniformsGen (RandomStream s, ChiDist dist)

Create a new generator for the distribution dist, using stream s.

27
ChiSquareGen

This class implements random variate generators with the chi square distribution with n > 0
degrees of freedom. Its density function is

e—ac/Q:Cn/2—1

f(x) = P (/3) for z > 0, (13)

where I'(z) is the gamma function defined in (19).

No local copy of the parameter n is maintained in this class. The (non-static) nextDouble
method simply calls inverseF on the distribution.

package umontreal.iro.lecuyer.randvar;

public class ChiSquareGen extends RandomVariateGen

Constructors

public ChiSquareGen (RandomStream s, ChiSquareDist dist)

Create a new generator for the distribution dist and stream s.

Methods

public static double nextDouble (RandomStream s, int n)

Generates a new variate from the chi square distribution with n degrees of freedom, using
stream s.

28

ErlangGen

This class implements random variate generators for the Erlang distribution with parameters
k > 0 and A > 0. This Erlang random variable is the sum of k exponentials with parameter
A and has mean k/\.

No local copy of the parameters & and A is maintained in this class. The (non-static)
nextDouble method simply calls inverseF on the distribution.

package umontreal.iro.lecuyer.randvar;

public class ErlangGen extends GammaGen

Constructors

public ErlangGen (RandomStream s, ErlangDist dist)

Creates a new generator for the distribution dist and stream s.

Methods

public static double nextDouble (RandomStream s, int k, double lambda)

Generates a new variate from the Erlang distribution with parameters k£ =k and A = lambda,
using stream s.

29

ErlangConvolution(Gen

This class implements Frlang random variate generators using the convolution method. This
method uses inversion to generate k exponential variates with parameter A and returns their
sum.

A local copy of the parameters £ and A is maintained in this class.

package umontreal.iro.lecuyer.randvar;

public class ErlangConvolutionGen extends ErlangGen

Constructors

public ErlangConvolutionGen (RandomStream s, ErlangDist dist)

Creates a new generator for the distribution dist and stream s.

30

ExponentialGen

This class implements random variate generators for the exponential distribution. The den-
sity is

fz) = Ae™™ for z > 0, (14)
where A > 0.

No local copy of the parameter A is maintained in this class. The (non-static) nextDouble
method simply calls inverseF on the distribution.

package umontreal.iro.lecuyer.randvar;

public class ExponentialGen extends RandomVariateGen

Constructors

public ExponentialGen (RandomStream s, ExponentialDist dist)

Creates a new generator for the exponential distribution dist and stream s.

Methods

public static double nextDouble (RandomStream s, double lambda)

Uses inversion to generate a new exponential variate with parameter A\ = lambda, using
stream s.

31

ExtremeValueGen

This class implements random variate generators for the Gumbel (or extreme value) distri-
bution. Its density is
flz) = Ae™@ TV for x > 0, (15)

where A > 0.

No local copy of the parameters a and A is maintained in this class. The (non-static)
nextDouble method simply calls inverseF on the distribution.

package umontreal.iro.lecuyer.randvar;

public class ExtremeValueGen extends RandomVariateGen

Constructors

public ExtremeValueGen (RandomStream s, ExtremeValueDist dist)

Creates a new generator object for distribution dist and stream s.

Methods

public static double nextDouble (RandomStream s, double alpha,
double lambda)

Uses inversion to generate a new variate from the extreme value distribution with parameters
« = alpha and A = lambda, using stream s.

32
FatigueLifeGen

This class implements random variate generators for the Fatigue Life distribution with lo-
cation parameter u, scale parameter J and shape parameter v. The density function of this

distribution is
[zopm o [B fe—p [B
B r— B T—
flz) = m “| ¢ - . (16)

2y(x —

where ¢ is the probability density of the standard normal distribution.

package umontreal.iro.lecuyer.randvar;

public class FatiguelLifeGen extends RandomVariateGen

Constructors

public FatigueLifeGen (RandomStream s, FatigueLifeDist dist)

Creates a new generator for the distribution dist, using stream s.

Methods

public static double nextDouble (RandomStream s, double mu, double beta,
double gamma)

Generates a variate from the Fuatigue Life distribution with location parameter u, scale
parameter 6 and shape parameter ~.

FisherFGen

33

This class implements random variate generators for the Fisher F-distribution with n and
m degrees of freedom, where n and m are positive integers. The density function of this

distribution is

f(x) = : for x >0

(17)

package umontreal.iro.lecuyer.randvar;

public class FisherFGen extends RandomVariateGen

Constructors

public FisherFGen (RandomStream s, FisherFDist dist)

Creates a new generator for the distribution dist, using stream s.

Methods

public static double nextDouble (RandomStream s, int n, int m)

Generates a variate from the Fisher F-distribution with n and m degrees of freedom, using

stream s.

34

GammaGen

This class implements random variate generators for the gamma distribution. Its parameters
are o > 0 and A > 0. Its density function is

f(x2) = X\t /T(a) for z > 0, (18)

where I' is the gamma function defined by
') :/ e dx. (19)
0

No local copy of the parameters o and A is maintained in this class. The (non-static)
nextDouble method simply calls inverseF on the distribution.

package umontreal.iro.lecuyer.randvar;

public class GammaGen extends RandomVariateGen

Constructors

public GammaGen (RandomStream s, GammaDist dist)

Creates a new generator object for the gamma distribution dist and stream s.

Methods

public static double nextDouble (RandomStream s,
double alpha, double lambda)

Generates a new gamma random variate with parameters o« = alpha and A = lambda, using
stream s.

35

GammaA cceptanceRejection(Gen

This class implements gamma random variate generators using a method that combines
acceptance-rejection with acceptance-complement, and proposed in [I],3]. It uses acceptance-
rejection for a < 1 and acceptance-complement for « > 1. For each gamma variate, the first
uniform required is taken from the main stream and all additional uniforms (after the first
rejection) are obtained from the auxiliary stream.

package umontreal.iro.lecuyer.randvar;

public class GammaAcceptanceRejectionGen extends GammaGen

Constructors

public GammaAcceptanceRejectionGen (RandomStream s, GammaDist dist)

Creates a new generator object for the gamma distribution dist and stream s for both the
main and auxiliary stream.

public GammaAcceptanceRejectionGen (RandomStream s, RandomStream aux,
GammaDist dist)

Creates a new generator object for the gamma distribution dist, using main stream s and
auxiliary stream aux. The auxiliary stream is used when a random number of uniforms is
required for a rejection-type generation method.

Methods

public RandomStream getAuxStream()
Returns the auxiliary stream associated with this object.
public static double nextDouble (RandomStream s, RandomStream aux,
double alpha, double lambda)

Generates a new gamma, variate with parameters &« = alpha and A = lambda, using main
stream s and auxiliary stream aux.

public static double nextDouble (RandomStream s, double alpha,
double lambda)

Same as nextDouble (s, s, alpha, lambda).

36

GammaRejectionLoglogisticGen

This class implements gamma random variate generators using a rejection method with
loglogistic envelopes, from [9]. For each gamma variate, the first two uniforms are taken
from the main stream and all additional uniforms (after the first rejection) are obtained
from the auxiliary stream.

package umontreal.iro.lecuyer.randvar;

public class GammaRejectionlLoglogisticGen extends GammaGen

Constructors

public GammaRejectionLoglogisticGen (RandomStream s, GammaDist dist)

Creates a new generator object for the gamma distribution dist and stream s for both the
main and auxiliary stream.

public GammaRejectionLoglogisticGen (RandomStream s, RandomStream aux,
GammaDist dist)

Creates a new generator object for the gamma distribution dist, using main stream s and
auxiliary stream aux. The auxiliary stream is used when a random number of uniforms is
required for a rejection-type generation method.

Methods

public RandomStream getAuxStream()
Returns the auxiliary stream associated with this object.
public static double nextDouble (RandomStream s, RandomStream aux,
double alpha, double lambda)

Generates a new gamma variate with parameters o = alpha and A = lambda, using main
stream s and auxiliary stream aux.

public static double nextDouble (RandomStream s, double alpha,
double lambda)

Same as nextDouble (s, s, alpha, lambda).

37

HyperbolicSecantGen

This class implements random variate generators for the Hyperbolic Secant distribution with
location parameter pu and scale parameter o. The density function of this distribution is

(@) = - sech G (@ = ”)) . (20)

20 o

package umontreal.iro.lecuyer.randvar;

public class HyperbolicSecantGen extends RandomVariateGen

Constructors

public HyperbolicSecantGen (RandomStream s, HyperbolicSecantDist dist)

Creates a new generator for the distribution dist, using stream s.

Methods

public static double nextDouble (RandomStream s, double mu, double sigma)

Generates a variate from the Hyperbolic Secant distribution with location parameter p and
scale parameter o.

38

InverseGaussianGen

This class implements random variate generators for the inverse Gaussian distribution with
location parameter > 0 and scale parameter A > 0. The density function of this distribu-
tion is

A —Aa—p)?

f(z) = exp 2’ for x > 0. (21)

2w

package umontreal.iro.lecuyer.randvar;

public class InverseGaussianGen extends RandomVariateGen

Constructors

public InverseGaussianGen (RandomStream s, InverseGaussianDist dist)

Creates a new generator for the distribution dist, using stream s.

Methods

public static double nextDouble (RandomStream s, double mu, double lambda)

Generates a variate from the inverse gaussian distribution with location parameter p > 0
and scale parameter A > 0.

39
KernelDensityGen

This class implements random variate generators for distributions obtained via kernel density
estimation methods from a set of n individual observations 1, ..., z, [13, 01}, 16, 17, 27].
The basic idea is to center a copy of the same symmetric density at each observation and
take an equally weighted mixture of the n copies as an estimator of the density from which
the observations come. The resulting kernel density has the general form

) = = 3 k(= i) /), 22)

where £ is a fixed pre-selected density called the kernel and h is a positive constant called
the bandwidth or smoothing factor. A difficult practical issue is the selection of k and h.
Several approaches have been proposed for that; see, e.g., [5 8, 17, 27].

The constructor of a generator from a kernel density requires a random stream s, the
n observations in the form of an empirical distribution, a random variate generator for the
kernel density k, and the value of the bandwidth h. The random variates are then generated
as follows: select an observation x; at random, by inversion, using stream s, then generate
random variate Y with the generator provided for the density k£, and return z; + hY'.

A simple formula for the bandwidth, suggested in [27, [I7], is h = ayhg, where
ho = 1.36374 min(s,,, ¢/1.34)n""/°, (23)

s, and g are the empirical standard deviation and the interquartile range of the n observa-
tions, and ay is a constant that depends on the type of kernel k. It is defined by

= (a,;4 /_ Z k:(:v)dx) v (24)

where oy, is the standard deviation of the density k. The static method getBaseBandwidth
permits one to compute hg for a given empirical distribution.

Table 1: Some suggested kernels

name constructor o, o; efficiency
Epanechnikov BetaSymmetricDist (2.0, -1.0, 1.0) 1.7188 1/5 1.000
triangular TriangularDist (-1.0, 1.0, 0.0) 1.8882 1/6 0.986
Gaussian NormalDist () 0.7764 1 0.951
boxcar UniformDist (-1.0, 1.0) 1.3510 1/3 0.930
logistic LogisticDist () 0.4340 3.2899 0.888
Student-t(3) StudentDist (3.0) 0.4802 3 0.674

Table |1] gives the precomputed values of o and «; for selected (popular) kernels. The
values are taken from [17]. The second column gives the name of a function (in this package)

KernelDensityGen 40

that constructs the corresponding distribution. The efficiency of a kernel is defined as the
ratio of its mean integrated square error over that of the Epanechnikov kernel, which has
optimal efficiency and corresponds to the beta distribution with parameters (2,2) over the
interval (—1,1).

package umontreal.iro.lecuyer.randvar;

public class KernelDensityGen extends RandomVariateGen

Constructors

public KernelDensityGen (RandomStream s, EmpiricalDist dist,
RandomVariateGen kGen, double h)

Creates a new generator for a kernel density estimated from the observations given by the
empirical distribution dist, using stream s to select the observations, generator kGen to
generate the added noise from the kernel density, and bandwidth h.

public KernelDensityGen (RandomStream s, EmpiricalDist dist,
NormalGen kGen)

This constructor uses a gaussian kernel and the default bandwidth A = aihg with the oy
suggested in Table [I] for the gaussian distribution. This kernel has an efficiency of 0.951.

Kernel selection and parameters

public static double getBaseBandwidth (EmpiricalDist dist)
Computes and returns the value of hg in (23)).

public void setBandwidth (double h)
Sets the bandwidth to h.

public void setPositiveReflection (boolean reflect)

After this method is called with true, the generator will produce only positive values, by
using the reflection method: replace all negative values by their absolute values. That is,
nextDouble will return |z| if z is the generated variate. The mecanism is disabled when the
method is called with false.

41

KernelDensityVarCorrectGen

This class is a variant of KernelDensityGen, but with a rescaling of the empirical distribution
so that the variance of the density used to generate the random variates is equal to the
empirical variance, as suggested by [27].

Let 7, and s2 be the sample mean and sample variance of the observations. The dis-
tance between each generated random variate and the sample mean z,, is multiplied by the
correcting factor 1/o., where 6 = 1 + (hoy/s,)?. The constant o7 must be passed to the

constructor. Its value can be found in Table [I] for some popular kernels.

package umontreal.iro.lecuyer.randvar;

public class KernelDensityVarCorrectGen extends KernelDensityGen

Constructors

public KernelDensityVarCorrectGen (RandomStream s, EmpiricalDist dist,
RandomVariateGen kGen, double h, double sigmak?2)
Creates a new generator for a kernel density estimated from the observations given by the
empirical distribution dist, using stream s to select the observations, generator kGen to
generate the added noise from the kernel density, bandwidth h, and 0,3 = sigmak2 used for
the variance correction.

public KernelDensityVarCorrectGen (RandomStream s, EmpiricalDist dist,
NormalGen kGen)

This constructor uses a gaussian kernel and the default bandwidth suggested in Table (1] for
the gaussian distribution.

42

LaplaceGen

This class implements methods for generating random variates from the Laplace distribution.
Its density is (see [19, page 165])

1
f(z) = %e_‘x_ew for — oo < < o0, (25)
where ¢ > 0.

No local copy of the parameters 6 and ¢ is maintained in this class. The (non-static)
nextDouble method simply calls inverseF on the distribution.

package umontreal.iro.lecuyer.randvar;

public class LaplaceGen extends RandomVariateGen

Constructors

public LaplaceGen (RandomStream s, LaplaceDist dist)

Creates a new generator for the Laplace distribution dist and stream s.

Methods

public static double nextDouble (RandomStream s, double theta, double phi)

Generates a new variate from the Laplace distribution with parameters § = theta and
¢ = phi, using stream s.

43
Logistic(GGen

This class implements random variate generators for the logistic distribution. Its parameters
are o and A > 0. Its density function is

)\e—A(m—a)
f(z) = a oy for —oo <z < 0. (26)
+ e~ T—Q

No local copy of the parameters a and A is maintained in this class. The (non-static)
nextDouble method simply calls inverseF on the distribution.

package umontreal.iro.lecuyer.randvar;

public class LogisticGen extends RandomVariateGen

Constructors

public LogisticGen (RandomStream s, LogisticDist dist)

Creates a new generator for the logistic distribution dist and stream s.

Methods

public static double nextDouble (RandomStream s, double alpha, double lambda)

Generates a new variate from the logistic distribution with parameters o = alpha and
A = lambda, using stream s.

44
Loglogistic(GGen

This class implements random variate generators for the Log-Logistic distribution with shape
parameter o > 0 and scale parameter 3 > 0. The density function of this distribution is

afz/B)*!
L+ (z/B)]?

f(z) = b for x > 0. (27)

package umontreal.iro.lecuyer.randvar;

public class LoglogisticGen extends RandomVariateGen

Constructors

public LoglogisticGen (RandomStream s, LoglogisticDist dist)

Creates a new generator for the distribution dist, using stream s.

Methods

public static double nextDouble (RandomStream s, double alpha, double beta)

Generates a variate from the Log-Logistic distribution with shape parameter o > 0 and scale
parameter 3 > 0.

45

LognormalGen

This class implements methods for generating random variates from the lognormal distribu-
tion. Its density is

1

e~ (In(@)—n)?/(207) for x > 0, (28)
2rox

fz) =

where o > 0.

No local copy of the parameters ;1 and o is maintained in this class. The (non-static)
nextDouble method simply calls inverseF on the lognormal distribution object. One can
also generate a lognormal random variate X via

X = Math.exp (NormalGen.nextDouble (s, mu, sigma)),

in which NormalGen can actually be replaced by any subclass of NormalGen.

package umontreal.iro.lecuyer.randvar;
public class LognormalGen extends RandomVariateGen

Constructors

public LognormalGen (RandomStream s, LognormalDist dist)

Create a random variate generator for the lognormal distribution dist and stream s.

Methods

public static double nextDouble (RandomStream s, double mu, double sigma)

Generates a new variate from the lognormal distribution with parameters y = mu and
0 = sigma, using stream s.

46

LognormalSpecialGen

Implements methods for generating random variates from the lognormal distribution using
an arbitrary normal random variate generator. The (non-static) nextDouble method calls
the nextDouble method of the normal generator and takes the exponential of the result.

package umontreal.iro.lecuyer.randvar;
public class LognormalSpecialGen extends RandomVariateGen

Constructors

public LognormalSpecialGen (NormalGen g)

Create a lognormal random variate generator using the normal generator g and with the
same parameters.

47

NormalGen

This class implements methods for generating random variates from the normal distribution
N(u,0). Tt has mean p and variance o2, where o > 0. Its density function is

flz) = 1 e(r=1)?/(20%) (29)
2mo

No local copy of the parameters o and A is maintained in this class. The (non-static)
nextDouble method simply calls inverseF on the distribution.

package umontreal.iro.lecuyer.randvar;

public class NormalGen extends RandomVariateGen

Constructors

public NormalGen (RandomStream s, NormalDist dist)

Creates a random variate generator for the normal distribution dist and stream s.

Methods

public static double nextDouble (RandomStream s, double mu, double sigma)

Generates a variate from the normal distribution with parameters ;4 = mu and ¢ = signa,
using stream s.

48

NormalACRGen

This class implements normal random variate generators using the acceptance-complement
ratio method [I5]. For all the methods, the code was taken from UNURAN [24].

A local copy of the parameters p and o is maintained in this class.

package umontreal.iro.lecuyer.randvar;

public class NormalACRGen extends NormalGen

Constructors

public NormalACRGen (RandomStream s, NormalDist dist)

Creates a random variate generator for the normal distribution dist and stream s.

49

NormalBoxMullerGen

This class implements normal random variate generators using the Boz-Muller method from
[7]. Since the method generates two variates at a time, the second variate is returned upon
the next call to the nextDouble.

A local copy of the parameters p and o is maintained in this class.

package umontreal.iro.lecuyer.randvar;

public class NormalBoxMullerGen extends NormalGen

Constructors

public NormalBoxMullerGen (RandomStream s, NormalDist dist)

Creates a random variate generator for the normal distribution dist and stream s.

50

NormalPolarGen

This class implements normal random variate generators using the polar method with rejec-
tion [25]. Since the method generates two variates at a time, the second variate is returned
upon the next call to nextDouble.

A local copy of the parameters i and o is maintained in this class.

package umontreal.iro.lecuyer.randvar;

public class NormalPolarGen extends NormalGen

Constructors

public NormalPolarGen (RandomStream s, NormalDist dist)

Creates a random variate generator for the normal distribution dist and stream s.

51

NormalKindermannRamageGen

This class implements normal random variate generators using the Kindermann-Ramage
method [22]. The code was taken from UNURAN [24].

A local copy of the parameters p and o is maintained in this class.

package umontreal.iro.lecuyer.randvar;

public class NormalKindermannRamageGen extends NormalGen

Constructors

public NormalKindermannRamageGen (RandomStream s, NormalDist dist)

Creates a random variate generator for the normal distribution dist and stream s.

52

ParetoGen

This class implements random variate generators for one of the Pareto distributions, with
parameters o > 0 and § > 0. Its density function is

afez==Y for x>

J(@) = { 0 forx < (30)

The (non-static) nextDouble method simply calls inverseF on the distribution.

package umontreal.iro.lecuyer.randvar;
public class ParetoGen extends RandomVariateGen

Constructors

public ParetoGen (RandomStream s, ParetoDist dist)

Creates a new generator for the Pareto distribution dist and stream s.

Methods

public static double nextDouble (RandomStream s, double alpha, double beta)

Generates a new variate from the Pareto distribution with parameters a = alpha and
(3 = beta, using stream s.

53

Pearsonb5Gen

This class implements random variate generators for the Pearson type V distribution with
shape parameter o > 0 and scale parameter 3 > 0. The density function of this distribution

® (a+1) -8/
= a+ e B/
forx >0

f@)={ FT(a) (31)

0 otherwise,

where I' is the gamma function.

package umontreal.iro.lecuyer.randvar;

public class PearsonbGen extends RandomVariateGen

Constructors

public Pearson5Gen (RandomStream s, PearsonbDist dist)

Creates a new generator for the distribution dist, using stream s.

Methods

public static double nextDouble (RandomStream s, double alpha, double beta)

Generates a variate from the Pearson V distribution with shape parameter o > 0 and scale
parameter 3 > 0.

Pearson6Gen

54

This class implements random variate generators for the Pearson type VI distribution with
shape parameters a; > 0 and as > 0, and scale parameter § > 0. The density function of

this distribution is

(x/B)" "
f(l') = 58(0[1, 052)(1 + x/ﬂ)aﬁaz

0 otherwise,

for x > 0,

where B is the beta function.

(32)

package umontreal.iro.lecuyer.randvar;

public class Pearson6Gen extends RandomVariateGen

Constructors

public Pearson6Gen (RandomStream s, Pearson6Dist dist)

Creates a new generator for the distribution dist, using stream s.

Methods

public static double nextDouble (RandomStream s, double alphal,
double alpha2, double beta)

Generates a variate from the Pearson VI distribution with shape parameters a; > 0 and

ag > 0, and scale parameter g > 0.

5153

StudentGen

This class implements methods for generating random variates from the Student distribution
with n > 0 degrees of freedom. Its density function is

1@) = T2y v

where I'(z) is the gamma function defined in ((19)).

I ((n + 1)/2) |: 132] R for — o< < o0, (33>

n

No local copy of the parameter n is maintained in this class. The (non-static) nextDouble
method simply calls inverseF on the distribution.

package umontreal.iro.lecuyer.randvar;

public class StudentGen extends RandomVariateGen

Constructors

public StudentGen (RandomStream s, StudentDist dist)

Creates a new generator for the Student distribution dist and stream s.

Methods

public static double nextDouble (RandomStream s, int n)

Generates a new variate from the Student distribution with n = n degrees of freedom, using
stream s.

56

StudentPolarGen

This class implements Student random variate generators using the polar method of [4]. The
code is adapted from UNURAN (see [24]).

The non-static nextDouble method generates two variates at a time and the second one
is saved for the next call. A pair of variates is generated every second call. In the static
case, two variates are generated per call but only the first one is returned and the second is
discarded.

package umontreal.iro.lecuyer.randvar;

public class StudentPolarGen extends StudentGen

Constructors

public StudentPolarGen (RandomStream s, StudentDist dist)

Creates a new generator for the Student distribution dist and stream s.

57

TriangularGen

This class implements random variate generators for the triangular distribution. Its density
1s

2(z—a)
m for a S x S m,
fla)y =9 208 form <z <b, (34)

(b—a)(b—m)
0 elsewhere,

where a < m < b (see, e.g., [23]).

The (non-static) nextDouble method simply calls inverseF on the distribution.

package umontreal.iro.lecuyer.randvar;

public class TriangularGen extends RandomVariateGen

Constructors

public TriangularGen (RandomStream s, TriangularDist dist)

Creates a new generator for the triangular distribution dist and stream s.

Methods

public static double nextDouble (RandomStream s, double a,
double b, double m)

Generates a new variate from the triangular distribution with parameters a = a, b = b and
m = m and stream s, using inversion.

o8

UniformGen

This class implements random variate generators for the (continuous) uniform distribution
over the interval (a,b), where a and b are real numbers with @ < b. The density is

f(x)=1/(b—a) for a <z <b. (35)

The (non-static) nextDouble method simply calls inverseF on the distribution.

package umontreal.iro.lecuyer.randvar;

public class UniformGen extends RandomVariateGen

Constructors

public UniformGen (RandomStream s, UniformDist dist)

Creates a new generator for the uniform distribution dist and stream s.

Methods

static public double nextDouble (RandomStream s, double a, double b)

Generates a new uniform random variate over the interval (a, b) by inversion, using stream
S.

59

WeibullGen

This class implements random variate generators for the Weibull distribution. Its density is
f(z) = aX*(z — §)* T exp[—(A(z — 6))“] for z > 9, (36)

and f(z) = 0 elsewhere, where a > 0, and A > 0.

No local copy of the parameters A and ¢ is maintained in this class. The (non-static)
nextDouble method simply calls inverseF on the distribution.

package umontreal.iro.lecuyer.randvar;

public class WeibullGen extends RandomVariateGen

Constructors

public WeibullGen (RandomStream s, WeibullDist dist)

Creates a new generator for the Weibull distribution dist and stream s.

Methods

public static double nextDouble (RandomStream s, double alpha,
double lambda, double delta)

Uses inversion to generate a new variate from the Weibull distribution with parameters
« = alpha, A = lambda, and § = delta, using stream s.

60

UnuranContinuous

This class permits one to create continuous univariate distribution using UNURAN via its
string API.

package umontreal.iro.lecuyer.randvar;

public class UnuranContinuous extends RandomVariateGen

Constructors

public UnuranContinuous (RandomStream s, String genStr)
Same as UnuranContinuous(s, s, genStr).
public UnuranContinuous (RandomStream s, RandomStream aux,
String genStr)

Constructs a new continuous random number generator using the UNURAN generator spec-
ification string genStr, main stream s, and auxiliary stream aux.

Methods

public RandomStream getAuxStream()

Returns the auxiliary random number stream.

61

UnuranDiscretelnt

This class permits one to create a discrete univariate distribution using UNURAN via its
string API.

package umontreal.iro.lecuyer.randvar;

public class UnuranDiscretelInt extends RandomVariateGenInt

Constructors

public UnuranDiscreteInt (RandomStream s, String genStr)
Same as UnuranDiscreteInt (s, s, genStr).
public UnuranDiscreteInt (RandomStream s, RandomStream aux,
String genStr)

Constructs a new discrete random number generator using the UNURAN generator specifi-
cation string genStr, main stream s, and auxiliary stream aux.

Methods

public RandomStream getAuxStream()

Returns the auxiliary random number stream.

62

UnuranEmpirical

This class permits one to create generators for empirical and quasi-empirical univariate
distributions using UNURAN via its string interface. The empirical data can be read from a
file, from an array, or simply encoded into the generator specification string. When reading
from a file or an array, the generator specification string must not contain a distribution
specification string.

package umontreal.iro.lecuyer.randvar;

public class UnuranEmpirical extends RandomVariateGen

Constructors

public UnuranEmpirical (RandomStream s, String genStr)
Constructs a new empirical univariate generator using the specification string genStr and
stream s.

public UnuranEmpirical (RandomStream s, RandomStream aux, String genStr)

Constructs a new empirical univariate generator using the specification string genStr, with
main stream s and auxiliary stream aux.

public UnuranEmpirical (RandomStream s, PiecewiselLinearEmpiricalDist dist,
String genStr)
Same as UnuranEmpirical(s, s, dist, genStr).
public UnuranEmpirical (RandomStream s, RandomStream aux,
PiecewiseLinearEmpiricalDist dist, String genStr)

Same as UnuranEmpirical(s, aux, genStr), but reading the observations from the empir-
ical distribution dist. The genStr argument must not contain a distribution part because
the distribution will be generated from the input stream reader.

Methods

public RandomStream getAuxStream()

Returns the auxiliary random number stream.

63
UnuranException

This type of unchecked exception is thrown when an error occurs inside the UNURAN
package. Usually, such an exception will come from the native side.

package umontreal.iro.lecuyer.randvar;

public class UnuranException extends RuntimeException

Constructors

public UnuranException()

Constructs a new generic UNURAN exception.

public UnuranException (String message)

Constructs a UNURAN exception with the error message message

REFERENCES 64

References

[1] J. H. Ahrens and U. Dieter. Computer methods for sampling from gamma, beta,
poisson and bionomial distributions. Computing, 12:223-246, 1972.

[2] J. H. Ahrens and U. Dieter. Computer generation of poisson deviates from modified
normal distributions. ACM Trans. Math. Software, 8:163-179, 1982.

[3] J. H. Ahrens and U. Dieter. Generating gamma variates by a modified rejection tech-
nique. Communications of the ACM, 25:47-54, 1982.

[4] R. W. Bailey. Polar generation of random variates with the ¢-distribution. Mathematics
of Computation, 62(206):779-781, 1994.

[5] A. Berlinet and L. Devroye. A comparison of kernel density estimates. Publications
de UInstitut de Statistique de [’Université de Paris, 38(3):3-59, 1994. available at
http://cgm.cs.mcgill.ca/"luc/np.html.

[6] D. J. Best. A simple algorithm for the computer generation of random samples from
a Student’s ¢t or symmetric beta distribution. In L. C. A. Corsten and J. Hermans,
editors, COMPSTAT 1978: Proceedings in Computational statistics, pages 341-347,
Vienna, 1978. Physica-Verlag.

[7] G. E. P. Box and M. E. Muller. A note on the generation of random normal deviates.
Annals of Mathematical Statistics, 29:610-611, 1958.

[8] R. Cao, A. Cuevas, and W. Gonzilez-Manteiga. A comparative study of several
smoothing methods for density estimation. Computational Statistics and Data Analysis,
17:153-176, 1994.

[9] R. C. H. Cheng. The generation of gamma variables with non-integral shape parameter.
Applied Statistics, 26:71-75, 1977.

[10] R. C. H. Cheng. Generating beta variates with nonintegral shape parameters. Com-
munications of the ACM, 21:317-322, 1978.

[11] L. Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, New York,
NY, 1986.

[12] L. Devroye. Random variate generation in one line of code. In Proceedings of the 1996
Winter Simulation Conference, pages 265-271. IEEE Press, 1996.

[13] L. Devroye and L. Gyorfi. Nonparametric Density Estimation: The Ly View. John
Wiley, New York, NY, 1985.

. B Gentle. Random Number Generation an onte Carito Methods. ringer, New
14] J. E. Gentle. Random Number G ' d M Carlo Methods. Springer, N

York, NY, 1998.

http://cgm.cs.mcgill.ca/~luc/np.html

REFERENCES 65

[15] W. Héermann and G. Derflinger. The ACR method for generating normal random
variables. OR Spektrum, 12:181-185, 1990.

[16] W. Hérmann and J. Leydold. Automatic random variate generation for simulation
input. In J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, editors, Proceedings
of the 2000 Winter Simulation Conference, pages 675682, Pistacaway, NJ, Dec 2000.
IEEE Press.

[17) W. Hérmann, J. Leydold, and G. Derflinger. Automatic Nonuniform Random Variate
Generation. Springer-Verlag, Berlin, 2004.

[18] N. L. Johnson, S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions,
volume 1. Wiley, 2nd edition, 1994.

[19] N. L. Johnson, S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions,
volume 2. Wiley, 2nd edition, 1995.

[20] V. Kachitvichyanukul and B. Schmeiser. Computer generation of hypergeometric ran-
dom variates. J. Statist. Comput. Simul., 22:127-145, 1985.

[21] A. W. Kemp. Efficient generation of logarithmically distributed pseudo-random vari-
ables. Applied Statistics, 30:249-253, 1981.

[22] A.J. Kinderman and J. G. Ramage. Computer generation of normal random variables.
Journal of the American Statistical Association, 71:893-898, 1976.

23] A. M. Law and W. D. Kelton. Simulation Modeling and Analysis. McGraw-Hill, New
York, NY, third edition, 2000.

[24] J. Leydold and W. Hérmann. UNURAN—A Library for Universal Non-Uniform Ran-
dom Number Generators, 2002. Available at http://statistik.wu-wien.ac.at/
unuran.

[25] G. Marsaglia. Improving the polar method for generating a pair of random variables.
Technical report, Boeing Scientific Research Laboratory, Seattle, Washington, 1962.

[26] H. Sakasegawa. Stratified rejection and squeeze method for generating beta random
numbers. Annals of the Institute of Mathematical Statistics, 35B:291-302, 1983.

[27] B. Silverman. Density Estimation for Statistics and Data Analysis. Chapman and
Hall, London, 1986.

28] E. Stadlober and H. Zechner. Generating beta variates via patchwork rejection. Com-
puting, 50:1-18, 1993.

[29] G. Ulrich. Computer generation of distributions on the m-sphere. Applied Statistics,
33:158-163, 1984.

http://statistik.wu-wien.ac.at/unuran
http://statistik.wu-wien.ac.at/unuran

	Overview
	General Classes
	RandomVariateGen
	RandomVariateGenInt
	RandomVariateGenWithCache

	Generators for Discrete Distributions over the Integers
	BinomialGen
	BinomialConvolutionGen
	GeometricGen
	HypergeometricGen
	LogarithmicGen
	NegativeBinomialGen
	PascalConvolutionGen
	PoissonGen
	PoissonTIACGen
	UniformIntGen

	Generators for Continuous Distributions
	BetaGen
	BetaRejectionLoglogisticGen
	BetaStratifiedRejectionGen
	BetaSymmetricalGen
	BetaSymmetricalPolarGen
	BetaSymmetricalBestGen
	CauchyGen
	ChiGen
	ChiRatioOfUniformsGen
	ChiSquareGen
	ErlangGen
	ErlangConvolutionGen
	ExponentialGen
	ExtremeValueGen
	FatigueLifeGen
	FisherFGen
	GammaGen
	GammaAcceptanceRejectionGen
	GammaRejectionLoglogisticGen
	HyperbolicSecantGen
	InverseGaussianGen
	KernelDensityGen
	KernelDensityVarCorrectGen
	LaplaceGen
	LogisticGen
	LoglogisticGen
	LognormalGen
	LognormalSpecialGen
	NormalGen
	NormalACRGen
	NormalBoxMullerGen
	NormalPolarGen
	NormalKindermannRamageGen
	ParetoGen
	Pearson5Gen
	Pearson6Gen
	StudentGen
	StudentPolarGen
	TriangularGen
	UniformGen
	WeibullGen

	UNURAN Interface
	UnuranContinuous
	UnuranDiscreteInt
	UnuranEmpirical
	UnuranException

