SSJ User’s Guide

Package simprocs

Process-driven Simulation Management

Version: September 4, 2007

This package offers some (not-so-efficient) facilities for process-driven simulation.
It provides suspend, resume, and synchronization tools for simulated processes. It
has two different implementations, one based on Java threads and the other using
an interpreter that translates everything to events. The first implementation
was developed for green threads, which are essentially simulated threads and
are available in the JDK 1.3.1 and earlier environments by running programs
with java -classic option. Unfortunately, more recent Java virtual machines
offer only native threads. This limits the number of processes, slows down the
execution, and sometimes prevent the programs from running properly. The
second (slower) implementation uses an interpreter borrowed from the DSOL
simulation system to simulate process interactions in a single thread.

CONTENTS 1

Contents

2 CONTENTS

Overview

Process-oriented simulation is managed through this package. A Process can be seen as
an active object whose behavior in time is described by a method called actions(). Each
process must extend the SimProcess class and must implement this actions() method.
Processes are created and can be scheduled to start at a given simulation time just like events.
In contrast with the corresponding actions() method of events, the method of processes is
generally not executed instantaneously in the simulation time frame. At any given simulation
time, at most one process can be active, i.e., executing its actions() method. The active
process may create and schedule new processes, kill suspended processes, and suspend itself.
A process is suspended for a fixed delay or until a resource becomes available, or a condition
becomes true. When a process is suspended or finishes its execution, another process usually
starts or resumes.

These processes may represent “autonomous” objects such as machines and robots in
a factory, customers in a retail store, vehicles in a transportation or delivery system, etc.
The process-oriented paradigm is a natural way of describing complex systems [?, 7, 7, 7]
and often leads to more compact code than the event-oriented view. However, it is often
preferred to use events only, because this gives a faster simulation program, by avoiding
the process-synchronization overhead. Most complex discrete-event systems are quite con-
veniently modeled only with events. In SSJ, events and processes can be mixed freely. The
processes actually use events for their synchronization.

The classes Resource, Bin, and Condition provide additional mechanisms for process
synchronization. A Resource corresponds to a facility with limited capacity and a waiting
queue. A process can request an arbitrary number of units of a resource, may have to wait
until enough units are available, can use the resource for a certain time, and eventually
releases it. A Bin supports producer/consumer relationships between processes. It corre-
sponds essentially to a pile of free tokens and a queue of processes waiting for the tokens. A
producer adds tokens to the pile whereas a consumer (a process) can ask for tokens. When
not enough tokens are available, the consumer is blocked and placed in the queue. The class
Condition supports the concept of processes waiting for a certain boolean condition to be
true before continuing their execution.

Two different implementations of processes are available in SSJ, each one corresponding
to a SimProcess base class. The first uses Java threads as described in Section 4 of [?]. The
second is taken from DSOL [?, ?] and was provided to us by Peter Jacobs. Unfortunately,
none of these two implementations is fully satisfactory.

Java threads are designed for real parallelism, not for the kind of simulated parallelism re-
quired in process-oriented simulation. In the Java Development Kit (JDK) 1.3.1 and earlier,
green threads supporting simulated parallelism were available and our original implemen-
tation of processes described in [?] is based on them. But green threads are no longer
supported in recent Java runtime environments. True (native) threads from the operating
system are used instead. This adds significant overhead and prevents the use of a large
number of processes in the simulation. This implementation of processes with threads can be
used safely only with the JDK versions 1.53.1 or earlier. A program using the thread-based

CONTENTS 3

process view can easily be 10 to 20 times slower than a similar program using the event view
only (see [?] for an example).

The second implementation, made by P. Jacobs, stays away from threads. It uses a
Java reflection mechanism that interprets the code of processes at runtime and transforms
everything into events. All of this is completely transparent to the user. There is no need
to change the Java simulation program in any way, except for the import statement, at the
beginning of the program, that decides which sub-package of simprocs we are going to use.
Using simprocs.dsol.SimProcess instead of simprocs.SimProcess will select the DSOL
implementation instead of that based on threads. A program using the process view imple-
mented with the DSOL interpreter can be 500 to 1000 times slower than the corresponding
event-based program but the number of processes is limited only by the available memory.

Whenever processes are used in a simulation, the simulation clock and the event list
should be initialized via SimProcess.init instead of Sim.init. This kills all processes that
may be currently suspended or delayed.

AbstractSimProcess

This abstract class provides process scheduling tools. Each type of process should be defined
as a subclass of the class AbstractSimProcess, and must provide an implementation of the
method actions which describes the life of a process of this class. Whenever a process
instance starts, its actions method begins executing.

Just like an event, a process must first be constructed, then scheduled. Scheduling a
process is equivalent to placing an event in the event list that will start this process when
the simulation clock reaches the specified time. The toString method can be overridden
to return information about the process. This information will be returned when formating
the event list as a string, if the process is delayed.

A process can be in one of the following states: INITIAL, EXECUTING, DELAYED, SUSPENDED,
and DEAD (see the diagram). At most one process can be in the EXECUTING state at any given
time, and when there is one, this executing process (called the current process) is said to
have control and is executing one of the instructions of its actions method. A process
that has been constructed but not yet scheduled is in the INITIAL state. A process is in
the DELAYED state if there is a planned event in the event list to activate it (give it control).
When a process is scheduled, it is placed in the DELAYED state. It is in the SUSPENDED state
if it is waiting to be reactivated (i.e., obtain control) without having an event to do so in the
event list. A process can suspends itself by calling suspend directly or indirectly (e.g., by
requesting a busy Resource). Usually, a SUSPENDED process must be reactivated by another
process or event via the resume method. A process in the DEAD state no longer exists.

It is important to note that when processes are used in a simulation, the simulation clock
and event list must be initialized via SimProcess.init instead of Sim.init.

To construct new processes, the user needs to extend one of the two subclasses of
AbstractSimProcess. A simulation program should always use the same process base class.
The SimProcess subclass implements processes by using Java threads. This is the fastest
implementation. The SimProcess from package simprocs.dsol uses the DSOL interpreter
to simulate processes in a single-threaded program, but it is much slower than the multi-
threaded implementation.

package umontreal.iro.lecuyer.simprocs;

public abstract class AbstractSimProcess

Possible states of a process
public static final int INITIAL = O;

The process has been created but not yet scheduled.

public static final int EXECUTING = 1;

The process is the one currently executing its actions method.

AbstractSimProcess 5

Figure 1: The possible states and state transitions of a SimProcess

new
4{ ‘ INITIAL > Kill —»>

schedule scheduleNext

l l

C DELAYED) i1l

1 ft

reschedule
resume

suspend, cancel

}

C SUSPENDED >7 i1l

!

suspend

(event)

delay

C EXECUTING > Kill —>

public static final int DELAYED = 2;
The process is not executing but has an event in the event list to reactivate it later on.

public static final int SUSPENDED = 3;

The process is not executing and will have to be reactivated by another process or event
later on.

public static final int DEAD = 4;
The process has terminated its execution.

Constructor

public AbstractSimProcess()
Constructs a new process without scheduling it. It will have to be scheduled later on. The

06 AbstractSimProcess

process is in the INITIAL state.

Methods

public void schedule (double delay)
Schedules the process to start in delay time units. This puts the process in the DELAYED
state.

public void scheduleNext ()
Schedules this process to start at the current time, by placing it at the beginning of the
event list. This puts the process in the DELAYED state.

public static AbstractSimProcess currentProcess()

Returns the process that is currently executing, if any. Otherwise, returns null.

public final boolean isAlive()

Returns true if the process is alive, otherwise false.

public int getState()

Returns the state of the process.

public double getDelay()

If the process is in the DELAYED state, returns the remaining time until the planned occurrence
of its activating event. Otherwise, an illegal state exception will be thrown printing an error
message.

public abstract void delay (double delay);

Suspends the execution of the currently executing process and schedules it to resume its
execution in delay units of simulation time. It becomes in the DELAYED state. Only the
process in the EXECUTING state can call this method.

public void reschedule (double delay)

If the process is in the DELAYED state, removes it from the event list and reschedules it in
delay units of time. Example: If the process p has called delay (5.0) at time 10.0, and
another process invokes reschedule (p, 6.2) at time 13.5, then the process p will resume
at time 13.5 + 6.2 = 19.7.

public abstract void suspend();

This method can only be invoked for the EXECUTING or a DELAYED process. If the process is
EXECUTING, suspends execution. If the process is DELAYED, cancels its activating event. This
places the process in the SUSPENDED state.

public void resume()

Places this process at the beginning of the event list to resume its execution. If the process
was DELAYED, cancels its earlier activating event.

AbstractSimProcess 7

public boolean cancel()

Cancel the activating event that was supposed to resume this process, and place the process
in the SUSPENDED state. This method can be invoked only for a process in the DELAYED state.

public abstract void kill();
Terminates the life of this process and sets its state to DEAD, after canceling its activating
event if there is one.

public abstract void actions();

This is the method that is called when this process is executing. Every subclass of
SimProcess that is to be instantiated must provide an implementation of this method.

SimProcess

Represents a simulation process with an associated Java thread. The simulation process
threads are synchronized so only one process runs at a time.

Note: the user needs to ensure that the actions method of any process can be terminated,
i.e., no infinite loops. If such a method never terminates, threads will not be recycled, causing
memory problems.

package umontreal.iro.lecuyer.simprocs;

public abstract class SimProcess extends AbstractSimProcess

Constructor

public SimProcess()

Constructs a new process without scheduling it. It will have to be scheduled later on. The
process is in the INITIAL state.

Methods

public static void init()

Initializes the process-driven simulation. This kills all processes and calls Sim.init.

public static void init (EventList evlist)

Initializes the simulation and sets the given event list evlist to be used by the simulation
executive.

public static void killA11()
Kills all instances of the class SimProcess.

Note: this method is unstable under Java versions 1.4 or greater.

dsol.SimProcess

Represents a simulation process whose actions method is interpreted by the DSOL in-
terpreter [?], written by Peter Jacobs (http://www.tbm.tudelft.nl/webstaf/peterja/
index.htm). When a process executes, a virtual machine implemented in Java is invoked
to interpret the byte-code. The processes are then simulated in a single Java thread, which
allows a much larger number of threads than when each process has its own native thread,
at the expense of a slower execution time. To use this implementation in a program instead
of the thread-based implementation provides in the standard SimProcess class, it suffices to
replace the import statement

import umontreal.iro.lecuyer.simprocs.SimProcess;

import umontreal.iro.lecuyer.simprocs.dsol.SimProcess;

package umontreal.iro.lecuyer.simprocs.dsol;

public abstract class SimProcess extends AbstractSimProcess

Constructor

public SimProcess()

Constructs a new process without scheduling it. It will have to be scheduled later on. The
process is in the INITIAL state.

Methods

public static void init()

Initializes the process-driven simulation. This kills all processes and calls Sim.init.

public static void init (EventList evlist)

Initializes the simulation and sets the given event list evlist to be used by the simulation
executive.

http://www.tbm.tudelft.nl/webstaf/peterja/index.htm
http://www.tbm.tudelft.nl/webstaf/peterja/index.htm

10

Resource

Objects of this class are resources having limited capacity, and which can be requested and
released by AbstractSimProcess objects. These resources act indirectly as synchonization
devices for processes.

A resource is created with a finite capacity, specified when invoking the Resource con-
structor, and which can be changed later on. A resource also has an infinite-capacity queue
(waiting line) and a service policy that defaults to FIFO and can be changed later on.

A process must ask for a certain number of units of the resource (request), and obtain
it, before using it. When it is done with the resource, the process must release it so that
others can use it (release). A process does not have to request [release] all the resource
units that it needs by a single call to the request |[release] method. It can make several
successive requests or releases, and can also hold different resources simultaneously.

Each resource maintains two lists: one contains the processes waiting for the resource (the
waiting queue) and the other contains the processes currently holding units of this resource.
The methods waitList and servList permit one to access these two lists. These lists
actually contain objects of the class UserRecord instead of AbstractSimProcess objects.

package umontreal.iro.lecuyer.simprocs;

public class Resource

Constructors

public Resource (int capacity)

Constructs a new resource, with initial capacity capacity, and service policy FIFO.

public Resource (int capacity, String name)

Constructs a new resource, with initial capacity capacity, service policy FIFO, and identifier
(or name) name.

Methods

public void setStatCollecting (boolean b)

Starts or stops collecting statistics on the lists returned by waitList and servList for this
resource. If the statistical collection is turned ON, the method also constructs (if not yet
done) and initializes three additional statistical collectors for this resource. These collectors
will be updated automatically. They can be accessed via statOnCapacity, statOnUtil, and
statOnSojourn, respectively. The first two, of class Accumulate, monitor the evolution of
the capacity and of the unitization (number of units busy) of the resource as a function of
time. The third one, of class Tally, collects statistics on the processes’ sojourn times (wait
+ service); it samples a new value each time a process releases all the units of this resource
that it holds (i.e., when its UserRecord disappears).

Resource 11

public void initStat()

Reinitializes all the statistical collectors for this resource. These collectors must exist, i.e.,
setStatCollecting (true) must have been invoked earlier for this resource.

public void init()

Reinitializes this resource by clearing up its waiting list and service list. The processes
that were in these lists (if any) remain in the same states. If statistical collection is “on”,
initStat is invoked as well.

public int getCapacity()

Returns the current capacity of the resource.

public void setPolicyFIFO()

Set the service policy to FIFO (first in, first out): the processes are placed in the list (and
served) according to their order of arrival.

public void setPolicyLIFO()

Set the service policy to LIFO (last in, first out): the processes are placed in the list (and
served) according to their inverse order of arrival, the last arrived are served first.

public void changeCapacity (int diff)

Modifies by diff units (increases if diff > 0, decreases if diff < 0) the capacity (i.e., the
number of units) of the resource. If diff > 0 and there are processes in the waiting list
whose request can now be satisfied, they obtain the resource. If diff < 0, there must be
at least diff units of this resource available, otherwise an illegal argument exception will
be thrown, printing an error message (this is not a strong limitation, because one can check
first and release some units, if needed, before invoking changeCapacity). In particular, the
capacity of a resource can never become negative.

public void setCapacity (int newcap)

Sets the capacity to newcap. Equivalent to changeCapacity (newcap - old) if old is the
current capacity.

public int getAvailable()

Returns the number of available units, i.e., the capacity minus the number of units busy.

public void request (int n)

The executing process invoking this method requests for n units of this resource. If there
is enough units available to fill up the request immediately, the process obtains the desired
number of units and holds them until it invokes release for this same resource. The process
is also inserted into the servList list for this resource. On the other hand, if there is less
than n units of this resource available, the executing process is placed into the waitList list
(the queue) for this resource and is suspended until it can obtain the requested number of
units of the resource.

12 Resource

public void release (int n)

The executing process that invokes this method releases n units of the resource. If this
process is holding exactly n units, it is removed from the service list of this resource and
its UserRecord object disappears. If this process is holding less than n units, the program
throws an illegal argument exception. If there are other processes waiting for this resource
whose requests can now be satisfied, they obtain the resource.

public LinkedListStat waitList()

Returns the list that contains the UserRecord objects for the processes in the waiting list
for this resource.

public LinkedListStat servList()

Returns the list that contains the UserRecord objects for the processes in the service list
for this resource.

public Accumulate statOnCapacity()

Returns the statistical collector that measures the evolution of the capacity of the resource
as a function of time. This collector exists only if setStatCollecting (true) has been
invoked previously.

public Accumulate statOnUtil()

Returns the statistical collector for the utilization of the resource (number of units busy)
as a function of time. This collector exists only if setStatCollecting (true) has been
invoked previously. The utilization rate of a resource can be obtained as the time average
computed by this collector, divided by the capacity of the resource. The collector returned
by servList() .statSize() tracks the number of UserRecord in the service list; it differs
from this collector because a process may hold more than one unit of the resource by given
UserRecord.

public Tally statOnSojourn()

Returns the statistical collector for the sojourn times of the UserRecord for this resource.
This collector exists only if setStatCollecting (true) has been invoked previously. It
gets a new observation each time a process releases all the units of this resource that it had
requested by a single request call.

public String getName ()

Returns the name (or identifier) associated to this resource. If it was not given upon resource
construction, this returns null.

public String report()

Returns a string containing a complete statistical report on this resource. The method
setStatCollecting (true) must have been invoked previously, otherwise no statistics have
been collected. The report contains statistics on the waiting times, service times, and waiting
times for this resource, on the capacity, number of units busy, and size of the queue as a
function of time, and on the utilization rate.

13
Bin

A Bin corresponds to a pile of identical tokens, and a list of processes waiting for the tokens
when the list is empty. It is a producer/consumer process synchronization device. Tokens
can be added to the pile (i.e., produced) by the method put. A process can request tokens
from the pile (i.e., consume) by calling take.

The behavior of a Bin is somewhat similar to that of a Resource. Each Bin has a single
queue of waiting processes, with FIFO or LIFO service policy, and which can be accessed
via the method waitList. This list actually contains objects of the class UserRecord. Each
UserRecord points to a process and contains some additional information.

package umontreal.iro.lecuyer.simprocs;

public class Bin

Constructors

public Bin()

Constructs a new bin, initially empty, with service policy FIFO.

public Bin (String name)

Constructs a new bin, initially empty, with service policy FIFO and identifier name.

Methods

public void init()
Reinitializes this bin by clearing up its pile of tokens and its waiting list. The processes in
this list (if any) remain in the same states.

public void setStatCollecting (boolean b)

Starts or stops collecting statistics on the list returned by waitList for this bin. If the
statistical collection is turned ON, It also constructs (if not yet done) and initializes an
additional statistical collector of class Accumulate for this bin. This collector will be updated
automatically. It can be accessed via statOnAvail, and monitors the evolution of the
available tokens of the bin as a function of time.

public void initStat()

Reinitializes all the statistical collectors for this bin. These collectors must exist, i.e.,
setStatCollecting (true) must have been invoked earlier for this bin.

public void setPolicyFIFO()

Sets the service policy for ordering processes waiting for tokens on the bin to FIFO (first
in, first out): the processes are placed in the list (and served) according to their order of
arrival.

14 Bin

public void setPolicyLIFO()

Sets the service policy for ordering processes waiting for tokens on the bin to LIFO (last in,
first out): the processes are placed in the list (and served) according to their inverse order
of arrival, the last arrived are served first.

public int getAvailable()

Returns the number of available tokens for this bin.

public void take (int n)

The executing process invoking this method requests n tokens from this bin. If enough tokens
are available, the number of tokens in the bin is reduced by n and the process continues its
execution. Otherwise, the executing process is placed into the waitList list (the queue) for
this bin and is suspended until it can obtain the requested number of tokens.

public void put (int n)

Adds n tokens to this bin. If there are processes waiting for tokens from this bin and whose
requests can now be satisfied, they obtain the tokens and resume their execution.

public LinkedListStat waitList()

Returns the list of UserRecord for the processes waiting for tokens from this bin.

public Accumulate statOnAvail()

Returns the statistical collector for the available tokens on the bin as a function of time.
This collector exists only if setStatCollecting (true) has been invoked previously.

public String report()

Returns a string containing a complete statistical report on this bin. The method
setStatCollecting (true) must have been invoked previously, otherwise no statistics will
have been collected. The report contains statistics on the available tokens, queue size and
waiting time for this bin.

15
Condition

A Condition is a boolean indicator, with a list of processes waiting for the indicator to be
true (when it is false). A process calling waitFor on a condition that is currently false is
suspended until the condition becomes true. The list of waiting processes can be accessed
via waitList.

package umontreal.iro.lecuyer.simprocs;

public class Condition extends Observable

Constructors

public Condition (boolean val)

Constructs a new Condition with initial value val.

public Condition (boolean val, String name)

Constructs a new Condition with initial value val and identifier name.

Methods

public void init (boolean val)

Reinitializes this Condition by clearing up its waiting list and resetting its state to val.
The processes in this list (if any) remain in the same states.

public void set (boolean val)

Sets the condition to val. If val is true, all the processes waiting for this condition now
resume their execution, in the same order as they have called waitFor for this condition.
(Note that a process can never wait for more than one condition at a time, because it cannot
call waitFor while it is suspended.

public boolean state()

Returns the state (true or false) of the condition.

public void waitFor()

The executing process invoking this method must wait for this condition to be true. If it
is already true, the process continues its execution immediately Otherwise, the executing
process is placed into the waitList list for this condition and is suspended until the condition
becomes true.

public LinkedListStat waitList()

Returns the list of UserRecord for the processes waiting for this condition.

public String getName ()

Returns the name (or identifier) associated to this condition.

16 Condition

public void setBroadcasting (boolean b)

Instructs the condition to start or stop observation broadcasting. When this is turned ON,
a Boolean observation is notified to registered observers when the state of the condition
changes. This boolean gives the new state of the condition.

Warning: Since this can reduce program performance, this should be turned on only when
there are registered observers.

17

UserRecord

This class represents a record object to store information related to the request of a process
for a Resource or for Bin tokens, or when a process waits for a Condition. A UserRecord
is created for each process request. The record contains the number of units requested or
used, the associated process, and the simulation time when the request was made. Lists
of processes waiting for a Resource, Bin, or Condition, for example, contain UserRecord
objects.

package umontreal.iro.lecuyer.simprocs;
public class UserRecord

public int getNumUnits()

Returns the number of units requested or used by the associated process.

public AbstractSimProcess getProcess()

Returns the process object associated with this record.

public double getRequestTime()

Return the time of creation of this record.

18 REFERENCES

References

1]

G. M. Birtwistle, G. Lomow, B. Unger, and P. Luker. Process style packages for discrete
event modelling. Transactions of the Society for Computer Simulation, 3-4:279-318,
1986.

W. R. Franta. The Process View of Simulation. North Holland, New York, 1977.

P. H. M. Jacobs. DSOL: an open source, Java based, suite for continuous and discrete
event simulation. Technische Universiteit Delft, Delft, Netherlands, 2005. Available at
http://www.simulation.tudelft.nl/dsol/.

P. H. M. Jacobs and A. Verbraeck. Single-threaded specification of process-interaction
formalism in Java. In R. G. Ingalls, M. D. Rosetti, J. S. Smith, and B. A. Peters, editors,
Proceedings of the 2004 Winter Simulation Conference, pages 1548-1555. IEEE Press,
2004.

W. Kreutzer. System Simulation - Programming Styles and Languages. Addison Wesley,
New York, 1986.

A. M. Law and W. D. Kelton. Simulation Modeling and Analysis. McGraw-Hill, New
York, third edition, 2000.

P. ’Ecuyer and E. Buist. Simulation in Java with SSJ. In Proceedings of the 2005
Winter Simulation Conference, pages 611-620. IEEE Press, 2005.

P. ’Ecuyer, L. Meliani, and J. Vaucher. SSJ: A framework for stochastic simulation in
Java. In E. Yiicesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, editors, Proceedings
of the 2002 Winter Simulation Conference, pages 234-242. IEEE Press, 2002.

http://www.simulation.tudelft.nl/dsol/

	Overview
	AbstractSimProcess
	SimProcess
	dsol.SimProcess
	Resource
	Bin
	Condition
	UserRecord

