
SSJ User’s Guide

Package util

General basic utilities

Version: May 21, 2008

This document describes a set of basic utilities used in the Java software developed in
the simulation laboratory of the DIRO, at the Université de Montréal. Many of these tools
were originally implemented in the Modula-2 language and have been translated in C and
then in Java, with some adaptations along the road.

May 21, 2008 CONTENTS 1

Contents

Num . 2

TextDataReader . 6

PrintfFormat . 8

TableFormat . 13

Chrono . 15

ChronoSingleThread . 17

ArithmeticMod . 18

BitVector . 20

BitMatrix . 23

MathFunction . 26

RootFinder . 27

Misc . 28

JDBCManager . 30

May 21, 2008 2

Num

This class provides a few constants and some methods to compute numerical quantities such
as factorials, combinations, gamma functions, and so on.

package umontreal.iro.lecuyer.util;

public class Num

Constants

public static final double DBL_EPSILON = 2.2204460492503131e-16;

Difference between 1.0 and the smallest double greater than 1.0.

public static final int DBL_MAX_EXP = 1024;

Largest int x such that 2x−1 is representable (approximately) as a double.

public static final int DBL_MIN_EXP = -1021;

Smallest int x such that 2x−1 is representable (approximately) as a normalised double.

public static final int DBL_MAX_10_EXP = 308;

Largest int x such that 10x is representable (approximately) as a double.

public static final double DBL_MIN = 2.2250738585072014e-308;

Smallest normalized positive floating-point double.

public static final double LN_DBL_MIN = -708.3964185322641;

Natural logarithm of DBL_MIN.

public static final int DBL_DIG = 15;

Number of decimal digits of precision in a double.

public static final double EBASE = 2.7182818284590452354;

The constant e.

public static final double EULER = 0.57721566490153286;

The Euler-Mascheroni constant.

public static final double RAC2 = 1.41421356237309504880;

The value of
√

2.

public static final double IRAC2 = 0.70710678118654752440;

The value of 1/
√

2.

May 21, 2008 Num 3

public static final double LN2 = 0.69314718055994530941;

The values of ln 2.

public static final double ILN2 = 1.44269504088896340737;

The values of 1/ ln 2.

public static final double MAXINTDOUBLE = 9007199254740992.0;

Largest integer n0 = 253 such that any integer n ≤ n0 is represented exactly as a double.

public static final double MAXTWOEXP = 64;

Powers of 2 up to MAXTWOEXP are stored exactly in the array TWOEXP.

public static final double TWOEXP[]

Contains the precomputed positive powers of 2. One has TWOEXP[j]= 2j , for j = 0, . . . , 64.

public static final double TEN_NEG_POW[]

Contains the precomputed negative powers of 10. One has TEN_NEG_POW[j]= 10−j , for
j = 0, . . . , 16.

Methods

public static double log2 (double x)

Returns log2(x).

public static double log1p (double x)

Deprecated: Use Math.log1p instead. Returns a value equivalent to log(1 + x) accurate
also for small x.

public static double factorial (int n)

Returns the value of n!.

public static double lnFactorial (int n)

Returns the value of ln(n!), the natural logarithm of factorial n. Gives 16 decimals of
precision (relative error < 0.5× 10−15).

public static double lnGamma (double x)

Returns the natural logarithm of the gamma function Γ(x) evaluated at x. Gives 16 decimals
of precision, but is implemented only for x > 0.

public static double digamma (double x)

Returns the logarithmic derivative of the Gamma function ψ(x) = Γ′(x)/Γ(x).

public static double trigamma (double x)

Returns the value of the trigamma function dψ(x)/dx, the derivative of the digamma func-
tion, evaluated at x.

May 21, 2008 Num 4

public static double tetragamma (double x)

Returns the value of the tetragamma function d2ψ(x)/d2x, the second derivative of the
digamma function, evaluated at x.

public static double combination (int n, int s)

Returns the value of
(
n
s

)
, the number of different combinations of s objects amongst n.

Uses an algorithm that prevents overflows (when computing factorials), if possible.

public static double[][] calcMatStirling (int m, int n)

Computes and returns the Stirling numbers of the second kind

M [i, j] =
{
j
i

}
for 0 ≤ i ≤ m and 0 ≤ i ≤ j ≤ n. (1)

public static double volumeSphere (double p, int t)

Returns the volume V of a sphere of radius 1 in t dimensions using the norm Lp. It is given
by the formula

V =
[2Γ(1 + 1/p)]t

Γ (1 + t/p)
, p > 0,

where Γ is the gamma function. The case of the sup norm L∞ is obtained by choosing
p = 0. Restrictions: p ≥ 0 and t ≥ 1.

public static double evalCheby (double S[], int N, double x)

Evaluates a series of Chebyshev polynomials Tj at x over the basic interval [−1, 1], using
the method of Clenshaw [1], i.e., computes and returns

y =
S0

2
+

N∑
j=1

SjTj(x).

public static double evalChebyStar (double S[], int N, double x)

Evaluates a series of shifted Chebyshev polynomials T ∗j at x over the basic interval [0, 1],
using the method of Clenshaw [1], i.e., computes and returns

y =
S0

2
+

N∑
j=1

SjT
∗
j (x).

public static double besselK025 (double x)

Returns the value of K1/4(x), where Kν is the modified Bessel’s function of the second kind.
The relative error on the returned value is less than 0.5× 10−6 for x > 10−300.

public static int multMod (int a, int s, int c, int m)

Returns (as+ c) mod m. Restriction: assumes that a, c, s < m.

May 21, 2008 Num 5

public static long multMod (long a, long s, long c, long m)

Returns (as+ c) mod m. Uses the class ArithmeticMod. Restriction: assumes that a, c, s <
m.

public static double multMod (double a, double s, double c, double m)

Returns (as+ c) mod m. Restriction: assumes that a, s, c are < m and a, s, c,m are < 235.

May 21, 2008 6

TextDataReader

Provides static methods to read data from text files.

package umontreal.iro.lecuyer.util;

public class TextDataReader

public static double[] readDoubleData (Reader input) throws IOException

Reads an array of double-precision values from the reader input. For each line of text
obtained from the given reader, this method trims whitespaces, and parses the remaining
text as a double-precision value. This method ignores every character other than the digits,
the plus and minus signs, the period (.), and the letters e and E. Moreover, lines starting
with a pound sign (#) are considered as comments and thus skipped. The method returns
an array containing all the parsed values.

public static double[] readDoubleData (File file) throws IOException

Opens the file referred to by the file object file, and calls readDoubleData to obtain an
array of double-precision values from the file.

public static double[] readDoubleData (String file) throws IOException

Opens the file with name file, and calls readDoubleData to obtain an array of double-
precision values from the file.

public static int[] readIntData (Reader input) throws IOException

This is equivalent to readDoubleData, for reading integers.

public static int[] readIntData (File file) throws IOException

This is equivalent to readDoubleData, for reading integers.

public static int[] readIntData (String file) throws IOException

This is equivalent to readDoubleData, for reading integers.

public static double[][] readDoubleData2D (Reader input) throws IOException

Uses the reader input to obtain a 2-dimensional array of double-precision values. For each
line of text obtained from the given reader, this method trims whitespaces, and parses the
remaining text as an array of double-precision values. Every character other than the digits,
the plus (+) and minus (-) signs, the period (.), and the letters e and E are ignored and
can be used to separate numbers on a line. Moreover, lines starting with a pound sign (#)
are considered as comments and thus skipped. The lines containing only a semicolon sign
(;) are considered as empty lines. The method returns a 2D array containing all the parsed
values. The returned array is not always rectangular.

public static double[][] readDoubleData2D (File file) throws IOException

Opens the file referred to by the file object file, and calls readDoubleData2D to obtain a
matrix of double-precision values from the file.

May 21, 2008 TextDataReader 7

public static double[][] readDoubleData2D (String file) throws IOException

Opens the file with name file, and calls readDoubleData2D to obtain a matrix of double-
precision values from the file.

public static int[][] readIntData2D (Reader input) throws IOException

This is equivalent to readDoubleData2D, for reading integers.

public static int[][] readIntData2D (File file) throws IOException

This is equivalent to readDoubleData2D, for reading integers.

public static int[][] readIntData2D (String file) throws IOException

This is equivalent to readDoubleData2D, for reading integers.

May 21, 2008 8

PrintfFormat

This class acts like a StringBuffer which defines new types of append methods. It defines
certain functionalities of the ANSI C printf function that also can be accessed through
static methods. The information given here is strongly inspired from the man page of the C
printf function.

package umontreal.iro.lecuyer.util;

public class PrintfFormat

Constructors

public PrintfFormat()

Constructs a new buffer object containing an empty string.

public PrintfFormat (int length)

Constructs a new buffer object with an initial capacity of length.

public PrintfFormat (String str)

Constructs a new buffer object containing the initial string str.

Methods

public PrintfFormat append (String str)

Appends str to the buffer.

public PrintfFormat append (int fieldwidth, String str)

Uses the s static method to append str to the buffer. A minimum of fieldwidth characters
will be used.

public PrintfFormat append (double x)

Appends x to the buffer.

public PrintfFormat append (int fieldwidth, double x)

Uses the f static method to append x to the buffer. A minimum of fieldwidth characters
will be used.

public PrintfFormat append (int fieldwidth, int precision, double x)

Uses the f static method to append x to the buffer. A minimum of fieldwidth characters
will be used with the given precision.

May 21, 2008 PrintfFormat 9

public PrintfFormat append (int x)

Appends x to the buffer.

public PrintfFormat append (int fieldwidth, int x)

Uses the d static method to append x to the buffer. A minimum of fieldwidth characters
will be used.

public PrintfFormat append (long x)

Appends x to the buffer.

public PrintfFormat append (int fieldwidth, long x)

Uses the d static method to append x to the buffer. A minimum of fieldwidth characters
will be used.

public PrintfFormat append (int fieldwidth, int accuracy, int precision,
double x)

Uses the format static method with the same four arguments to append x to the buffer.

public PrintfFormat append (char c)

Appends a single character to the buffer.

public void clear()

Clears the contents of the buffer.

public StringBuffer getBuffer()

Returns the StringBuffer associated with that object.

public String toString()

Converts the buffer into a String.

public static String s (String str)

Same as s (0, str). If the string str is null, it returns the string “null”.

public static String s (int fieldwidth, String str)

Formats the string str like the %s in the C printf function. The fieldwidth argument
gives the minimum length of the resulting string. If str is shorter than fieldwidth, it is
left-padded with spaces. If fieldwidth is negative, the string is right-padded with spaces
if necessary. The String will never be truncated. If str is null, it calls s (fieldwidth,
‘‘null’’).

The fieldwidth argument has the same effect for the other methods in this class.

Integers

public static String d (long x)

Same as d (0, 1, x).

May 21, 2008 PrintfFormat 10

public static String d (int fieldwidth, long x)

Same as d (fieldwidth, 1, x).

public static String d (int fieldwidth, int precision, long x)

Formats the long integer x into a string like %d in the C printf function. It converts its
argument to decimal notation, precision gives the minimum number of digits that must
appear; if the converted value requires fewer digits, it is padded on the left with zeros. When
zero is printed with an explicit precision 0, the output is empty.

If the one-argument form is used, a fieldwidth of 0 is assumed and a precision of 1 is
used. If the two-arguments method is used, a precision of 1 is assumed.

public static String format (long x)

Same as d (0, 1, x).

public static String format (int fieldwidth, long x)

Converts a long integer to a String with a minimum length of fieldwidth, the result
is right-padded with spaces if necessary but it is not truncated. If only one argument is
specified, a fieldwidth of 0 is assumed.

public static String formatBase (int b, long x)

Same as formatBase (0, b, x).

public static String formatBase (int fieldwidth, int b, long x)

Converts the integer x to a String representation in base b.

Restrictions: 2 ≤ b ≤ 10

Reals

public static String E (double x)

Same as E (0, 6, x).

public static String E (int fieldwidth, double x)

Same as E (fieldwidth, 6, x).

public static String E (int fieldwidth, int precision, double x)

Formats a double-precision number x like %E in C printf. The double argument is rounded
and converted in the style [-]d.dddE+-dd where there is one digit before the decimal-point
character and the number of digits after it is equal to the precision; if the precision is 0, no
decimal-point character appears. The exponent always contains at least two digits; if the
value is zero, the exponent is 00.

If the one-argument form is used, a fieldwidth of 0 and a precision of 6 are used. If the
two-arguments form is used, a precision of 6 is assumed.

May 21, 2008 PrintfFormat 11

public static String e (double x)

Same as e (0, 6, x).

public static String e (int fieldwidth, double x)

Same as e (fieldwidth, 6, x).

public static String e (int fieldwidth, int precision, double x)

The same as E, except that ‘e’ is used as the exponent character instead of ‘E’.

public static String f (double x)

Same as f (0, 6, x).

public static String f (int fieldwidth, double x)

Same as f (fieldwidth, 6, x).

public static String f (int fieldwidth, int precision, double x)

Formats the double-precision x into a string like %f in C printf. The argument is rounded
and converted to decimal notation in the style [-]ddd.ddd, where the number of digits
after the decimal-point character is equal to the precision specification. If the precision is
explicitly 0, no decimal-point character appears. If a decimal point appears, at least one
digit appears before it.

If the one-argument form is used, a fieldwidth of 0 and a precision of 6 are used. If the
two-arguments form is used, a precision of 6 is assumed.

public static String G (double x)

Same as G (0, 6, x).

public static String G (int fieldwidth, double x)

Same as G (fieldwidth, 6, x).

public static String G (int fieldwidth, int precision, double x)

Formats the double-precision x into a string like %G in C printf. The argument is converted
in style %f or %E. precision specifies the number of significant digits. If it is 0, it is treated
as 1. Style %E is used if the exponent from its conversion is less than −4 or greater than
or equal to precision. Trailing zeros are removed from the fractional part of the result; a
decimal point appears only if it is followed by at least one digit.

If the one-argument form is used, a fieldwidth of 0 and a precision of 6 are used. If the
two-arguments form is used, a precision of 6 is assumed.

public static String g (double x)

Same as g (0, 6, x).

public static String g (int fieldwidth, double x)

Same as g (fieldwidth, 6, x).

May 21, 2008 PrintfFormat 12

public static String g (int fieldwidth, int precision, double x)

The same as G, except that ‘e’ is used in the scientific notation.

public static String format (int fieldwidth, int accuracy, int precision,
double x)

Returns a String containing x. Uses a total of at least fieldwidth positions (including
the sign and point when they appear), accuracy digits after the decimal point and at
least precision significant digits. accuracy and precision must be strictly smaller than
fieldwidth. The number is rounded if necessary. If there is not enough space to format
the number in decimal notation with at least precision significant digits (accuracy or
fieldwidth is too small), it will be converted to scientific notation with at least precision
significant digits. In that case, fieldwidth is increased if necessary.

Intervals

public static void formatWithError (int fieldwidth, int fieldwidtherr,
int accuracy, int precision, double x, double error, String[] res)

Stores a string containing x into res[0], and a string containing error into res[1], both
strings being formatted with the same notation. Uses a total of at least fieldwidth positions
(including the sign and point when they appear) for x, fieldwidtherr positions for error,
accuracy digits after the decimal point and at least precision significant digits. accuracy
and precision must be strictly smaller than fieldwidth. The numbers are rounded if nec-
essary. If there is not enough space to format x in decimal notation with at least precision
significant digits (accuracy or fieldwidth are too small), it will be converted to scientific
notation with at least precision significant digits. In that case, fieldwidth is increased if
necessary, and the error is also formatted in scientific notation.

public static void formatWithError (int fieldwidth, int fieldwidtherr,
int precision, double x, double error, String[] res)

Stores a string containing x into res[0], and a string containing error into res[1], both
strings being formatted with the same notation. This calls formatWithError with the
minimal accuracy for which the formatted string for error is non-zero. If error is 0, the
accuracy is 0. If this minimal accuracy causes the strings to be formatted using scientific
notation, this method increases the accuracy until the decimal notation can be used.

May 21, 2008 13

TableFormat

This class provides methods to format arrays and matrices into Strings in different styles.
This could be useful for printing arrays and subarrays, or for putting them in files for further
treatment by other softwares such as Mathematica, Matlab, etc.

package umontreal.iro.lecuyer.util;

public class TableFormat

Formating styles

public static final int PLAIN

Plain text matrix printing style

public static final int MATHEMATICA

Mathematica matrix printing style

public static final int MATLAB

Matlab matrix printing style

Functions to convert tables to String

public static String format (int V[], int n1, int n2, int k, int p)

Formats a String containing the elements n1 to n2 (inclusive) of table V, k elements per
line, p positions per element. If k = 1, the array index will also appear on the left of each
element, i.e., each line i will have the form i V[i].

public static String format (double V[], int n1, int n2,
int k, int p1, int p2, int p3)

Similar to the previous method, but for an array of double’s. Gives at least p1 positions
per element, p2 digits after the decimal point, and at least p3 significant digits.

public static String format (int[][] Mat, int i1, int i2,
int j1, int j2, int w, int p,
int style, String Name)

Formats a submatrix of integers.

public static String format (double[][] Mat, int i1, int i2,
int j1, int j2, int w, int p,
int style, String Name)

Formats the submatrix with lines i1 ≤ i ≤ i2 and columns j1 ≤ j ≤ j2 of the matrix Mat,
using the formatting style style. The elements are formated in w positions each, with a
precision of p digits. The string Name provides an identifier for the submatrix.

May 21, 2008 TableFormat 14

To be treated by Matlab, this string containing the matrix must be copied to a file with
extension .m. If the file is named poil.m, for example, it can be accessed by calling poil in
Matlab. For Mathematica, if the file is named poil, it will be read using << poil;.

May 21, 2008 15

Chrono

Chrono is a small class that acts as an interface to the system clock and calculates the CPU
time consumed by parts of a program. Part of this class is implemented in the C language
and the implementation is unfortunately operating system-dependent. The C functions for
the current class have been compiled on a 32-bit machine running Linux and will not work
on 64-bit machines. For a platform-independent CPU timer (valid only with Java–1.5 or
later), one should use the subclass ChronoSingleThread which is programmed directly in

Java (see the next class in this guide). 1

Every object of class Chrono acts as an independent stopwatch. Several Chrono objects
can run at any given time. The method init resets the stopwatch to zero, getSeconds,
getMinutes and getHours return its current reading, and format converts this reading to
a String. The returned value includes the execution time of the method from Chrono.

Below is an example of how it may be used. A stopwatch named timer is constructed
(and initialized). When 2.1 seconds of CPU have been consumed, the stopwatch is read
and reset to zero. Then, after an additional 330 seconds (or 5.5 minutes) of CPU time, the
stopwatch is read again and the value is printed to the output in minutes.

Chrono timer = Chrono.createForSingleThread();
... (suppose 2.1 CPU seconds are used here.)

double t = timer.getSeconds(); // Here, t = 2.1
timer.init();
t = timer.getSeconds(); // Here, t = 0.0

... (suppose 330 CPU seconds are used here.)
t = timer.getMinutes(); // Here, t = 5.5
System.out.println (timer.format()); // Prints: 0:5:30.00

package umontreal.iro.lecuyer.util;

public class Chrono

public static Chrono createForSingleThread()

Creates a Chrono instance adapted for a program using a single thread. Under Java 1.5, this
method returns an instance of ChronoSingleThread which can measure CPU time for one
thread. Under Java versions prior to 1.5, this returns an instance of this class. This method
must not be used to create a timer for a multi-threaded program, because the obtained CPU
times will differ depending on the used Java version.

1 From Richard: Dans les deux cas, le nouveau Chrono d’Éric fonctionne bien en appelant Chrono timer
= Chrono.createForSingleThread().

May 21, 2008 Chrono 16

Constructor

public Chrono()

Constructs a Chrono object and initializes it to zero.

Timing functions

public void init()

Initializes this Chrono to zero.

public double getSeconds()

Returns the CPU time in seconds used by the program since the last call to init for this
Chrono.

public double getMinutes()

Returns the CPU time in minutes used by the program since the last call to init for this
Chrono.

public double getHours()

Returns the CPU time in hours used by the program since the last call to init for this
Chrono.

public String format()

Converts the CPU time used by the program since its last call to init for this Chrono to a
String in the HH:MM:SS.xx format.

public static String format (double time)

Converts the time time, given in seconds, to a String in the HH:MM:SS.xx format.

May 21, 2008 17

ChronoSingleThread

The ChronoSingleThread class extends the Chrono class and computes the CPU time for
the current thread only. It is valid only under Java–1.5 since Java–1.5 provides platform-
independent facilities to get the CPU time for a single thread through management API.
The parent class Chrono uses a platform-dependent method (since it is programmed directly
in C) to determine the CPU time for all threads. Here is an example of how it may be used:

Chrono timer = new ChronoSingleThread();
...

double t = timer.getSeconds();
timer.init();
t = timer.getSeconds();

...
t = timer.getMinutes();
System.out.println (timer.format());

package umontreal.iro.lecuyer.util;

public class ChronoSingleThread extends Chrono

Constructor

public ChronoSingleThread()

Constructs a ChronoSingleThread object and initializes it to zero.

May 21, 2008 18

ArithmeticMod

This class provides facilities to compute multiplications of scalars, of vectors and of matrices
modulo m. All algorithms are present in three different versions. These allow operations on
double, int and long. The int and long versions work exactly like the double ones.

package umontreal.iro.lecuyer.util;

public class ArithmeticMod

Methods using double

public static double multModM (double a, double s, double c, double m)

Computes (a× s+ c) mod m. Where m must be smaller than 235. Works also if s or c are
negative. The result is always positive (and thus always between 0 and m - 1).

public static void matVecModM (double A[][], double s[], double v[],
double m)

Computes the result of A × s mod m and puts the result in v. Where s and v are both
column vectors. This method works even if s = v.

public static void matMatModM (double A[][], double B[][], double C[][],
double m)

Computes A× B mod m and puts the result in C. Works even if A = C, B = C or A = B = C.

public static void matTwoPowModM (double A[][], double B[][], double m,
int e)

Computes A2e mod m and puts the result in B. Works even if A = B.

public static void matPowModM (double A[][], double B[][], double m,
int c)

Computes Ac mod m and puts the result in B. Works even if A = B.

Methods using int

public static int multModM (int a, int s, int c, int m)

Computes (a×s+c) mod m. Works also if s or c are negative. The result is always positive
(and thus always between 0 and m - 1).

public static void matVecModM (int A[][], int s[], int v[], int m)

Exactly like matVecModM using double, but with int instead of double.

public static void matMatModM (int A[][], int B[][], int C[][], int m)

Exactly like matMatModM using double, but with int instead of double.

May 21, 2008 ArithmeticMod 19

public static void matTwoPowModM (int A[][], int B[][], int m, int e)

Exactly like matTwoPowModM using double, but with int instead of double.

public static void matPowModM (int A[][], int B[][], int m, int c)

Exactly like matPowModM using double, but with int instead of double.

Methods using long

public static long multModM (long a, long s, long c, long m)

Computes (a×s+c) mod m. Works also if s or c are negative. The result is always positive
(and thus always between 0 and m - 1).

public static void matVecModM (long A[][], long s[], long v[], long m)

Exactly like matVecModM using double, but with long instead of double.

public static void matMatModM (long A[][], long B[][], long C[][], long m)

Exactly like matMatModM using double, but with long instead of double.

public static void matTwoPowModM (long A[][], long B[][], long m, int e)

Exactly like matTwoPowModM using double, but with long instead of double.

public static void matPowModM (long A[][], long B[][], long m, int c)

Exactly like matPowModM using double, but with long instead of double.

May 21, 2008 20

BitVector

This class implements vectors of bits and the operations needed to use them. The vectors
can be of arbitrary length. The operations provided are all the binary operations available
to the int and long primitive types in Java.

All bit operations are present in two forms: a normal form and a self form. The normal
form returns a newly created object containing the result, while the self form puts the
result in the calling object (this). The return value of the self form is the calling object
itself. This is done to allow easier manipulation of the results, making it possible to chain
operations.

package umontreal.iro.lecuyer.util;

public class BitVector implements Serializable, Cloneable

Constructors

public BitVector (int length)

Creates a new BitVector of length length with all its bits set to 0.

public BitVector (int[] vect, int length)

Creates a new BitVector of length length using the data in vect. Component vect[0]
makes the 32 lowest order bits, with vect[1] being the 32 next lowest order bits, and so on.
The normal bit order is then used to fill the 32 bits (the first bit is the lowest order bit and
the last bit is largest order bit). Note that the sign bit is used as the largest order bit.

public BitVector (int[] vect)

Creates a new BitVector using the data in vect. The length of the BitVector is always
equals to 32 times the length of vect.

public BitVector (BitVector that)

Creates a copy of the BitVector that.

Methods

public Object clone()

Creates a copy of the BitVector.

public boolean equals (BitVector that)

Verifies if two BitVector’s have the same length and the same data.

public int size()

Returns the length of the BitVector.

May 21, 2008 BitVector 21

public void enlarge (int size, boolean filling)

Resizes the BitVector so that its length is equal to size. If the BitVector is enlarged,
then the newly added bits are given the value 1 if filling is set to true and 0 otherwise.

public void enlarge (int size)

Resizes the BitVector so that its length is equal to size. Any new bit added is set to 0.

public boolean getBool (int pos)

Gives the value of the bit in position pos. If the value is 1, returns true; otherwise, returns
false.

public void setBool (int pos, boolean value)

Sets the value of the bit in position pos. If value is equal to true, sets it to 1; otherwise,
sets it to 0.

public int getInt (int pos)

Returns an int containing all the bits in the interval [pos× 32, pos× 32 + 31].

public String toString()

Returns a string containing all the bits of the BitVector, starting with the highest order
bit and finishing with the lowest order bit. The bits are grouped by groups of 8 bits for ease
of reading.

public BitVector not()

Returns a BitVector which is the result of the not operator on the current BitVector. The
not operator is equivalent to the ~ operator in Java and thus swap all bits (bits previously
set to 0 become 1 and bits previously set to 1 become 0).

public BitVector selfNot()

Applies the not operator on the current BitVector and returns it.

public BitVector xor (BitVector that)

Returns a BitVector which is the result of the xor operator applied on this and that.
The xor operator is equivalent to the ^ operator in Java. All bits which were set to 0 in
one of the vector and to 1 in the other vector are set to 1. The others are set to 0. This is
equivalent to the addition in modulo 2 arithmetic.

public BitVector selfXor (BitVector that)

Applies the xor operator on this with that. Stores the result in this and returns it.

public BitVector and (BitVector that)

Returns a BitVector which is the result of the and operator with both the this and that
BitVector’s. The and operator is equivalent to the & operator in Java. Only bits which are
set to 1 in both this and that are set to 1 in the result, all the others are set to 0.

public BitVector selfAnd (BitVector that)

Applies the and operator on this with that. Stores the result in this and returns it.

May 21, 2008 BitVector 22

public BitVector or (BitVector that)

Returns a BitVector which is the result of the or operator with both the this and that
BitVector’s. The or operator is equivalent to the | operator in Java. Only bits which are
set to 0 in both this and that are set to to 0 in the result, all the others are set to 1.

public BitVector selfOr (BitVector that)

Applies the or operator on this with that. Stores the result in this and returns it.

public BitVector shift (int j)

Returns a BitVector equal to the original with all the bits shifted j positions to the right if
j is positive, and shifted j positions to the left if j is negative. The new bits that appears
to the left or to the right are set to 0. If j is positive, this operation is equivalent to the >>>
operator in Java, otherwise, it is equivalent to the << operator.

public BitVector selfShift (int j)

Shift all the bits of the current BitVector j positions to the right if j is positive, and j
positions to the left if j is negative. The new bits that appears to the left or to the rigth
are set to 0. Returns this.

public boolean scalarProduct (BitVector that)

Returns the scalar product of two BitVector’s modulo 2. It returns true if there is an odd
number of bits with a value of 1 in the result of the and operator applied on this and that,
and returns false otherwise.

May 21, 2008 23

BitMatrix

This class implements matrices of bits of arbitrary dimensions. Basic facilities for bits
operations, multiplications and exponentiations are provided.

package umontreal.iro.lecuyer.util;

public class BitMatrix implements Serializable, Cloneable

Constructors

public BitMatrix (int r, int c)

Creates a new BitMatrix with r rows and c columns filled with 0’s.

public BitMatrix (BitVector[] rows)

Creates a new BitMatrix using the data in rows. Each of the BitVector will be one of the
rows of the BitMatrix.

public BitMatrix (int[][] data, int r, int c)

Creates a new BitMatrix with r rows and c columns using the data in data. Note that the
orders of the bits for the rows are using the same order than for the BitVector. This does
mean that the first bit is the lowest order bit of the last int in the row and the last bit is
the highest order bit of the first int int the row.

public BitMatrix (BitMatrix that)

Copy constructor.

Methods

public Object clone()

Creates a copy of the BitMatrix.

public boolean equals (BitMatrix that)

Verifies that this and that are strictly identical. They must both have the same dimensions
and data.

public String toString()

Creates a String containing all the data of the BitMatrix. The result is displayed in a
matrix form, with each row being put on a different line. Note that the bit at (0,0) is at the
upper left of the matrix, while the bit at (0) in a BitVector is the least significant bit.

public String printData()

Creates a String containing all the data of the BitMatrix. The data is displayed in the same
format as are the int[][] in Java code. This allows the user to print the representation of

May 21, 2008 BitMatrix 24

a BitMatrix to be put, directly in the source code, in the constructor BitMatrix(int[][],
int, int). The output is not designed to be human-readable.

public int numRows()

Returns the number of rows of the BitMatrix.

public int numColumns()

Returns the number of columns of the BitMatrix.

public boolean getBool (int row, int column)

Returns the value of the bit in the specified row and column. If the value is 1, return true.
If it is 0, return false.

public void setBool (int row, int column, boolean value)

Changes the value of the bit in the specified row and column. If value is true, changes it
to 1. If value is false changes it to 0.

public BitMatrix transpose()

Returns the transposed matrix. The rows and columns are interchanged.

public BitMatrix not()

Returns the BitMatrix resulting from the application of the not operator on the original
BitMatrix. The effect is to swap all the bits of the BitMatrix, turning all 0 into 1 and all
1 into 0.

public BitMatrix and (BitMatrix that)

Returns the BitMatrix resulting from the application of the and operator on the original
BitMatrix and that. Only bits which were at 1 in both BitMatrix are set at 1 in the result.
All others are set to 0.

public BitMatrix or (BitMatrix that)

Returns the BitMatrix resulting from the application of the or operator on the original
BitMatrix and that. Only bits which were at 0 in both BitMatrix are set at 0 in the
result. All others are set to 1.

public BitMatrix xor (BitMatrix that)

Returns the BitMatrix resulting from the application of the xor operator on the original
BitMatrix and that. Only bits which were at 1 in only one of the two BitMatrix are set
at 1 in the result. All others are set to 0.

public BitVector multiply (BitVector vect)

Multiplies the column BitVector by a BitMatrix and returns the result. The result is A×v,
where A is the BitMatrix, and v is the BitVector.

public int multiply (int vect)

Multiplies vect, seen as a column BitVector, by a BitMatrix. (See BitVector to see the
conversion between int and BitVector.) The result is A × v, where A is the BitMatrix,
and v is the BitVector.

May 21, 2008 BitMatrix 25

public BitMatrix multiply (BitMatrix that)

Multiplies two BitMatrix’s together. The result is A×B, where A is the this BitMatrix
and B is the that BitMatrix.

public BitMatrix power (long p)

Raises the BitMatrix to the power p.

public BitMatrix power2e (int e)

Raises the BitMatrix to power 2e.

Nested Class

public class IncompatibleDimensionException extends RuntimeException

Runtime exception raised when the dimensions of the BitMatrix are not appropriate for the
operation.

May 21, 2008 26

MathFunction

This interface should be implemented by classes which represent univariate mathematical
functions. It is used to pass an arbitrary function of one variable as argument to another
function. For example, it is used in RootFinder to find the zeros of a function.

package umontreal.iro.lecuyer.util;

public interface MathFunction

public double evaluate (double x);

Returns the value of the function evaluated at x.

May 21, 2008 27

RootFinder

This class provides methods to solve non-linear equations.

package umontreal.iro.lecuyer.util;

public class RootFinder

Methods

public static double brentDekker (double a, double b,
MathFunction f, double tol)

Computes a root x of the function in f using the Brent-Dekker method. The interval [a, b]
must contain the root x. The calculations are done with an approximate relative precision
tol. Returns x such that f(x) = 0.

May 21, 2008 28

Misc

This class provides miscellaneous functions that are hard to classify. Some may be moved
to another class in the future.

package umontreal.iro.lecuyer.util;

public class Misc

Methods

public static double quickSelect (double[] t, int n, int k)

Returns the kth smallest item of the array t of size n.

public static int quickSelect (int[] t, int n, int k)

Returns the kth smallest item of the array t of size n.

public static int getTimeInterval (double[] times, int start,
int end, double t)

Returns the index of the time interval corresponding to time t. Let t0 ≤ · · · ≤ tn be
simulation times stored in a subset of times. This method uses binary search to determine
the smallest value i for which ti ≤ t < ti+1, and returns i. The value of ti is stored in
times[start+i] whereas n is defined as end - start. If t < t0, this returns −1. If t ≥ tn,
this returns n. Otherwise, the returned value is greater than or equal to 0, and smaller than
or equal to n− 1. start and end are only used to set lower and upper limits of the search
in the times array; the index space of the returned value always starts at 0. Note that if
the elements of times with indices start, . . . , end are not sorted in non-decreasing order,
the behavior of this method is undefined.

public static void interpol (int n, double[] X, double[] Y, double[] C)

Given the n + 1 distinct points (x0, y0), (x1, y1), . . . , (xn, yn) [with X[0] = xi and similarly
for Y and C], this function computes the n+1 coefficients C[i] of the Newton interpolating
polynomial P (x) of degree n passing through these points:

P (x) = c0 + c1(x− x0) + c2(x− x0)(x− x1) + · · ·+ cn(x− x0)(x− x1) · · · (x− xn−1).

public static double evalPoly (int n, double[] X, double[] C, double z)

Given n, X and C as described in interpol(n, X, Y, C), this function returns the value
of the interpolating polynomial evaluated at z.

public static double simpsonIntegral (MathFunction func, double a,
double b, int numIntervals)

Computes and returns an approximation of the integral of func over [a, b], using the Simp-
sons 1/3 method with numIntervals intervals. This method estimates∫ b

a
f(x)dx,

May 21, 2008 Misc 29

where f(x) is the function defined by func and evaluated at x, by dividing [a, b] in
n = numIntervals interval with length h = (b− a)/n. The integral is estimated by

h

3
(f(a) + 4f(a+ h) + 2f(a+ 2h) + 4f(a+ 3h) + · · ·+ f(b))

This method assumes that a ≤ b <∞, and n is even.

May 21, 2008 30

JDBCManager

This class provides some facilities to connect to a SQL database and to retrieve data stored
in it. JDBC provides a standardized interface for accessing a database independently of a
specific database management system (DBMS). The user of JDBC must create a Connection

object used to send SQL queries to the underlying DBMS, but the creation of the connection
adds a DBMS-specific portion in the application. This class helps the developer in moving
the DBMS-specific information out of the source code by storing it in a properties file. The
methods in this class can read such a properties file and establish the JDBC connection.
The connection can be made by using a DataSource obtained through a JNDI server, or by
a JDBC URI associated with a driver class. Therefore, the properties used to connect to the
database must be a JNDI name (jdbc.jndi-name), or a driver to load (jdbc.driver) with
the URI of a database (jdbc.uri).

jdbc.driver=com.mysql.jdbc.Driver

jdbc.uri=jdbc:mysql://mysql.iro.umontreal.ca/database?user=foo&password=bar

The connection is established using the connectToDatabase method. Shortcut methods
are also available to read the properties from a file or a resource before establishing the
connection. This class also provides shortcut methods to read data from a database and to
copy the data into Java arrays.

package umontreal.iro.lecuyer.util;

public class JDBCManager

Methods

public static Connection connectToDatabase (Properties prop)
throws SQLException

Connects to the database using the properties prop and returns the an object representing
the connection. The properties stored in prop must be a JNDI name (jdbc.jndi-name),
or the name of a driver (jdbc.driver) to load and the URI of the database (jdbc.uri).
When a JNDI name is given, this method constructs a context using the nullary constructor
of InitialContext, uses the context to get a DataSource object, and uses the data source
to obtain a connection. This method assumes that JNDI is configured correctly; see the
class InitialContext for more information about configuring JNDI. If no JNDI name is
specified, the method looks for a JDBC URI. If a driver class name is specified along with the
URI, the corresponding driver is loaded and registered with the JDBC DriverManager. The
driver manager is then used to obtain the connection using the URI. This method throws an
SQLException if the connection failed and an IllegalArgumentException if the properties
do not contain the required values.

May 21, 2008 JDBCManager 31

public static Connection connectToDatabase (InputStream is)
throws IOException, SQLException

Returns a connection to the database using the properties read from stream is. This method
loads the properties from the given stream, and calls connectToDatabase to establish the
connection.

public static Connection connectToDatabase (File file)
throws IOException, SQLException

Equivalent to connectToDatabase (new FileInputStream (file)).

public static Connection connectToDatabase (String fileName)
throws IOException, SQLException

Equivalent to connectToDatabase (new FileInputStream (fileName)).

public static Connection connectToDatabaseFromResource (String resource)
throws IOException, SQLException

Uses connectToDatabase with the stream obtained from the resource resource. This
method searches the file resource on the class path, opens the first resource found, and
extracts properties from it. It then uses connectToDatabase to establish the connection.

public static double[] readDoubleData (Statement stmt, String query)
throws SQLException

Copies the result of the SQL query query into an array of double-precision values. This
method uses the statement stmt to execute the given query, and assumes that the first
column of the result set contains double-precision values. Each row of the result set then
becomes an element of an array of double-precision values which is returned by this method.
This method throws an SQLException if the query is not valid.

public static double[] readDoubleData (Connection connection, String query)
throws SQLException

Copies the result of the SQL query query into an array of double-precision values. This
method uses the active connection connection to create a statement, and passes this state-
ment, with the query, to readDoubleData, which returns an array of double-precision values.

public static double[] readDoubleData (Statement stmt, String table,
String column)

throws SQLException

Returns the values of the column column of the table table. This method is equivalent to
readDoubleData (stmt, "SELECT column FROM table").

public static double[] readDoubleData (Connection connection,
String table, String column)

throws SQLException

Returns the values of the column column of the table table. This method is equivalent to
readDoubleData (connection, "SELECT column FROM table").

public static int[] readIntData (Statement stmt, String query)
throws SQLException

Copies the result of the SQL query query into an array of integers. This method uses the
statement stmt to execute the given query, and assumes that the first column of the result

May 21, 2008 JDBCManager 32

set contains integer values. Each row of the result set then becomes an element of an array
of integers which is returned by this method. This method throws an SQLException if the
query is not valid. The given statement stmt must not be set up to produce forward-only
result sets.

public static int[] readIntData (Connection connection, String query)
throws SQLException

Copies the result of the SQL query query into an array of integers. This method uses the
active connection connection to create a statement, and passes this statement, with the
query, to readIntData, which returns an array of integers.

public static int[] readIntData (Statement stmt, String table,
String column)

throws SQLException

Returns the values of the column column of the table table. This method is equivalent to
readIntData (stmt, "SELECT column FROM table").

public static int[] readIntData (Connection connection, String table,
String column)

throws SQLException

Returns the values of the column column of the table table. This method is equivalent to
readIntData (connection, "SELECT column FROM table").

public static double[][] readDoubleData2D (Statement stmt, String query)
throws SQLException

Copies the result of the SQL query query into a rectangular 2D array of double-precision
values. This method uses the statement stmt to execute the given query, and assumes that
the columns of the result set contain double-precision values. Each row of the result set then
becomes a row of a 2D array of double-precision values which is returned by this method.
This method throws an SQLException if the query is not valid. The given statement stmt
must not be set up to produce forward-only result sets.

public static double[][] readDoubleData2D (Connection connection,
String query)

throws SQLException

Copies the result of the SQL query query into a rectangular 2D array of double-precision
values. This method uses the active connection connection to create a statement, and
passes this statement, with the query, to readDoubleData2D, which returns a 2D array of
double-precision values.

public static double[][] readDoubleData2DTable (Statement stmt,
String table)

throws SQLException

Returns the values of the columns of the table table. This method is equivalent to
readDoubleData2D (stmt, "SELECT * FROM table").

public static double[][] readDoubleData2DTable (Connection connection,
String table)

throws SQLException

Returns the values of the columns of the table table. This method is equivalent to
readDoubleData2D (connection, "SELECT * FROM table").

May 21, 2008 JDBCManager 33

public static int[][] readIntData2D (Statement stmt, String query)
throws SQLException

Copies the result of the SQL query query into a rectangular 2D array of integers. This
method uses the statement stmt to execute the given query, and assumes that the columns
of the result set contain integers. Each row of the result set then becomes a row of a 2D array
of integers which is returned by this method. This method throws an SQLException if the
query is not valid. The given statement stmt must not be set up to produce forward-only
result sets.

public static int[][] readIntData2D (Connection connection, String query)
throws SQLException

Copies the result of the SQL query query into a rectangular 2D array of integers. This
method uses the active connection connection to create a statement, and passes this state-
ment, with the query, to readIntData2D, which returns a 2D array of integers.

public static int[][] readIntData2DTable (Statement stmt, String table)
throws SQLException

Returns the values of the columns of the table table. This method is equivalent to
readIntData2D (stmt, "SELECT * FROM table").

public static int[][] readIntData2DTable (Connection connection,
String table)

throws SQLException

Returns the values of the columns of the table table. This method is equivalent to
readIntData2D (connection, "SELECT * FROM table").

May 21, 2008 REFERENCES 34

References

[1] C. W. Clenshaw. Chebychev series for mathematical functions. National Physical
Laboratory Mathematical Tables 5, Her Majesty’s Stationery Office, London, 1962.

[2] D. E. Knuth. The Art of Computer Programming, Vol. 1. Addison-Wesley, Reading,
MA, second edition, 1973.

	Num
	TextDataReader
	PrintfFormat
	TableFormat
	Chrono
	ChronoSingleThread
	ArithmeticMod
	BitVector
	BitMatrix
	MathFunction
	RootFinder
	Misc
	JDBCManager

