
SSJ: Stochastic Simulation in Java

Overview

Version: August 29, 2007

SSJ is a Java library for stochastic simulation, developed in the Département d’Informa-
tique et de Recherche Opérationnelle (DIRO), at the Université de Montréal. It provides
facilities for generating uniform and nonuniform random variates, computing different mea-
sures related to probability distributions, performing goodness-of-fit tests, applying quasi-
Monte Carlo methods, collecting statistics (elementary), and programming discrete-event
simulations with both events and processes. Additional Java packages are also developed on
top of SSJ for simulation applications in finance, call centers management, communication
networks, etc.



August 29, 2007 1

Introduction and overview

Simulation models can be implemented in many ways [4]. One can use general-purpose pro-
gramming languages such as FORTRAN, C, C++, Java, or specialized simulation languages
such as such as GPSS, SIMAN, and SIMSCRIPT. The general-purpose languages can be
more familiar to the programmer, but usually do not have the necessary built-in tools to
perform simulation. Implementing a model can become complex and tedious. Specialized
simulation languages must be learned before models can be implemented, and they are not
as widely available and supported as the most popular general-purpose languages.

Over the past few decades, commercial simulation tools with point-and-click graphical
user interfaces such as Arena, Automod, Witness, and many others, have become by far the
most widely used tools to develop simulation models. Among their main advantages, these
tools do not require knowledge of a programming language, provide graphical animation,
have automatic facilities to collect statistics and perform experiments, and can sometimes
perform optimization to a certain extent. On the other hand, these specialized simulation
tools, especially the point-and-click tools, are often too restrictive, because they are usually
targeted at a limited class of models. With these tools, simulating a system whose logic is
complicated or unconventional may become quite difficult. All the graphical and automatic
devices also tend to slow down the simulation significantly. Fast execution times are impor-
tant for example in a context of optimization, where thousands of variants of a base system
may have to be simulated, or for on-line applications where a fast response time is required.

SSJ is an organized set of packages whose purpose is to facilitate simulation programming
in the Java language. A first description was given in [5]. Some of the tools can also be
used for modeling (e.g., selecting and fitting distributions). As these lines are being written
(August 2004), SSJ is still growing. Several new packages, classes, and methods will certainly
be added in forthcoming years and others will be refined.

The facilities offered are grouped into different packages, each one having its own user’s
guide, in the form of a PDF file. There is also a set of commented examples of simulation
programs in a separate PDF document. Programs are given for some of the examples used
in the books of Law and Kelton [4] and Glasserman [1], for instance. The best way to learn
about SSJ, at the beginning, is probably to study these examples and refer to the user guides
of the different packages when needed. The PDF files are the official documentation. There
is also a simplified on-line documentation in HTML format, produced via javadoc.

The packages currently offered are the following:

util contains utility classes used in the implementation of SSJ, and which may
be useful elsewhere.

probdist contains a set of Java classes providing methods to compute mass,
density, distribution, complementary distribution, and inverse distribution
functions for some discrete and continuous probability distributions.

probdistmulti contains a set of Java classes providing methods to compute
mass, density, distribution, complementary distribution, for some multi-
dimensionnal discrete and continuous probability distributions.



August 29, 2007 2

randvar provides a collection of classes for non-uniform random variate genera-
tion, primarily from standard distributions.

randvarmulti provides a collection of classes for random number generators for
some multi-dimensional distributions.

rng provides facilities for generating uniform random numbers.

hups provides classes implementing highly uniform point sets and sequences
(HUPS) and tools for their randomization.

gof contains tools for performing univariate goodness-of-fit (GOF) statistical
tests.

stat provides elementary (and very basic) tools for collecting statistics and com-
puting confidence intervals.

simevents provides the simulation clock and tools to manage the future-events
list.

eventlist offers different kinds of event list implementations.

simprocs provides and manages the process-driven simulation facilities.

dsol provides and manages the process-driven simulation facilities. This package
was written by Peter Jacobs (from Delft University of Technology) to emulate
Java threads.

simexp provides facilities for performing simulation experiments. It gives a frame-
work for simulations using independent replications as well as simulations
using batch means.

Dependence on other libraries

The Colt library, developed at the Centre Européen de Recherche Nucléaire (CERN) in
Geneva [2], is a large library that provides a wide range of facilities for high performance
scientific and technical computing in Java. SSJ uses the class DoubleArrayList from Colt
in a few of its classes, namely in packages stat and hups. The reason is that this class
provides a very efficient and convenient implementation of an (automatically) extensible
array of double, together with several methods for computing statistics for the observations
stored in the array (see, e.g., Descriptive). The Colt library is distributed with the SSJ
package. Here is the Colt License Agreement copied from the Colt web site:

http://dsd.lbl.gov/~hoschek/colt/


August 29, 2007 3

Colt License Agreement

Packages cern.colt* , cern.jet*, cern.clhep

Copyright (c) 1999 CERN - European Organization for Nuclear Research.

Permission to use, copy, modify, distribute and sell this software and its documentation
for any purpose is hereby granted without fee, provided that the above copyright notice
appear in all copies and that both that copyright notice and this permission notice appear
in supporting documentation. CERN makes no representations about the suitability of this
software for any purpose. It is provided ”as is” without expressed or implied warranty.

SSJ also provides an interface to the UNURAN library for nonuniform random number
generation [6], in the randvar package. UNURAN does not have to be installed to be used
with SSJ, because it is linked statically with the appropriate SSJ native library. However,
the UNURAN documentation will be required to take full advantage of the library.

The linear_algebra library is based on public domain LINPACK routines. They were
translated from Fortran to Java by Steve Verrill at the USDA Forest Products Laboratory
Madison, Wisconsin, USA. This software is also in the public domain and is included in the
SSJ distribution as the Blas.jar archive, which must be in the CLASSPATH environment
variable. It is used only in the probdist package to compute maximum likelihood estimators.

The optimization package of Steve Verrill includes Java translations of the MINPACK
routines [3] for nonlinear least squares problems as well as UNCMIN routines [7] for uncon-
strained optimization. They were translated from Fortran to Java by Steve Verrill and are
in the public domain. They are included in the SSJ distribution as the optimization.jar
archive, which must be in the CLASSPATH environment variable. It is used only in the
probdist package to compute maximum likelihood estimators.

Acknowledgments

SSJ was designed and implemented under the supervision of Pierre L’Ecuyer, with the con-
tribution of the following persons

Mathieu Bague, Éric Buist, Yves Edel, Regina H. S. Hong, Alexander Keller,
Pierre L’Ecuyer, Étienne Marcotte, Lakhdar Meliani, Abdelazziz Milib, François
Panneton, Richard Simard, Pierre-Alexandre Tremblay, Jean Vaucher.

Its development has been supported by NSERC-Canada grant No. ODGP0110050,
NATEQ-Québec grant No. 02ER3218, a Killam fellowship, and a Canada Research Chair to
the author.

http://statistik.wu-wien.ac.at/unuran/
http://www.iro.umontreal.ca/~simardr/Uncmin_f77/Minpack_f77.html
http://www.iro.umontreal.ca/~simardr/Uncmin_f77/Uncmin_f77.html


August 29, 2007 REFERENCES 4

References

[1] P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer-Verlag, New
York, 2004.

[2] Wolfgang Hoschek. The Colt Distribution: Open Source Libraries for High Performance
Scientific and Technical Computing in Java. CERN, Geneva, 2004. Available at http:
//dsd.lbl.gov/~hoschek/colt/.

[3] J. J. Moré and B. S. Garbow and K. E. Hillstrom. User Guide for MINPACK-1, Report
ANL-80-74. Argonne, Illinois, USA, 1980. See http://www-fp.mcs.anl.gov/otc/

Guide/softwareGuide/Blurbs/minpack.html.

[4] A. M. Law and W. D. Kelton. Simulation Modeling and Analysis. McGraw-Hill, New
York, NY, third edition, 2000.

[5] P. L’Ecuyer, L. Meliani, and J. Vaucher. SSJ: A framework for stochastic simulation in
Java. In E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, editors, Proceedings
of the 2002 Winter Simulation Conference, pages 234–242. IEEE Press, 2002.

[6] J. Leydold and W. Hörmann. UNURAN—A Library for Universal Non-Uniform Random
Number Generators, 2002. Available at http://statistik.wu-wien.ac.at/unuran.

[7] R. B. Schnabel. UNCMIN—Unconstrained Optimization Package, FORTRAN. Univer-
sity of Colorado at Boulder. See http://www.ici.ro/camo/unconstr/uncmin.htm.

http://dsd.lbl.gov/~hoschek/colt/
http://dsd.lbl.gov/~hoschek/colt/
http://www-fp.mcs.anl.gov/otc/Guide/softwareGuide/Blurbs/minpack.html
http://www-fp.mcs.anl.gov/otc/Guide/softwareGuide/Blurbs/minpack.html
http://statistik.wu-wien.ac.at/unuran
http://www.ici.ro/camo/unconstr/uncmin.htm

