SSJ User's Guide

Package functionfit Function fit utilities

Version: June 18, 2014

This package provides basic facilities for curve fitting and interpolation with polynomials as, for example, least square fit and spline interpolation.

Contents

PolInterp	2
LeastSquares	3
BSpline	5
SmoothingCubicSpline \ldots	7

PolInterp

Represents a polynomial that interpolates through a set of points. More specifically, let $(x_0, y_0), \ldots, (x_n, y_n)$ be a set of points and p(x) the constructed polynomial of degree n. Then, for $i = 0, \ldots, n$, $p(x_i) = y_i$.

package umontreal.iro.lecuyer.functionfit;

public class PolInterp extends Polynomial implements Serializable

Constructors

```
public PolInterp (double[] x, double[] y)
```

Constructs a new polynomial interpolating through the given points $(x[0], y[0]), \ldots, (x[n], y[n])$. This constructs a polynomial of degree n from n+1 points.

Methods

```
public static double[] getCoefficients (double[] x, double[] y)
```

Computes and returns the coefficients the polynomial interpolating through the given points $(x[0], y[0]), \ldots, (x[n], y[n])$. This polynomial has degree n and there are n+1 coefficients.

```
public double[] getX()
```

Returns the x coordinates of the interpolated points.

```
public double[] getY()
```

Returns the y coordinates of the interpolated points.

public static String toString (double[] x, double[] y)

Makes a string representation of a set of points.

public String toString()

Calls toString(double[], double[]) with the associated points.

LeastSquares

This class implements different *linear regression* models, using the least squares method to estimate the regression coefficients. Given input data x_{ij} and response y_i , one want to find the coefficients β_j that minimize the residuals of the form (using matrix notation)

$$r = \min_{\beta} \|Y - X\beta\|_2,$$

where the L_2 norm is used. Particular cases are

$$r = \min_{\beta} \sum_{i} \left(y_i - \beta_0 - \sum_{j=1}^k \beta_j x_{ij} \right)^2.$$

for k regressor variables x_i . The well-known case of the single variable x is

$$r = \min_{\alpha,\beta} \sum_{i} (y_i - \alpha - \beta x_i)^2.$$

Sometimes, one wants to use a basis of general functions $\psi_j(t)$ with a minimization of the form

$$r = \min_{\beta} \sum_{i} \left(y_i - \sum_{j=1}^k \beta_j \psi_j(t_i) \right)^2.$$

For example, we could have $\psi_j(t) = e^{-\lambda_j t}$ or some other functions. In that case, one has to choose the points t_i at which to compute the basis functions, and use a method below with $x_{ij} = \psi_j(t_i)$.

package umontreal.iro.lecuyer.functionfit;

public class LeastSquares

Methods

public static double[] calcCoefficients (double[] X, double[] Y)

Computes the regression coefficients using the least squares method. This is a simple linear regression with 2 regression coefficients, α and β . The model is

$$y = \alpha + \beta x.$$

Given the *n* data points (X_i, Y_i) , i = 0, 1, ..., (n-1), the method computes and returns the array $[\alpha, \beta]$.

public static double[] calcCoefficients (double[] X, double[] Y, int deg) Computes the regression coefficients using the least squares method. This is a linear regression with a polynomial of degree deg = k and k + 1 regression coefficients β_j . The model is

$$y = \beta_0 + \sum_{j=1}^k \beta_j x^j.$$

Given the *n* data points (X_i, Y_i) , i = 0, 1, ..., (n-1), the method computes and returns the array $[\beta_0, \beta_1, ..., \beta_k]$. Restriction: n > k.

public static double[] calcCoefficients0 (double[][] X, double[] Y)

Computes the regression coefficients using the least squares method. This is a model for multiple linear regression. There are k+1 regression coefficients β_j , and k regressors variables x_j . The model is

$$y = \beta_0 + \sum_{j=1}^k \beta_j x_j.$$

There are *n* data points Y_i , X_{ij} , i = 0, 1, ..., (n-1), and each X_i is a *k*-dimensional point. Given the response Y[i] and the regressor variables X[i][j], i = 0, 1, ..., (n-1), j = 0, 1, ..., (k-1), the method computes and returns the array $[\beta_0, \beta_1, ..., \beta_k]$. Restriction: n > k + 1.

public static double[] calcCoefficients (double[][] X, double[] Y)

Computes the regression coefficients using the least squares method. This is a model for multiple linear regression. There are k regression coefficients β_j , $j = 0, 1, \ldots, (k-1)$ and k regressors variables x_j . The model is

$$y = \sum_{j=0}^{k-1} \beta_j x_j.$$

There are *n* data points Y_i , X_{ij} , i = 0, 1, ..., (n-1), and each X_i is a *k*-dimensional point. Given the response Y[i] and the regressor variables X[i][j], i = 0, 1, ..., (n-1), j = 0, 1, ..., (k-1), the method computes and returns the array $[\beta_0, \beta_1, ..., \beta_{k-1}]$. Restriction: n > k.

BSpline

Represents a B-spline with control points at (X_i, Y_i) . Let $\mathbf{P_i} = (X_i, Y_i)$, for $i = 0, \ldots, n-1$, be a *control point* and let t_j , for $j = 0, \ldots, m-1$ be a *knot*. A B-spline [1] of degree p = m - n - 1 is a parametric curve defined as

$$\mathbf{P}(\mathbf{t}) = \sum_{i=0}^{n-1} N_{i,p}(t) \mathbf{P}_{\mathbf{i}}, \text{ for } t_p \le t \le t_{m-p-1}.$$

Here,

$$N_{i,p}(t) = \frac{t - t_i}{t_{i+p} - t_i} N_{i,p-1}(t) + \frac{t_{i+p+1} - t}{t_{i+p+1} - t_{i+1}} N_{i+1,p-1}(t)$$

$$N_{i,0}(t) = \begin{cases} 1 & \text{for } t_i \le t \le t_{i+1}, \\ 0 & \text{elsewhere.} \end{cases}$$

This class provides methods to evaluate $\mathbf{P}(\mathbf{t}) = (X(t), Y(t))$ at any value of t, for a B-spline of any degree $p \ge 1$. Note that the **evaluate** method of this class can be slow, since it uses a root finder to determine the value of t^* for which $X(t^*) = x$ before it computes $Y(t^*)$.

package umontreal.iro.lecuyer.functionfit;

public class BSpline implements MathFunction

Constructors

- public BSpline (final double[] x, final double[] y, final int degree)
 Constructs a new uniform B-spline of degree degree with control points at (x[i], y[i]).
 The knots of the resulting B-spline are set uniformly from x[0] to x[n-1].
- public BSpline (final double[] x, final double[] y, final double[] knots) Constructs a new uniform B-spline with control points at (x[i], y[i]), and knot vector given by the array knots.

Methods

```
public double[] getX()
```

Returns the X_i coordinates for this spline.

```
public double[] getY()
```

Returns the Y_i coordinates for this spline.

public double getMaxKnot()

Returns the knot maximal value.

```
public double getMinKnot()
```

Returns the knot minimal value.

```
public double[] getKnots()
```

Returns an array containing the knot vector (t_0, t_{m-1}) .

Returns a B-spline curve of degree degree interpolating the (x_i, y_i) points [1]. This method uses the uniformly spaced method for interpolating points with a B-spline curve, and a uniformed clamped knot vector, as described in http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/.

Returns a B-spline curve of degree degree smoothing (x_i, y_i) , for i = 0, ..., n points. The precision depends on the parameter $h: 1 \leq \text{degree} \leq h < n$, which represents the number of control points used by the new B-spline curve, minimizing the quadratic error

$$L = \sum_{i=0}^{n} \left(\frac{Y_i - S_i(X_i)}{W_i} \right)^2.$$

This method uses the uniformly spaced method for interpolating points with a B-spline curve and a uniformed clamped knot vector, as described in http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/.

public BSpline derivativeBSpline()

Returns the derivative B-spline object of the current variable. Using this function and the returned object, instead of the **derivative** method, is strongly recommended if one wants to compute many derivative values.

public BSpline derivativeBSpline (int i)

Returns the *i*th derivative B-spline object of the current variable; *i* must be less than the degree of the original B-spline. Using this function and the returned object, instead of the **derivative** method, is strongly recommended if one wants to compute many derivative values.

SmoothingCubicSpline

Represents a cubic spline with nodes at (x_i, y_i) computed with the smoothing cubic spline algorithm of Schoenberg [1, 2]. A smoothing cubic spline is made of n+1 cubic polynomials. The *i*th polynomial of such a spline, for i = 1, ..., n-1, is defined as $S_i(x)$ while the complete spline is defined as

$$S(x) = S_i(x), \qquad \text{for } x \in [x_{i-1}, x_i]$$

For $x < x_0$ and $x > x_{n-1}$, the spline is not precisely defined, but this class performs extrapolation by using S_0 and S_n linear polynomials. The algorithm which calculates the smoothing spline is a generalization of the algorithm for an interpolating spline. S_i is linked to S_{i+1} at x_{i+1} and keeps continuity properties for first and second derivatives at this point, therefore $S_i(x_{i+1}) = S_{i+1}(x_{i+1}), S'_i(x_{i+1}) = S'_{i+1}(x_{i+1})$ and $S''_i(x_{i+1}) = S''_{i+1}(x_{i+1})$.

The spline is computed with a smoothing parameter $\rho \in [0, 1]$ which represents its accuracy with respect to the initial (x_i, y_i) nodes. The smoothing spline minimizes

$$L = \rho \sum_{i=0}^{n-1} w_i \left(y_i - S_i(x_i) \right)^2 + (1-\rho) \int_{x_0}^{x_{n-1}} \left(S''(x) \right)^2 dx$$

In fact, by setting $\rho = 1$, we obtain the interpolating spline; and we obtain a linear function by setting $\rho = 0$. The weights $w_i > 0$, which default to 1, can be used to change the contribution of each point in the error term. A large value w_i will give a large weight to the *i*th point, so the spline will pass closer to it. Here is a small example that uses smoothing splines:

```
int n;
double[] X = new double[n];
double[] Y = new double[n];
// here, fill arrays X and Y with n data points (x_i, y_i)
// The points must be sorted with respect to x_i.
double rho = 0.1;
SmoothingCubicSpline fit = new SmoothingCubicSpline(X, Y, rho);
int m = 40;
double[] Xp = new double[m+1];
double[] Yp = new double[m+1];
                                        // Xp, Yp are spline points
double h = (X[n-1] - X[0]) / m;
                                        // step
for (int i = 0; i <= m; i++) {
   double z = X[0] + i * h;
   Xp[i] = z;
   Yp[i] = fit.evaluate(z);
                                        // evaluate spline at z
}
```

Constructors

Constructs a spline with nodes at (x_i, y_i) , with weights w_i and smoothing factor $\rho =$ rho. The x_i must be sorted in increasing order.

public SmoothingCubicSpline (double[] x, double[] y, double rho)

Constructs a spline with nodes at (x_i, y_i) , with weights = 1 and smoothing factor $\rho =$ rho. The x_i must be sorted in increasing order.

Methods

```
public double evaluate (double z)
```

Evaluates and returns the value of the spline at z.

```
public double integral (double a, double b)
```

Evaluates and returns the value of the integral of the spline from a to b.

```
public double derivative (double z)
```

Evaluates and returns the value of the *first* derivative of the spline at z.

```
public double derivative (double z, int n)
```

Evaluates and returns the value of the n-th derivative of the spline at z.

```
public double[] getX()
```

Returns the x_i coordinates for this spline.

```
public double[] getY()
```

Returns the y_i coordinates for this spline.

public double[] getWeights()

Returns the weights of the points.

```
public double getRho()
```

Returns the smoothing factor used to construct the spline.

```
public Polynomial[] getSplinePolynomials()
```

Returns a table containing all fitting polynomials.

public int getFitPolynomialIndex (double x)

Returns the index of P, the Polynomial instance used to evaluate x, in an ArrayList table instance returned by getSplinePolynomials(). This index k gives also the interval in table **X** which contains the value x (i.e. such that $x_k < x \le x_{k+1}$).

References

- [1] C. de Boor. A Practical Guide to Splines. Number 27 in Applied Mathematical Sciences Series. Springer-Verlag, New York, 1978.
- [2] D. S. G. Pollock. Smoothing with cubic splines. Technical report, University of London, Queen Mary and Westfield College, London, 1993.