
SSJ User’s Guide

Package functionfit

Function fit utilities

Version: June 18, 2014

This package provides basic facilities for curve fitting and interpolation with polynomials
as, for example, least square fit and spline interpolation.

June 18, 2014 CONTENTS 1

Contents

PolInterp . 2

LeastSquares . 3

BSpline . 5

SmoothingCubicSpline . 7

June 18, 2014 2

PolInterp

Represents a polynomial that interpolates through a set of points. More specifically,
let (x0, y0), . . . , (xn, yn) be a set of points and p(x) the constructed polynomial of degree n.
Then, for i = 0, . . . , n, p(xi) = yi.

package umontreal.iro.lecuyer.functionfit;

public class PolInterp extends Polynomial implements Serializable

Constructors

public PolInterp (double[] x, double[] y)

Constructs a new polynomial interpolating through the given points (x[0], y[0]), ...,
(x[n], y[n]). This constructs a polynomial of degree n from n+1 points.

Methods

public static double[] getCoefficients (double[] x, double[] y)

Computes and returns the coefficients the polynomial interpolating through the given points
(x[0], y[0]), ..., (x[n], y[n]). This polynomial has degree n and there are n+1 co-
efficients.

public double[] getX()

Returns the x coordinates of the interpolated points.

public double[] getY()

Returns the y coordinates of the interpolated points.

public static String toString (double[] x, double[] y)

Makes a string representation of a set of points.

public String toString()

Calls toString(double[], double[]) with the associated points.

June 18, 2014 3

LeastSquares

This class implements different linear regression models, using the least squares method
to estimate the regression coefficients. Given input data xij and response yi, one want to
find the coefficients βj that minimize the residuals of the form (using matrix notation)

r = min
β
‖Y −Xβ‖2,

where the L2 norm is used. Particular cases are

r = min
β

∑
i

(
yi − β0 −

k∑
j=1

βjxij

)2

.

for k regressor variables xj. The well-known case of the single variable x is

r = min
α,β

∑
i

(yi − α− βxi)2 .

Sometimes, one wants to use a basis of general functions ψj(t) with a minimization of
the form

r = min
β

∑
i

(
yi −

k∑
j=1

βjψj(ti)

)2

.

For example, we could have ψj(t) = e−λjt or some other functions. In that case, one has to
choose the points ti at which to compute the basis functions, and use a method below with
xij = ψj(ti).

package umontreal.iro.lecuyer.functionfit;

public class LeastSquares

Methods

public static double[] calcCoefficients (double[] X, double[] Y)

Computes the regression coefficients using the least squares method. This is a simple linear
regression with 2 regression coefficients, α and β. The model is

y = α+ βx.

Given the n data points (Xi, Yi), i = 0, 1, . . . , (n− 1), the method computes and returns the
array [α, β].

public static double[] calcCoefficients (double[] X, double[] Y, int deg)

Computes the regression coefficients using the least squares method. This is a linear regres-
sion with a polynomial of degree deg = k and k + 1 regression coefficients βj . The model
is

y = β0 +
k∑
j=1

βjx
j .

June 18, 2014 LeastSquares 4

Given the n data points (Xi, Yi), i = 0, 1, . . . , (n− 1), the method computes and returns the
array [β0, β1, . . . , βk]. Restriction: n > k.

public static double[] calcCoefficients0 (double[][] X, double[] Y)

Computes the regression coefficients using the least squares method. This is a model for
multiple linear regression. There are k+1 regression coefficients βj , and k regressors variables
xj . The model is

y = β0 +
k∑
j=1

βjxj .

There are n data points Yi, Xij , i = 0, 1, . . . , (n − 1), and each Xi is a k-dimensional
point. Given the response Y[i] and the regressor variables X[i][j], i = 0, 1, . . . , (n − 1),
j = 0, 1, . . . , (k−1), the method computes and returns the array [β0, β1, . . . , βk]. Restriction:
n > k + 1.

public static double[] calcCoefficients (double[][] X, double[] Y)

Computes the regression coefficients using the least squares method. This is a model for
multiple linear regression. There are k regression coefficients βj , j = 0, 1, . . . , (k − 1) and k
regressors variables xj . The model is

y =
k−1∑
j=0

βjxj .

There are n data points Yi, Xij , i = 0, 1, . . . , (n− 1), and each Xi is a k-dimensional point.
Given the response Y[i] and the regressor variables X[i][j], i = 0, 1, . . . , (n − 1), j =
0, 1, . . . , (k − 1), the method computes and returns the array [β0, β1, . . . , βk−1]. Restriction:
n > k.

June 18, 2014 5

BSpline

Represents a B-spline with control points at (Xi, Yi). Let Pi = (Xi, Yi), for i = 0, . . . , n−
1, be a control point and let tj, for j = 0, . . . ,m − 1 be a knot. A B-spline [1] of degree
p = m− n− 1 is a parametric curve defined as

P(t) =
n−1∑
i=0

Ni,p(t)Pi, for tp ≤ t ≤ tm−p−1.

Here,

Ni,p(t) =
t− ti
ti+p − ti

Ni,p−1(t) +
ti+p+1 − t
ti+p+1 − ti+1

Ni+1,p−1(t)

Ni,0(t) =

{
1 for ti ≤ t ≤ ti+1,
0 elsewhere.

This class provides methods to evaluate P(t) = (X(t), Y (t)) at any value of t, for a B-
spline of any degree p ≥ 1. Note that the evaluate method of this class can be slow, since it
uses a root finder to determine the value of t∗ for which X(t∗) = x before it computes Y (t∗).

package umontreal.iro.lecuyer.functionfit;

public class BSpline implements MathFunction

Constructors

public BSpline (final double[] x, final double[] y, final int degree)

Constructs a new uniform B-spline of degree degree with control points at (x[i], y[i]).
The knots of the resulting B-spline are set uniformly from x[0] to x[n-1].

public BSpline (final double[] x, final double[] y, final double[] knots)

Constructs a new uniform B-spline with control points at (x[i], y[i]), and knot vector
given by the array knots.

Methods

public double[] getX()

Returns the Xi coordinates for this spline.

public double[] getY()

Returns the Yi coordinates for this spline.

public double getMaxKnot()

Returns the knot maximal value.

June 18, 2014 BSpline 6

public double getMinKnot()

Returns the knot minimal value.

public double[] getKnots()

Returns an array containing the knot vector (t0, tm−1).

public static BSpline createInterpBSpline (double[] x, double[] y,
int degree)

Returns a B-spline curve of degree degree interpolating the (xi, yi) points [1]. This method
uses the uniformly spaced method for interpolating points with a B-spline curve, and a
uniformed clamped knot vector, as described in http://www.cs.mtu.edu/~shene/COURSES/
cs3621/NOTES/.

public static BSpline createApproxBSpline (double[] x, double[] y,
int degree, int h)

Returns a B-spline curve of degree degree smoothing (xi, yi), for i = 0, . . . , n points. The
precision depends on the parameter h: 1 ≤ degree ≤ h < n, which represents the number
of control points used by the new B-spline curve, minimizing the quadratic error

L =
n∑
i=0

(
Yi − Si(Xi)

Wi

)2

.

This method uses the uniformly spaced method for interpolating points with a B-spline curve
and a uniformed clamped knot vector, as described in http://www.cs.mtu.edu/~shene/
COURSES/cs3621/NOTES/.

public BSpline derivativeBSpline()

Returns the derivative B-spline object of the current variable. Using this function and the
returned object, instead of the derivative method, is strongly recommended if one wants
to compute many derivative values.

public BSpline derivativeBSpline (int i)

Returns the ith derivative B-spline object of the current variable; i must be less than the
degree of the original B-spline. Using this function and the returned object, instead of the
derivative method, is strongly recommended if one wants to compute many derivative
values.

http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/
http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/
http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/
http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/

June 18, 2014 7

SmoothingCubicSpline

Represents a cubic spline with nodes at (xi, yi) computed with the smoothing cubic spline
algorithm of Schoenberg [1, 2]. A smoothing cubic spline is made of n+1 cubic polynomials.
The ith polynomial of such a spline, for i = 1, . . . , n−1, is defined as Si(x) while the complete
spline is defined as

S(x) = Si(x), for x ∈ [xi−1, xi].

For x < x0 and x > xn−1, the spline is not precisely defined, but this class performs extrapo-
lation by using S0 and Sn linear polynomials. The algorithm which calculates the smoothing
spline is a generalization of the algorithm for an interpolating spline. Si is linked to Si+1 at
xi+1 and keeps continuity properties for first and second derivatives at this point, therefore
Si(xi+1) = Si+1(xi+1), S

′
i(xi+1) = S ′i+1(xi+1) and S ′′i (xi+1) = S ′′i+1(xi+1).

The spline is computed with a smoothing parameter ρ ∈ [0, 1] which represents its accu-
racy with respect to the initial (xi, yi) nodes. The smoothing spline minimizes

L = ρ
n−1∑
i=0

wi (yi − Si(xi))2 + (1− ρ)

∫ xn−1

x0

(S ′′(x))
2
dx

In fact, by setting ρ = 1, we obtain the interpolating spline; and we obtain a linear function
by setting ρ = 0. The weights wi > 0, which default to 1, can be used to change the
contribution of each point in the error term. A large value wi will give a large weight to the
ith point, so the spline will pass closer to it. Here is a small example that uses smoothing
splines:

int n;
double[] X = new double[n];
double[] Y = new double[n];
// here, fill arrays X and Y with n data points (x_i, y_i)
// The points must be sorted with respect to x_i.

double rho = 0.1;
SmoothingCubicSpline fit = new SmoothingCubicSpline(X, Y, rho);

int m = 40;
double[] Xp = new double[m+1]; // Xp, Yp are spline points
double[] Yp = new double[m+1];
double h = (X[n-1] - X[0]) / m; // step

for (int i = 0; i <= m; i++) {
double z = X[0] + i * h;
Xp[i] = z;
Yp[i] = fit.evaluate(z); // evaluate spline at z

}

June 18, 2014 SmoothingCubicSpline 8

package umontreal.iro.lecuyer.functionfit;
import umontreal.iro.lecuyer.functions.*;
import umontreal.iro.lecuyer.functions.Polynomial;

public class SmoothingCubicSpline implements MathFunction,
MathFunctionWithFirstDerivative, MathFunctionWithDerivative,
MathFunctionWithIntegral

Constructors

public SmoothingCubicSpline (double[] x, double[] y, double[] w,
double rho)

Constructs a spline with nodes at (xi, yi), with weights wi and smoothing factor ρ = rho.
The xi must be sorted in increasing order.

public SmoothingCubicSpline (double[] x, double[] y, double rho)

Constructs a spline with nodes at (xi, yi), with weights = 1 and smoothing factor ρ = rho.
The xi must be sorted in increasing order.

Methods

public double evaluate (double z)

Evaluates and returns the value of the spline at z.

public double integral (double a, double b)

Evaluates and returns the value of the integral of the spline from a to b.

public double derivative (double z)

Evaluates and returns the value of the first derivative of the spline at z.

public double derivative (double z, int n)

Evaluates and returns the value of the n-th derivative of the spline at z.

public double[] getX()

Returns the xi coordinates for this spline.

public double[] getY()

Returns the yi coordinates for this spline.

public double[] getWeights()

Returns the weights of the points.

public double getRho()

Returns the smoothing factor used to construct the spline.

public Polynomial[] getSplinePolynomials()

Returns a table containing all fitting polynomials.

June 18, 2014 SmoothingCubicSpline 9

public int getFitPolynomialIndex (double x)

Returns the index of P , the Polynomial instance used to evaluate x, in an ArrayList table
instance returned by getSplinePolynomials(). This index k gives also the interval in table
X which contains the value x (i.e. such that xk < x ≤ xk+1).

June 18, 2014 REFERENCES 10

References

[1] C. de Boor. A Practical Guide to Splines. Number 27 in Applied Mathematical Sciences
Series. Springer-Verlag, New York, 1978.

[2] D. S. G. Pollock. Smoothing with cubic splines. Technical report, University of London,
Queen Mary and Westfield College, London, 1993.

	PolInterp
	LeastSquares
	BSpline
	SmoothingCubicSpline

