
SSJ User’s Guide

Package gof

Goodness-of-fit test Statistics

Version: June 18, 2014

This package provides facilities for performing and reporting different types of univariate
goodness-of-fit statistical tests.

June 18, 2014 CONTENTS 1

Contents

Overview . 2

FDist . 4

FBar . 5

KernelDensity . 6

GofStat . 7

GofFormat . 14

June 18, 2014 CONTENTS 2

Overview

This package contains tools for performing univariate goodness-of-fit (GOF) statistical tests.
Methods for computing (or approximating) the distribution function F (x) of certain GOF
test statistics, as well as their complementary distribution function F̄ (x) = 1 − F (x), are
implemented in classes of package probdist. Tools for computing the GOF test statistics
and the corresponding p-values, and for formating the results, are provided in classes GofStat
and GofFormat.

We are concerned here with GOF test statistics for testing the hypothesis H0 that a
sample of N observations X1, . . . , XN comes from a given univariate probability distribution
F . We consider tests such as those of Kolmogorov-Smirnov, Anderson-Darling, Crámer-von
Mises, etc. These test statistics generally measure, in different ways, the distance between
a continuous distribution function F and the empirical distribution function (EDF) F̂N of
X1, . . . , XN . They are also called EDF test statistics. The observations Xi are usually
transformed into Ui = F (Xi), which satisfy 0 ≤ Ui ≤ 1 and which follow the U(0, 1)
distribution under H0. (This is called the probability integral transformation.) Methods for
applying this transformation, as well as other types of transformations, to the observations
Xi or Ui are provided in GofStat.

Then the GOF tests are applied to the Ui sorted by increasing order. The corresponding
p-values are easily computed by calling the appropriate methods in the classes of package
probdist. If a GOF test statistic Y has a continuous distribution under H0 and takes the
value y, its (right) p-value is defined as p = P [Y ≥ y | H0]. The test usually rejects H0 if p
is deemed too close to 0 (for a one-sided test) or too close to 0 or 1 (for a two-sided test).

In the case where Y has a discrete distribution under H0, we distinguish the right p-value
pR = P [Y ≥ y | H0] and the left p-value pL = P [Y ≤ y | H0]. We then define the p-value for
a two-sided test as

p =

pR, if pR < pL

1− pL, if pR ≥ pL and pL < 0.5

0.5 otherwise.

(1)

Why such a definition? Consider for example a Poisson random variable Y with mean 1
under H0. If Y takes the value 0, the right p-value is pR = P [Y ≥ 0 | H0] = 1. In the
uniform case, this would obviously lead to rejecting H0 on the basis that the p-value is too
close to 1. However, P [Y = 0 | H0] = 1/e ≈ 0.368, so it does not really make sense to reject
H0 in this case. In fact, the left p-value here is pL = 0.368, and the p-value computed with
the above definition is p = 1 − pL ≈ 0.632. Note that if pL is very small, in this definition,
p becomes close to 1. If the left p-value was defined as pL = 1 − pR = P [Y < y | H0], this
would also lead to problems. In the example, one would have pL = 0 in that case.

A very common type of test in the discrete case is the chi-square test, which applies when
the possible outcomes are partitioned into a finite number of categories. Suppose there are k
categories and that each observation belongs to category i with probability pi, for 0 ≤ i < k.

June 18, 2014 CONTENTS 3

If there are n independent observations, the expected number of observations in category i
is ei = npi, and the chi-square test statistic is defined as

X2 =
k−1∑
i=0

(oi − ei)
2

ei

(2)

where oi is the actual number of observations in category i. Assuming that all ei’s
are large enough (a popular rule of thumb asks for ei ≥ 5 for each i), X2 follows ap-
proximately the chi-square distribution with k − 1 degrees of freedom [12]. The class
GofStat.OutcomeCategoriesChi2, a nested class defined inside the GofStat class, provides
tools to automatically regroup categories in the cases where some ei’s are too small.

The class GofFormat contains methods used to format results of GOF test statistics, or to
apply several such tests simultaneously to a given data set and format the results to produce
a report that also contains the p-values of all these tests. A C version of this class is actually
used extensively in the package TestU01, which applies statistical tests to random number
generators [9]. The class also provides tools to plot an empirical or theoretical distribution
function, by creating a data file that contains a graphic plot in a format compatible with a
given software.

June 18, 2014 4

FDist

This class provides methods to compute (or approximate) the distribution functions of
special types of goodness-of-fit test statistics.

package umontreal.iro.lecuyer.gof;

public class FDist

public static double kolmogorovSmirnovPlusJumpOne (int N, double a,
double x)

Similar to KolmogorovSmirnovPlusDist but for the case where the distribution function F
has a jump of size a at a given point x0, is zero at the left of x0, and is continuous at the
right of x0. The Kolmogorov-Smirnov statistic is defined in that case as

D+
N (a) = sup

a≤u≤1

(
F̂N (F−1(u))− u

)
= max
b1+aN≤j≤N

(
j/N − F (V(j))

)
. (3)

where V(1), . . . , V(N) are the observations sorted by increasing order. The method returns an
approximation of P [D+

N (a) ≤ x] computed via

P [D+
N (a) ≤ x] = 1− x

bN(1−a−x)c∑
i=0

(
N

i

)(
i

N
+ x

)i−1(
1− i

N
− x
)N−i

. (4)

= x

bN(a+x)c∑
j=0

(
N

j

)(
j

N
− x
)j (

1− j

N
+ x

)N−j−1

. (5)

The current implementation uses formula (5) when N(x + a) < 6.5 and x + a < 0.5, and
uses (4) when Nx ≥ 6.5 or x+ a ≥ 0.5. Restriction: 0 < a < 1.

public static double scan (int N, double d, int m)

Returns F (m), the distribution function of the scan statistic with parameters N and d,
evaluated at m. For a description of this statistic and its distribution, see scan, which
computes its complementary distribution F̄ (m) = 1− F (m− 1).

June 18, 2014 5

FBar
This class is similar to FDist, except that it provides static methods to compute or

approximate the complementary distribution function of X, which we define as F̄ (x) =
P [X ≥ x], instead of F (x) = P [X ≤ x]. Note that with our definition of F̄ , one has
F̄ (x) = 1−F (x) for continuous distributions and F̄ (x) = 1−F (x−1) for discrete distributions
over the integers.

package umontreal.iro.lecuyer.gof;

public class FBar

public static double scan (int n, double d, int m)
Return P [SN (d) ≥ m], where SN (d) is the scan statistic(see [5, 6] and scan), defined as

SN (d) = sup
0≤y≤1−d

η[y, y + d], (6)

where d is a constant in (0, 1), η[y, y + d] is the number of observations falling inside the
interval [y, y + d], from a sample of N i.i.d. U(0, 1) random variables. One has (see [1]),

P [SN (d) ≥ m] ≈
(m
d
−N − 1

)
b(m) + 2

N∑
i=m

b(i) (7)

≈ 2(1− Φ(θκ)) + θκ
exp(−θ2κ2/2)

d
√

2π
(8)

where Φ is the standard normal distribution function.

b(i) =
(
N

i

)
di(1− d)N−i,

θ =

√
d

1− d
,

κ =
m

d
√
N
−
√
N.

For d ≤ 1/2, (7) is exact for m > N/2, but only an approximation otherwise. The approx-
imation (8) is good when Nd2 is large or when d > 0.3 and N > 50. In other cases, this
implementation sometimes use the approximation proposed by Glaz [5]. For more informa-
tion, see [1, 5, 16]. The approximation returned by this function is generally good when it
is close to 0, but is not very reliable when it exceeds, say, 0.4.
If m ≤ (N +1)d, the method returns 1. Else, if Nd ≤ 10, it returns the approximation given
by Glaz [5]. If Nd > 10, it computes (8) or (7) and returns the result if it does not exceed
0.4, otherwise it computes the approximation from [5], returns it if it is less than 1.0, and
returns 1.0 otherwise. The relative error can reach 10% when Nd ≤ 10 or when the
returned value is less than 0.4. For m > Nd and Nd > 10, a returned value that exceeds
0.4 should be regarded as unreliable. For m = 3, the returned values are totally unreliable.
(There may be an error in the original formulae in [5]).
Restrictions: N ≥ 2 and d ≤ 1/2.

June 18, 2014 6

KernelDensity

This class provides methods to compute a kernel density estimator from a set of n indi-
vidual observations x0, . . . , xn−1, and returns its value at m selected points. For details on
how the kernel density is defined, and how to select the kernel and the bandwidth h, see the
documentation of class KernelDensityGen in package randvar.

package umontreal.iro.lecuyer.gof;
import umontreal.iro.lecuyer.probdist.*;

public class KernelDensity

Methods

public static double[] computeDensity (EmpiricalDist dist,
ContinuousDistribution kern,
double h, double[] Y)

Given the empirical distribution dist, this method computes the kernel density estimate at
each of the m points Y[j], j = 0, 1, . . . , (m − 1), where m is the length of Y, the kernel is
kern.density(x), and the bandwidth is h. Returns the estimates as an array of m values.

public static double[] computeDensity (EmpiricalDist dist,
ContinuousDistribution kern,
double[] Y)

Similar to method computeDensity above, but the bandwidth h is obtained from the
method KernelDensityGen.getBaseBandwidth(dist) in package randvar.

June 18, 2014 7

GofStat

This class provides methods to compute several types of EDF goodness-of-fit test statis-
tics and to apply certain transformations to a set of observations. This includes the proba-
bility integral transformation Ui = F (Xi), as well as the power ratio and iterated spacings
transformations [15]. Here, U(0), . . . , U(n−1) stand for n observations U0, . . . , Un−1 sorted by
increasing order, where 0 ≤ Ui ≤ 1.

Note: This class uses the Colt library.

package umontreal.iro.lecuyer.gof;
import cern.colt.list.*;

public class GofStat

Transforming the observations

public static DoubleArrayList unifTransform (DoubleArrayList data,
ContinuousDistribution dist)

Applies the probability integral transformation Ui = F (Vi) for i = 0, 1, . . . , n−1, where F is a
continuous distribution function, and returns the result as an array of length n. V represents
the n observations contained in data, and U , the returned transformed observations. If data
contains random variables from the distribution function dist, then the result will contain
uniform random variables over [0, 1].

public static DoubleArrayList unifTransform (DoubleArrayList data,
DiscreteDistribution dist)

Applies the transformation Ui = F (Vi) for i = 0, 1, . . . , n− 1, where F is a discrete distribu-
tion function, and returns the result as an array of length n. V represents the n observations
contained in data, and U , the returned transformed observations.

Note: If V are the values of random variables with distribution function dist, then the
result will contain the values of discrete random variables distributed over the set of values
taken by dist, not uniform random variables over [0, 1].

public static void diff (IntArrayList sortedData, IntArrayList spacings,
int n1, int n2, int a, int b)

Assumes that the real-valued observations U0, . . . , Un−1 contained in sortedData are already
sorted in increasing order and computes the differences between the successive observations.
Let D be the differences returned in spacings. The difference Ui −Ui−1 is put in Di for n1
< i <= n2, whereas Un1 − a is put into Dn1 and b− Un2 is put into Dn2+1. The number of
observations must be greater or equal than n2, we must have n1 < n2, and n1 and n2 are
greater than 0. The size of spacings will be at least n+ 1 after the call returns.

public static void diff (DoubleArrayList sortedData,
DoubleArrayList spacings,
int n1, int n2, double a, double b)

Same as method diff(IntArrayList,IntArrayList,int,int,int,int), but for the con-
tinuous case.

June 18, 2014 GofStat 8

public static void iterateSpacings (DoubleArrayList data,
DoubleArrayList spacings)

Applies one iteration of the iterated spacings transformation [7, 15]. Let U be the n obser-
vations contained into data, and let S be the spacings contained into spacings, Assumes
that S[0..n] contains the spacings between n real numbers U0, . . . , Un−1 in the interval [0, 1].
These spacings are defined by

Si = U(i) − U(i−1), 1 ≤ i < n,

where U(0) = 0, U(n−1) = 1, and U(0), . . . , U(n−1), are the Ui sorted in increasing order. These
spacings may have been obtained by calling diff. This method transforms the spacings into
new spacings, by a variant of the method described in section 11 of [11] and also by Stephens
[15]: it sorts S0, . . . , Sn to obtain S(0) ≤ S(1) ≤ S(2) ≤ · · · ≤ S(n), computes the weighted
differences

S0 = (n+ 1)S(0),

S1 = n(S(1) − S(0)),
S2 = (n− 1)(S(2) − S(1)),

...
Sn = S(n) − S(n−1),

and computes Vi = S0 + S1 + · · ·+ Si for 0 ≤ i < n. It then returns S0, . . . , Sn in S[0..n]
and V1, . . . , Vn in V[1..n].

Under the assumption that the Ui are i.i.d. U(0, 1), the new Si can be considered as a new
set of spacings having the same distribution as the original spacings, and the Vi are a new
sample of i.i.d. U(0, 1) random variables, sorted by increasing order.

This transformation is useful to detect clustering in a data set: A pair of observations that
are close to each other is transformed into an observation close to zero. A data set with
unusually clustered observations is thus transformed to a data set with an accumulation of
observations near zero, which is easily detected by the Anderson-Darling GOF test.

public static void powerRatios (DoubleArrayList sortedData)

Applies the power ratios transformation W described in section 8.4 of Stephens [15]. Let U
be the n observations contained into sortedData. Assumes that U contains n real numbers
U(0), . . . , U(n−1) from the interval [0, 1], already sorted in increasing order, and computes the
transformations:

U ′i = (U(i)/U(i+1))
i+1, i = 0, . . . , n− 1,

with U(n) = 1. These U ′i are sorted in increasing order and put back in U[1...n]. If the
U(i) are i.i.d. U(0, 1) sorted by increasing order, then the U ′i are also i.i.d. U(0, 1).

This transformation is useful to detect clustering, as explained in iterateSpacings, except
that here a pair of observations close to each other is transformed into an observation close
to 1. An accumulation of observations near 1 is also easily detected by the Anderson-Darling
GOF test.

June 18, 2014 GofStat 9

Partitions for the chi-square tests

public static class OutcomeCategoriesChi2

This class helps managing the partitions of possible outcomes into categories for applying
chi-square tests. It permits one to automatically regroup categories to make sure that the
expected number of observations in each category is large enough. To use this facility,
one must first construct an OutcomeCategoriesChi2 object by passing to the constructor
the expected number of observations for each original category. Then, calling the method
regroupCategories will regroup categories in a way that the expected number of observa-
tions in each category reaches a given threshold minExp. Experts in statistics recommend
that minExp be always larger than or equal to 5 for the chi-square test to be valid. Thus,
minExp = 10 is a safe value to use. After the call, nbExp gives the expected numbers in the
new categories and loc[i] gives the relocation of category i, for each i. That is, loc[i]
= j means that category i has been merged with category j because its original expected
number was too small, and nbExp[i] has been added to nbExp[j] and then set to zero. In
this case, all observations that previously belonged to category i are redirected to category
j. The variable nbCategories gives the final number of categories, smin contains the new
index of the lowest category, and smax the new index of the highest category.

public int nbCategories;

Total number of categories.

public int smin;

Minimum index for valid expected numbers in the array nbExp.

public int smax;

Maximum index for valid expected numbers in the array nbExp.

public double[] nbExp;

Expected number of observations for each category.

public int[] loc;

loc[i] gives the relocation of the category i in the nbExp array.

public OutcomeCategoriesChi2 (double[] nbExp)

Constructs an OutcomeCategoriesChi2 object using the array nbExp for the number
of expected observations in each category. The smin and smax fields are set to 0 and
(n− 1) respectively, where n is the length of array nbExp. The loc field is set such that
loc[i]=i for each i. The field nbCategories is set to n.

public OutcomeCategoriesChi2 (double[] nbExp, int smin, int smax)

Constructs an OutcomeCategoriesChi2 object using the given nbExp expected observa-
tions array. Only the expected numbers from the smin to smax (inclusive) indices will
be considered valid. The loc field is set such that loc[i]=i for each i in the interval
[smin, smax]. All loc[i] for i ≤ smin are set to smin, and all loc[i] for i ≥ smax
are set to smax. The field nbCategories is set to (smax - smin + 1).

June 18, 2014 GofStat 10

public OutcomeCategoriesChi2 (double[] nbExp, int[] loc,
int smin, int smax, int nbCat)

Constructs an OutcomeCategoriesChi2 object. The field nbCategories is set to nbCat.

public void regroupCategories (double minExp)

Regroup categories as explained earlier, so that the expected number of observations in
each category is at least minExp. We usually choose minExp = 10.

public String toString()

Provides a report on the categories.

Computing EDF test statistics

public static double chi2 (double[] nbExp, int[] count,
int smin, int smax)

Computes and returns the chi-square statistic for the observations oi in count[smin...smax],
for which the corresponding expected values ei are in nbExp[smin...smax]. Assuming that
i goes from 1 to k, where k = smax-smin+1 is the number of categories, the chi-square
statistic is defined as

X2 =
k∑

i=1

(oi − ei)2

ei
. (9)

Under the hypothesis that the ei are the correct expectations and if these ei are large enough,
X2 follows approximately the chi-square distribution with k− 1 degrees of freedom. If some
of the ei are too small, one can use OutcomeCategoriesChi2 to regroup categories.

public static double chi2 (OutcomeCategoriesChi2 cat, int[] count)

Computes and returns the chi-square statistic for the observations oi in count, for which the
corresponding expected values ei are in cat. This assumes that cat.regroupCategories
has been called before to regroup categories in order to make sure that the expected numbers
in each category are large enough for the chi-square test.

public static double chi2 (IntArrayList data, DiscreteDistributionInt dist,
int smin, int smax, double minExp, int[] numCat)

Computes and returns the chi-square statistic for the observations stored in data, assuming
that these observations follow the discrete distribution dist. For dist, we assume that there
is one set S = {a, a+ 1, . . . , b− 1, b}, where a < b and a ≥ 0, for which p(s) > 0 if s ∈ S and
p(s) = 0 otherwise.

Generally, it is not possible to divide the integers in intervals satisfying nP (a0 ≤ s < a1) =
nP (a1 ≤ s < a2) = · · · = nP (aj−1 ≤ s < aj) for a discrete distribution, where n is the sample
size, i.e., the number of observations stored into data. To perform a general chi-square test,
the method starts from smin and finds the first non-negligible probability p(s) ≥ ε, where ε =
DiscreteDistributionInt.EPSILON. It uses smax to allocate an array storing the number
of expected observations (np(s)) for each s ≥ smin. Starting from s = smin, the np(s)

June 18, 2014 GofStat 11

terms are computed and the allocated array grows if required until a negligible probability
term is found. This gives the number of expected elements for each category, where an
outcome category corresponds here to an interval in which sample observations could lie.
The categories are regrouped to have at least minExp observations per category. The method
then counts the number of samples in each categories and calls chi2 to get the chi-square
test statistic. If numCat is not null, the number of categories after regrouping is returned in
numCat[0]. The number of degrees of freedom is equal to numCat[0]-1. We usually choose
minExp = 10.

public static double chi2Equal (double nbExp, int[] count,
int smin, int smax)

Similar to chi2, except that the expected number of observations per category is assumed
to be the same for all categories, and equal to nbExp.

public static double chi2Equal (DoubleArrayList data, double minExp)

Computes the chi-square statistic for a continuous distribution. Here, the equiprobable
case can be used. Assuming that data contains observations coming from the uniform
distribution, the [0, 1] interval is divided into 1/p subintervals, where p = minExp/n, n being
the sample size, i.e., the number of observations stored in data. For each subinterval, the
method counts the number of contained observations and the chi-square statistic is computed
using chi2Equal. We usually choose minExp = 10.

public static double chi2Equal (DoubleArrayList data)

Equivalent to chi2Equal (data, 10).

public static int scan (DoubleArrayList sortedData, double d)

Computes and returns the scan statistic Sn(d), defined in (6). Let U be the n observations
contained into sortedData. The n observations in U [0..n− 1] must be real numbers in the
interval [0, 1], sorted in increasing order. (See FBar.scan for the distribution function of
Sn(d)).

public static double cramerVonMises (DoubleArrayList sortedData)

Computes and returns the Cramér-von Mises statistic W 2
n (see [4, 13, 14]), defined by

W 2
n =

1
12n

+
n−1∑
j=0

(
U(j) −

(j + 0.5)
n

)2

, (10)

assuming that sortedData contains U(0), . . . , U(n−1) sorted in increasing order.

public static double watsonG (DoubleArrayList sortedData)

Computes and returns the Watson statistic Gn (see [17, 3]), defined by

Gn =
√
n max

0≤j≤n−1

{
(j + 1)/n− U(j) + Un − 1/2

}
(11)

=
√
n
(
D+

n + Un − 1/2
)
,

where Un is the average of the observations U(j), assuming that sortedData contains the
sorted U(0), . . . , U(n−1).

June 18, 2014 GofStat 12

public static double watsonU (DoubleArrayList sortedData)

Computes and returns the Watson statistic U2
n (see [4, 13, 14]), defined by

W 2
n =

1
12n

+
n−1∑
j=0

{
U(j) −

(j + 0.5)
n

}2

, (12)

U2
n = W 2

n − n
(
Un − 1/2

)2
. (13)

where Un is the average of the observations U(j), assuming that sortedData contains the
sorted U(0), . . . , U(n−1).

public static double EPSILONAD = Num.DBL_EPSILON/2;

Used by andersonDarling. Num.DBL_EPSILON is usually 2−52.

public static double andersonDarling (DoubleArrayList sortedData)

Computes and returns the Anderson-Darling statistic A2
n (see method andersonDarling).

public static double andersonDarling (double[] sortedData)

Computes and returns the Anderson-Darling statistic A2
n (see [10, 14, 2]), defined by

A2
n = −n− 1

n

n−1∑
j=0

{
(2j + 1) ln(U(j)) + (2n− 1− 2j) ln(1− U(j))

}
,

assuming that sortedData contains U(0), . . . , U(n−1) sorted in increasing order.

When computing A2
n, all observations Ui are projected on the interval [ε, 1 − ε] for some

ε > 0, in order to avoid numerical overflow when taking the logarithm of Ui or 1− Ui. The
variable EPSILONAD gives the value of ε.

public static double[] andersonDarling (double[] data,
ContinuousDistribution dist)

Computes the Anderson-Darling statistic A2
n and the corresponding p-value p. The n (un-

sorted) observations in data are assumed to be independent and to come from the continuous
distribution dist. Returns the 2-elements array [A2

n, p].

public static double[] kolmogorovSmirnov (double[] sortedData)

Computes the Kolmogorov-Smirnov (KS) test statistics D+
n , D−n , and Dn (see method

kolmogorovSmirnov). Returns the array [D+
n , D−n , Dn].

public static double[] kolmogorovSmirnov (DoubleArrayList sortedData)

Computes the Kolmogorov-Smirnov (KS) test statistics D+
n , D−n , and Dn defined by

D+
n = max

0≤j≤n−1

(
(j + 1)/n− U(j)

)
, (14)

D−n = max
0≤j≤n−1

(
U(j) − j/n

)
, (15)

Dn = max (D+
n , D

−
n). (16)

June 18, 2014 GofStat 13

and returns an array of length 3 that contains [D+
n , D−n , Dn]. These statistics compare the

empirical distribution of U(1), . . . , U(n), which are assumed to be in sortedData, with the
uniform distribution over [0, 1].

public static void kolmogorovSmirnov (double[] data,
ContinuousDistribution dist,
double[] sval,
double[] pval)

Computes the KolmogorovSmirnov (KS) test statistics and their p-values. This is to com-
pare the empirical distribution of the (unsorted) observations in data with the theoretical
distribution dist. The KS statistics D+

n , D−n and Dn are returned in sval[0], sval[1], and
sval[2] respectively, and their corresponding p-values are returned in pval[0], pval[1],
and pval[2].

public static double[] kolmogorovSmirnovJumpOne (DoubleArrayList sortedData,
double a)

Compute the KS statistics D+
n (a) and D−n (a) defined in the description of the method FDist

.kolmogorovSmirnovPlusJumpOne, assuming that F is the uniform distribution over [0, 1]
and that U(1), . . . , U(n) are in sortedData. Returns the array [D+

n , D−n].

public static double pDisc (double pL, double pR)

Computes a variant of the p-value p whenever a test statistic has a discrete probability
distribution. This p-value is defined as follows:

pL = P [Y ≤ y]
pR = P [Y ≥ y]

p =

pR, if pR < pL

1− pL, if pR ≥ pL and pL < 0.5

0.5 otherwise.

The function takes pL and pR as input and returns p.

June 18, 2014 14

GofFormat

This class contains methods used to format results of GOF test statistics, or to apply a
series of tests simultaneously and format the results. It is in fact a translation from C to
Java of a set of functions that were specially written for the implementation of TestU01, a
software package for testing uniform random number generators [9].

Strictly speaking, applying several tests simultaneously makes the p-values “invalid” in
the sense that the probability of having at least one p-value less than 0.01, say, is larger
than 0.01. One must therefore be careful with the interpretation of these p-values (one could
use, e.g., the Bonferroni inequality [8]). Applying simultaneous tests is convenient in some
situations, such as in screening experiments for detecting statistical deficiencies in random
number generators. In that context, rejection of the null hypothesis typically occurs with
extremely small p-values (e.g., less than 10−15), and the interpretation is quite obvious in
this case.

The class also provides tools to plot an empirical or theoretical distribution function, by
creating a data file that contains a graphic plot in a format compatible with the software
specified by the environment variable graphSoft. NOTE: see also the more recent package
charts.

Note: This class uses the Colt library.

package umontreal.iro.lecuyer.gof;
import cern.colt.list.*;

public class GofFormat

Plotting distribution functions

public static final int GNUPLOT

Data file format used for plotting functions with Gnuplot.

public static final int MATHEMATICA

Data file format used for creating graphics with Mathematica.

public static int graphSoft = GNUPLOT;

Environment variable that selects the type of software to be used for plotting the graphs of
functions. The data files produced by graphFunc and graphDistUnif will be in a format
suitable for this selected software. The default value is GNUPLOT. To display a graphic in
file f using gnuplot, for example, one can use the command “plot f with steps, x with
lines” in gnuplot.

public static String drawCdf (ContinuousDistribution dist, double a,
double b, int m, String desc)

Formats data to plot the graph of the distribution function F over the interval [a, b], and
returns the result as a String. The method dist.cdf(x) returns the value of F at x. The

June 18, 2014 GofFormat 15

String desc gives a short caption for the graphic plot. The method computes the m + 1
points (xi, F (xi)), where xi = a + i(b − a)/m for i = 0, 1, . . . ,m, and formats these points
into a String in a format suitable for the software specified by graphSoft. NOTE: see also
the more recent class ContinuousDistChart.

public static String drawDensity (ContinuousDistribution dist, double a,
double b, int m, String desc)

Formats data to plot the graph of the density f(x) over the interval [a, b], and returns the
result as a String. The method dist.density(x) returns the value of f(x) at x. The
String desc gives a short caption for the graphic plot. The method computes the m + 1
points (xi, f(xi)), where xi = a + i(b − a)/m for i = 0, 1, . . . ,m, and formats these points
into a String in a format suitable for the software specified by graphSoft. NOTE: see also
the more recent class ContinuousDistChart.

public static String graphDistUnif (DoubleArrayList data, String desc)

Formats data to plot the empirical distribution of U(1), . . . , U(N), which are assumed to be in
data[0...N-1], and to compare it with the uniform distribution. The U(i) must be sorted.
The two endpoints (0, 0) and (1, 1) are always included in the plot. The string desc gives a
short caption for the graphic plot. The data is printed in a format suitable for the software
specified by graphSoft. NOTE: see also the more recent class EmpiricalChart.

Computing and printing p-values for EDF test statistics

public static double EPSILONP = 1.0E-15;

Environment variable used in formatp0 to determine which p-values are too close to 0 or 1
to be printed explicitly. If EPSILONP = ε, then any p-value less than ε or larger than 1 − ε
is not written explicitly; the program simply writes “eps” or “1-eps”. The default value is
10−15.

public static double SUSPECTP = 0.01;

Environment variable used in formatp1 to determine which p-values should be marked as
suspect when printing test results. If SUSPECTP = α, then any p-value less than α or larger
than 1 − α is considered suspect and is “singled out” by formatp1. The default value is
0.01.

public static String formatp0 (double p)

Returns the p-value p of a test, in the format “1−p” if p is close to 1, and p otherwise. Uses
the environment variable EPSILONP and replaces p by ε when it is too small.

public static String formatp1 (double p)

Returns the string “p-value of test : ”, then calls formatp0 to print p, and adds the
marker “****” if p is considered suspect (uses the environment variable SUSPECTP for this).

public static String formatp2 (double x, double p)

Returns x on a single line, then go to the next line and calls formatp1.

June 18, 2014 GofFormat 16

public static String formatp3 (String testName, double x, double p)

Formats the test statistic x for a test named testName with p-value p. The first line of
the returned string contains the name of the test and the statistic whereas the second line
contains its p-value. The formated values of x and p are aligned.

public static String formatChi2 (int k, int d, double chi2)

Computes the p-value of the chi-square statistic chi2 for a test with k intervals. Uses d
decimal digits of precision in the calculations. The result of the test is returned as a string.
The p-value is computed using pDisc.

public static String formatKS (int n, double dp,
double dm, double d)

Computes the p-values of the three Kolmogorov-Smirnov statistics D+
N , D−N , and DN , whose

values are in dp, dm, d, respectively, assuming a sample of size n. Then formats these
statistics and their p-values using formatp2 for each one.

public static String formatKS (DoubleArrayList data,
ContinuousDistribution dist)

Computes the KS test statistics to compare the empirical distribution of the observations in
data with the theoretical distribution dist and formats the results. See also method GofStat
.kolmogorovSmirnov(double[],ContinuousDistribution,double[],double[]).

public static String formatKSJumpOne (int n, double a, double dp)

Similar to formatKS, but for the KS statisticD+
N (a) defined in (3). Writes a header, computes

the p-value and calls formatp2.

public static String formatKSJumpOne (DoubleArrayList data,
ContinuousDistribution dist,
double a)

Similar to formatKS, but for D+
N (a) defined in (3).

Applying several tests at once and printing results

Higher-level tools for applying several EDF goodness-of-fit tests simultaneously are of-
fered here. The environment variable activeTests specifies which tests in this list are
to be performed when asking for several simultaneous tests via the functions activeTests,
formatActiveTests, etc.

public static final int KSP = 0;

Kolmogorov-Smirnov+ test

public static final int KSM = 1;

Kolmogorov-Smirnov− test

public static final int KS = 2;

Kolmogorov-Smirnov test

June 18, 2014 GofFormat 17

public static final int AD = 3;

Anderson-Darling test

public static final int CM = 4;

Cramér-von Mises test

public static final int WG = 5;

Watson G test

public static final int WU = 6;

Watson U test

public static final int MEAN = 7;

Mean

public static final int COR = 8;

Correlation

public static final int NTESTTYPES = 9;

Total number of test types

public static final String[] TESTNAMES

Name of each testType test. Could be used for printing the test results, for example.

public static boolean[] activeTests

The set of EDF tests that are to be performed when calling the methods activeTests,
formatActiveTests, etc. By default, this set contains KSP, KSM, and AD. Note: MEAN and
COR are always excluded from this set of active tests.

public static void tests (DoubleArrayList sortedData, double[] sVal)

Computes all EDF test statistics enumerated above (except COR) to compare the empir-
ical distribution of U(0), . . . , U(N−1) with the uniform distribution, assuming that these
sorted observations are in sortedData. If N > 1, returns sVal with the values of the
KS statistics D+

N , D−N and DN , of the Cramér-von Mises statistic W 2
N , Watson’s GN and

U2
N , Anderson-Darling’s A2

N , and the average of the Ui’s, respectively. If N = 1, only puts
1−sortedData.get (0) in sVal[KSP]. Calling this method is more efficient than computing
these statistics separately by calling the corresponding methods in GofStat.

public static void tests (DoubleArrayList data,
ContinuousDistribution dist, double[] sVal)

The observations V are in data, not necessarily sorted, and their empirical distribution is
compared with the continuous distribution dist. If N = 1, only puts data.get (0) in
sVal[MEAN], and 1− dist.cdf (data.get (0)) in sVal[KSP].

public static void activeTests (DoubleArrayList sortedData,
double[] sVal, double[] pVal)

Computes the EDF test statistics by calling tests, then computes the p-values of those that
currently belong to activeTests, and return these quantities in sVal and pVal, respectively.

June 18, 2014 GofFormat 18

Assumes that U(0), . . . , U(N−1) are in sortedData and that we want to compare their em-
pirical distribution with the uniform distribution. If N = 1, only puts 1− sortedData.get
(0) in sVal[KSP], pVal[KSP], and pVal[MEAN].

public static void activeTests (DoubleArrayList data,
ContinuousDistribution dist,
double[] sVal, double[] pVal)

The observations are in data, not necessarily sorted, and we want to compare their empirical
distribution with the distribution dist. If N = 1, only puts data.get(0) in sVal[MEAN],
and 1− dist.cdf (data.get (0)) in sVal[KSP], pVal[KSP], and pVal[MEAN].

public static String formatActiveTests (int n, double[] sVal,
double[] pVal)

Gets the p-values of the active EDF test statistics, which are in activeTests. It is assumed
that the values of these statistics and their p-values are already computed, in sVal and pVal,
and that the sample size is n. These statistics and p-values are formated using formatp2 for
each one. If n=1, prints only pVal[KSP] using formatp1.

public static String iterSpacingsTests (DoubleArrayList sortedData, int k,
boolean printval, boolean graph,
PrintWriter f)

Repeats the following k times: Applies the GofStat.iterateSpacings transformation to
the U(0), . . . , U(N−1), assuming that these observations are in sortedData, then computes the
EDF test statistics and calls activeTests after each transformation. The function returns
the original array sortedData (the transformations are applied on a copy of sortedData).
If printval = true, stores all the values into the returned String after each iteration. If
graph = true, calls graphDistUnif after each iteration to print to stream f the data for
plotting the distribution function of the Ui.

public static String iterPowRatioTests (DoubleArrayList sortedData, int k,
boolean printval, boolean graph,
PrintWriter f)

Similar to iterSpacingsTests, but with the GofStat.powerRatios transformation.

June 18, 2014 REFERENCES 19

References

[1] N. H. Anderson and D. M. Titterington. A comparison of two statistics for detecting
clustering in one dimension. Journal of Statistical Computation and Simulation, 53:103–
125, 1995.

[2] T. W. Anderson and D. A. Darling. Asymptotic theory of certain goodness of fit criteria
based on stochastic processes. Annals of Mathematical Statistics, 23:193–212, 1952.

[3] D. A. Darling. On the asymptotic distribution of Watson’s statistic. The Annals of
Statistics, 11(4):1263–1266, 1983.

[4] J. Durbin. Distribution Theory for Tests Based on the Sample Distribution Function.
SIAM CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadel-
phia, PA, 1973.

[5] J. Glaz. Approximations and bounds for the distribution of the scan statistic. Journal
of the American Statistical Association, 84:560–566, 1989.

[6] J. Glaz, J. Naus, and S. Wallenstein. Scan statistics. Springer Series in Statistics.
Springer, New York, NY, 2001.

[7] D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms.
Addison-Wesley, Reading, MA, third edition, 1998.

[8] A. M. Law and W. D. Kelton. Simulation Modeling and Analysis. McGraw-Hill, New
York, NY, third edition, 2000.

[9] P. L’Ecuyer and R. Simard. TestU01: A Software Library in ANSI C for Empirical
Testing of Random Number Generators, 2002. Software user’s guide. Available at http:
//www.iro.umontreal.ca/~lecuyer.

[10] P. A. W. Lewis. Distribution of the Anderson-Darling statistic. Annals of Mathematical
Statistics, 32:1118–1124, 1961.

[11] G. Marsaglia. A current view of random number generators. In L. Billard, editor,
Computer Science and Statistics, Sixteenth Symposium on the Interface, pages 3–10,
North-Holland, Amsterdam, 1985. Elsevier Science Publishers.

[12] T. R. C. Read and N. A. C. Cressie. Goodness-of-Fit Statistics for Discrete Multivariate
Data. Springer Series in Statistics. Springer-Verlag, New York, NY, 1988.

[13] M. A. Stephens. Use of the Kolmogorov-Smirnov, Cramér-Von Mises and related
statistics without extensive tables. Journal of the Royal Statistical Society, Series B,
33(1):115–122, 1970.

[14] M. S. Stephens. Tests based on EDF statistics. In R. B. D’Agostino and M. S. Stephens,
editors, Goodness-of-Fit Techniques. Marcel Dekker, New York and Basel, 1986.

http://www.iro.umontreal.ca/~lecuyer
http://www.iro.umontreal.ca/~lecuyer

June 18, 2014 REFERENCES 20

[15] M. S. Stephens. Tests for the uniform distribution. In R. B. D’Agostino and M. S.
Stephens, editors, Goodness-of-Fit Techniques, pages 331–366. Marcel Dekker, New York
and Basel, 1986.

[16] S. R. Wallenstein and N. Neff. An approximation for the distribution of the scan
statistic. Statistics in Medicine, 6:197–207, 1987.

[17] G. S. Watson. Optimal invariant tests for uniformity. In Studies in Probability and
Statistics, pages 121–127. North Holland, Amsterdam, 1976.

	Overview
	FDist
	FBar
	KernelDensity
	GofStat
	GofFormat

