
SSJ User’s Guide

Package stat

Tools for Collecting Statistics

Version: June 18, 2014



CONTENTS 1

Contents

Overview of package stat 2

ObservationListener . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

StatProbe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Tally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

TallyStore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

TallyHistogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Overview of package stat.list 15

ArrayOfObservationListener . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

ListOfStatProbes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

ListOfTallies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

ListOfTalliesWithCovariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22



CONTENTS 2

Overview of package stat

This package provides elementary tools for collecting statistics and computing confidence
intervals. The base class StatProbe implements common methods needed by all probes.
Its subclass Tally collects data as a sequence of observations X1, X2, . . ., and computes
sample averages, sample standard deviations, and confidence intervals based on the normality

assumption. 1 The class TallyStore is similar, but it also stores the individual observations
in a list implemented as a DoubleArrayList, a class imported from the COLT library. This
permits one to compute more quantities and to use the methods provided by COLT for
computing descriptive statistics.

The class Accumulate, in package simevents, computes integrals and averages with
respect to time. This class is in package simevents because its operation depends on the
simulation clock.

All classes that represent statistical probes support the observer design pattern, well-
known in software engineering [1]. This pattern facilitates the separation of data generation
(by the simulation program) from data processing (for statistical reports and displays).
This can be very helpful in particular in large simulation programs or libraries, where dif-
ferent objects may need to process the same data in different ways. A statistical probe
maintains a list of registered ObservationListener objects, and broadcasts information to
all its registered observers whenever appropriate. Any object that implements the inter-
face ObservationListener can register as an observer. For an example, see the program
QueueObs in the directory examples.

Subpackages of package stat provide matrices of Tally’s and lists of Tally’s.

1 From Richard: Toujours basé sur la normale?



3

ObservationListener

Represents an object that can listen to observations broadcast by statistical probes.

package umontreal.iro.lecuyer.stat;

public interface ObservationListener

public void newObservation (StatProbe probe, double x);

Receives the new observation x broadcast by probe.



4

StatProbe

The objects of this class are statistical probes or collectors, which are elementary devices
for collecting statistics. Each probe collects statistics on a given variable. The subclasses
Tally, TallyStore, and Accumulate (from package simevents) implement two kinds of
probes, for the case of successive observations X1, X2, X3, . . ., and for the case of a variable
whose value evolves in time, respectively.

Each instance of StatProbe contains a list of ObservationListener that can listen to
individual observations. When a probe is updated, i.e., receives a new statistical observation,
it broadcasts this new data to all registered observers. The broadcasting of observations to
registered observers can be turned ON or OFF at any time. It is initially OFF by default
and should stay OFF when there are no registered observers, to avoid unnecessary overhead.

The data collection by the statistical probe itself can also be turned ON or OFF. By
default, it is initially ON. We can turn it OFF, for example, if we want to use the statistical
probe only to pass data to the observers, and do not need it to store any information.

In the simplest programs, collection is ON, broadcast is OFF, and the overall stats are
accessed via the methods min, max, sum, average, ... of the collector.

package umontreal.iro.lecuyer.stat;

public abstract class StatProbe

Methods

abstract public void init();

Initializes the statistical collector.

public void setName (String name)

Sets the name of this statistical collector to name.

public String getName()

Returns the name associated with this probe, or null if no name was specified upon con-
struction.

public double min()

Returns the smallest value taken by the variable since the last initialization of this probe.
This returns Double.POSITIVE_INFINITY if the probe was not updated since the last ini-
tialization.

public double max()

Returns the largest value taken by the variable since the last initialization of this probe.
This returns Double.NEGATIVE_INFINITY if the probe was not updated since the last ini-
tialization.



StatProbe 5

public double sum()

Returns the sum cumulated so far for this probe. The meaning of this sum depends on the
subclass (e.g., Tally or Accumulate). This returns 0 if the probe was not updated since the
last initialization.

abstract public double average();

Returns the average for this collector. This returns Double.NaN if the probe was not updated
since the last initialization.

abstract public String report();

Returns a string containing a report for this statistical collector. The contents of this report
depends on the statistical probe as well as on the parameters set by the user through probe-
specific methods.

abstract public String shortReport();

Formats and returns a short, one-line report about this statistical probe. This line is com-
posed of whitespace-separated fields which must correspond to the column names given by
shortReportHeader(). This report should not contain any end-of-line character, and does
not include the name of the probe. Its contents depends on the statistical probe as well as
on the parameters set by the user through probe-specific methods.

abstract public String shortReportHeader();

Returns a string containing the name of the values returned in the report strings. The
returned string must depend on the type of probe and on the reporting options only. It
must not depend on the observations received by the probe. This can be used as header
when printing several reports. For example,

System.out.println (probe1.shortReportHeader());
System.out.println (probe1.getName() + " " + probe1.shortReport());
System.out.println (probe2.getName() + " " + probe2.shortReport());
...

Alternatively, one can use report (String,StatProbe[]) to get a report with aligned probe
names.

public static String report (String globalName, StatProbe[] probes)

Formats short reports for each statistical probe in the array probes while aligning the probes’
names. This method first formats the given global name. It then determines the maximum
length ` of the names of probes in the given array. The first line of the report is composed of
`+ 3 spaces followed by the string returned by shortReportHeader called on the first probe
in probes. Each remaining line corresponds to a statistical probe; it contains the probe’s
name followed by the contents returned by shortReport. Note that this method assumes
that probes contains no null element.

public static String report (String globalName,
Iterable<? extends StatProbe> probes)

Equivalent to report, except that probes is an Iterable object instead of an array. Of
course, the iterator returned by probes should enumerate the statistical probes to include
in the report in a consistent and sensible order.



StatProbe 6

public boolean isBroadcasting()

Determines if this statistical probe is broadcasting observations to registered observers. The
default is false.

public void setBroadcasting (boolean b)

Instructs the probe to turn its broadcasting ON or OFF. The default value is OFF.

Warning: To avoid useless overhead and performance degradation, broadcasting should never
be turned ON when there are no registered observers.

public boolean isCollecting()

Determines if this statistical probe is collecting values. The default is true.

public void setCollecting (boolean b)

Turns ON or OFF the collection of statistical observations. The default value is ON. When
statistical collection is turned OFF, observations added to the probe are passed to the
registered observers if broadcasting is turned ON, but are not counted as observations by
the probe itself.

public void addObservationListener (ObservationListener l)

Adds the observation listener l to the list of observers of this statistical probe.

public void removeObservationListener (ObservationListener l)

Removes the observation listener l from the list of observers of this statistical probe.

public void clearObservationListeners()

Removes all observation listeners from the list of observers of this statistical probe.

public void notifyListeners (double x)

Notifies the observation x to all registered observers if broadcasting is ON. Otherwise, does
nothing.



7

Tally

A subclass of StatProbe. This type of statistical collector takes a sequence of real-valued
observations X1, X2, X3, . . . and can return the average, the variance, a confidence interval
for the theoretical mean, etc. Each call to add provides a new observation. When the
broadcasting to observers is activated, the method add will also pass this new information
to its registered observers. This type of collector does not memorize the individual observa-
tions, but only their number, sum, sum of squares, maximum, and minimum. The subclass
TallyStore offers a collector that memorizes the observations.

package umontreal.iro.lecuyer.stat;

public class Tally extends StatProbe implements Cloneable

Constructors

public Tally()

Constructs a new unnamed Tally statistical probe.

public Tally (String name)

Constructs a new Tally statistical probe with name name.

Methods

public void add (double x)

Gives a new observation x to the statistical collector. If broadcasting to observers is activated
for this object, this method also transmits the new information to the registered observers
by invoking the method notifyListeners.

public int numberObs()

Returns the number of observations given to this probe since its last initialization.

public double average()

Returns the average value of the observations since the last initialization.

public double variance()

Returns the sample variance of the observations since the last initialization. This returns
Double.NaN if the tally contains less than two observations.

public double standardDeviation()

Returns the sample standard deviation of the observations since the last initialization. This
returns Double.NaN if the tally contains less than two observations.



Tally 8

public void confidenceIntervalNormal (double level,
double[] centerAndRadius)

Computes a confidence interval on the mean. Returns, in elements 0 and 1 of the array
object centerAndRadius[], the center and half-length (radius) of a confidence interval on
the true mean of the random variable X, with confidence level level, assuming that the n
observations given to this collector are independent and identically distributed (i.i.d.) copies
of X, and that n is large enough for the central limit theorem to hold. This confidence
interval is computed based on the statistic

Z =
X̄n − µ
Sn,x/

√
n

where n is the number of observations given to this collector since its last initialization,
X̄n = average() is the average of these observations, Sn,x = standardDeviation() is the
empirical standard deviation. Under the assumption that the observations of X are i.i.d.
and n is large, Z has the standard normal distribution. The confidence interval given by
this method is valid only if this assumption is approximately verified.

public void confidenceIntervalStudent (double level,
double[] centerAndRadius)

Computes a confidence interval on the mean. Returns, in elements 0 and 1 of the array
object centerAndRadius[], the center and half-length (radius) of a confidence interval on
the true mean of the random variable X, with confidence level level, assuming that the
observations given to this collector are independent and identically distributed (i.i.d.) copies
of X, and that X has the normal distribution. This confidence interval is computed based
on the statistic

T =
X̄n − µ
Sn,x/

√
n

where n is the number of observations given to this collector since its last initialization,
X̄n = average() is the average of these observations, Sn,x = standardDeviation() is the
empirical standard deviation. Under the assumption that the observations of X are i.i.d.
and normally distributed, T has the Student distribution with n−1 degrees of freedom. The
confidence interval given by this method is valid only if this assumption is approximately
verified, or if n is large enough so that X̄n is approximately normally distributed.

public String formatCINormal (double level, int d)

Similar to confidenceIntervalNormal. Returns the confidence interval in a formatted
string of the form

“95% confidence interval for mean (normal): (32.431, 32.487)”,
using d fractional decimal digits.

public String formatCINormal (double level)

Equivalent to formatCINormal (level, 3).

public String formatCIStudent (double level, int d)

Similar to confidenceIntervalStudent. Returns the confidence interval in a formatted
string of the form



Tally 9

“95% confidence interval for mean (student): (32.431, 32.487)”,
using d fractional decimal digits.

public String formatCIStudent (double level)

Equivalent to formatCIStudent (level, 3).

public void confidenceIntervalVarianceChi2 (double level,
double[] interval)

Computes a confidence interval on the variance. Returns, in elements 0 and 1 of array
interval, the left and right boundaries [I1, I2] of a confidence interval on the true variance σ2

of the random variable X, with confidence level level, assuming that the observations given
to this collector are independent and identically distributed (i.i.d.) copies of X, and that
X has the normal distribution. This confidence interval is computed based on the statistic
χ2

n−1 = (n − 1)S2
n/σ

2 where n is the number of observations given to this collector since
its last initialization, and S2

n = variance() is the empirical variance of these observations.
Under the assumption that the observations of X are i.i.d. and normally distributed, χ2

n−1

has the chi-square distribution with n− 1 degrees of freedom. Given the level = 1−α, one
has P [χ2

n−1 < x1] = P [χ2
n−1 > x2] = α/2 and [I1, I2] = [(n− 1)S2

n/x2, (n− 1)S2
n/x1].

public String formatCIVarianceChi2 (double level, int d)

Similar to confidenceIntervalVarianceChi2. Returns the confidence interval in a format-
ted string of the form

“95.0% confidence interval for variance (chi2): ( 510.642, 519.673 )”,
using d fractional decimal digits.

public String report()

Returns a formatted string that contains a report on this probe.

public String report (double level, int d)

Returns a formatted string that contains a report on this probe with a confidence interval
level level using d fractional decimal digits.

public String shortReport()

Formats and returns a short statistical report for this tally. The returned single-line report
contains the minimum value, the maximum value, the average, and the standard deviation,
in that order, separated by three spaces. If the number of observations is shown in the short
report, a column containing the number of observations in this tally is added.

public String reportAndCIStudent (double level, int d)

Returns a formatted string that contains a report on this probe (as in report), followed by
a confidence interval (as in formatCIStudent), using d fractional decimal digits.

public String reportAndCIStudent (double level)

Same as reportAndCIStudent (level, 3).

public double getConfidenceLevel()

Returns the level of confidence for the intervals on the mean displayed in reports. The
default confidence level is 0.95.



Tally 10

public void setConfidenceLevel (double level)

Sets the level of confidence for the intervals on the mean displayed in reports.

public void setConfidenceIntervalNone()

Indicates that no confidence interval needs to be printed in reports formatted by report,
and shortReport. This restores the default behavior of the reporting system.

public void setConfidenceIntervalNormal()

Indicates that a confidence interval on the true mean, based on the central limit theorem,
needs to be included in reports formatted by report and shortReport. The confidence
interval is formatted using formatCINormal.

public void setConfidenceIntervalStudent()

Indicates that a confidence interval on the true mean, based on the normality assumption,
needs to be included in reports formatted by report and shortReport. The confidence
interval is formatted using formatCIStudent.

public void setShowNumberObs (boolean showNumObs)

Determines if the number of observations must be displayed in reports. By default, the
number of observations is displayed.

public Tally clone()

Clones this object.



11

TallyStore

This class is a variant of Tally for which the individual observations are stored in a
list implemented as a DoubleArrayList. The class DoubleArrayList is imported from the
COLT library and provides an efficient way of storing and manipulating a list of real-valued
numbers in a dynamic array. The DoubleArrayList object used to store the values can be
either passed to the constructor or created by the constructor, and can be accessed via the
getDoubleArrayList method.

The same counters as in Tally are maintained and are used by the inherited methods.
One must access the list of observations to compute quantities not supported by the methods
in Tally, and/or to use methods provided by the COLT package.

Never add or remove observations directly on the DoubleArrayList object, because this
would put the counters of the TallyStore object in an inconsistent state.

There are two potential reasons for using a TallyStore object instead of directly using
a DoubleArrayList object: (a) it can broadcast observations and (b) it maintains a few
additional counters that may speed up some operations such as computing the average.

package umontreal.iro.lecuyer.stat;

public class TallyStore extends Tally

Constructors

public TallyStore()

Constructs a new TallyStore statistical probe.

public TallyStore (String name)

Constructs a new TallyStore statistical probe with name name.

public TallyStore (int capacity)

Constructs a new TallyStore statistical probe with given initial capacity capacity for its
associated array.

public TallyStore (String name, int capacity)

Constructs a new TallyStore statistical probe with name name and given initial capacity
capacity for its associated array.

public TallyStore (DoubleArrayList a)

Constructs a new TallyStore statistical probe with given associated array. This array must
be empty.



TallyStore 12

Methods

public double[] getArray()

Returns the observations stored in this probe.

public DoubleArrayList getDoubleArrayList()

Returns the DoubleArrayList object that contains the observations for this probe. WARN-
ING: In previous releases, this function was named getArray.

public void quickSort()

Sorts the elements of this probe using the quicksort from Colt.

public double covariance (TallyStore t2)

Returns the sample covariance of the observations contained in this tally, and the other tally
t2. Both tallies must have the same number of observations. This returns Double.NaN if
the tallies do not contain the same number of observations, or if they contain less than two
observations.

public TallyStore clone()

Clones this object and the array which stores the observations.

public String toString()

Returns the observations stored in this object as a String.



13

TallyHistogram

This class is an extension of Tally which gives a more detailed view of the observations
statistics. The individual observations are assumed to fall into different bins (boxes) of
equal width on an interval. The total number of observations falling into the bins are kept in
an array of counters. This is useful, for example, if one wish to build a histogram from the
observations. One must access the array of bin counters to compute quantities not supported
by the methods in Tally.

Never add or remove observations directly on the array of bin counters because this would
put the Tally counters in an inconsistent state.

package umontreal.iro.lecuyer.stat;

public class TallyHistogram extends Tally

Constructors

public TallyHistogram(double a, double b, int s)

Constructs a TallyHistogram statistical probe. Divide the interval [a, b] into s bins of equal
width and initializes a counter to 0 for each bin. Whenever an observation falls into a bin,
the bin counter is increased by 1. There are two extra bins (and counters) that count the
number of observations x that fall outside the interval [a, b]: one for those x < a, and the
other for those x > b.

public TallyHistogram (String name, double a, double b, int s)

Constructs a new TallyHistogram statistical probe with name name.

Methods

public void init (double a, double b, int s)

Initializes this object. Divide the interval [a, b] into s bins of equal width and initializes all
counters to 0.

public void add (double x)

Gives a new observation x to the statistical collectors. Increases by 1 the bin counter in
which value x falls. Values that fall outside the interval [a, b] are added in extra bin counter
bin[0] if x < a, and in bin[s+ 1] if x > b.

public int[] getCounters()

Returns the bin counters. Each counter contains the number of observations that fell in its
corresponding bin. The counters bin[i], i = 1, 2, . . . , s contain the number of observations
that fell in each subinterval of [a, b]. Values that fell outside the interval [a, b] were added in
extra bin counter bin[0] if x < a, and in bin[s+ 1] if x > b. There are thus s+ 2 counters.



TallyHistogram 14

public int getNumBins()

Returns the number of bins s dividing the interval [a, b]. Does not count the two extra bins
for the values of x < a or x > b.

public double getA()

Returns the left boundary a of interval [a, b].

public double getB()

Returns the right boundary b of interval [a, b].

public TallyHistogram clone()

Clones this object and the array which stores the counters.

public String toString()

Returns the bin counters as a String.



TallyHistogram 15

Overview of package stat.list

Provides support for lists of statistical probes. Sometimes, a simulator computes several
related performance measures such as the quality of service for different call types in a
phone call center, the waiting times of different types of customers, the average number of
pieces of different types a machine processes, etc. A list of statistical probes, in contrast
with an ordinary array, can be resized. Since a list of statistical probes implements the Java
List interface, one can iterate over each probe, e.g., to set reporting options. In addition
to an ordinary list, a list of probes provides facilities to get a vector of averages, a vector of
sums, and to create reports.

In the Java programming language, a list is usually constructed empty, and filled with
items. Lists of statistical probes can be constructed this generic way, or created using factory
methods that automatically construct the probes.

ListOfStatProbes is the base class for lists of statistical probes. It can hold a list of
any StatProbe subclass, and provides the basic facilities to obtain an array of sums, an
array of averages, etc. Subclasses provide probe-specific functionalities for adding vectors of
observations, computing sample covariances, etc. ListOfTallies is used to contain Tally

instances. A subclass, ListOfTalliesWithCovariance, is provided to add support for co-
variance computation without storing observations.

All classes in this package representing lists of probes support the observer design pat-
tern similarly to the classes in package stat. A list of statistical probes maintains a list of
registered ArrayOfObservationListener objects, and broadcasts information to all its reg-
istered observers when it receives a new vector of observations. Any object that implements
the interface ArrayOfObservationListener can register as an observer.



16

ArrayOfObservationListener

Represents an object that can listen to observations broadcast by lists of statistical
probes.

package umontreal.iro.lecuyer.stat.list;

public interface ArrayOfObservationListener

public void newArrayOfObservations (ListOfStatProbes<?> listOfProbes,
double[] x);

Receives the new array of observations x broadcast by the list of statistical probes listOfProbes.



17

ListOfStatProbes

Represents a list of statistical probes that can be managed simultaneously. Each element
of this list is a StatProbe instance which can be obtained and manipulated.

When constructing a list of statistical probes, one specifies the concrete subclass of the
StatProbe objects in it. One then creates an empty list of probes, and fills it with statistical
probes. If the list is not intended to be modified, one can then use the setUnmodifiable to
prevent any change in the contents of the list.

Each list of statistical probes can have a global name describing the contents of its
elements, and local names associated with each individual probe. For example, a list of
statistical probes for the waiting times can have the global name Waiting times while the
individual probes have local names type 1, type 2, etc. These names are used for formatting
reports.

Facilities are provided to fill arrays with sums, averages, etc. obtained from the individual
statistical probes. Methods are also provided to manipulate the contents of the list. However,
one should always call init immediately after adding or removing statistical probes in the
list.

package umontreal.iro.lecuyer.stat.list;

public class ListOfStatProbes<E extends StatProbe>
implements Cloneable, List<E>, RandomAccess

Constructors

public ListOfStatProbes()

Constructs an empty list of statistical probes.

public ListOfStatProbes (String name)

Constructs an empty list of statistical probes with name name.

Methods

public String getName()

Returns the global name of this list of statistical probes.

public void setName (String name)

Sets the global name of this list to name.

public boolean isModifiable()

Determines if this list of statistical probes is modifiable, i.e., if probes can be added
or removed. Any list of statistical probes is modifiable by default, until one calls the
setUnmodifiable method.



ListOfStatProbes 18

public void setUnmodifiable()

Forbids any future modification to this list of statistical probes. After this method is called,
any attempt to modify the list results in an exception. Setting a list unmodifiable can be
useful if some data structures are defined depending on the probes in the list.

public void init()

Initializes this list of statistical probes by calling init on each element.

public void sum (double[] s)

For each probe in the list, computes the sum by calling sum, and stores the results into the
array s. This method throws an exception if the size of s mismatches with the size of the
list.

public void average (double[] a)

For each probe in this list, computes the average by calling average, and stores the results
into the array a. This method throws an exception if the size of s mismatches with the size
of the list.

public boolean isCollecting()

Determines if this list of statistical probes is collecting values. Each probe of the list could
or could not be collecting values. The default is true.

public void setCollecting (boolean c)

Sets the status of the statistical collecting mechanism to c. A true value turns statistical
collecting ON, a false value turns it OFF.

public boolean isBroadcasting()

Determines if this list of statistical probes is broadcasting observations to registered ob-
servers. The default is false.

public void setBroadcasting (boolean b)

Sets the status of the observation broadcasting mechanism to b. A true value turns broad-
casting ON, a false value turns it OFF.

public void addArrayOfObservationListener (ArrayOfObservationListener l)

Adds the observation listener l to the list of observers of this list of statistical probes.

public void removeArrayOfObservationListener (ArrayOfObservationListener l)

Removes the observation listener l from the list of observers of this list of statistical probes.

public void clearArrayOfObservationListeners()

Removes all observation listeners from the list of observers of this list of statistical probes.

public void notifyListeners (double[] x)

Notifies the observation x to all registered observers if broadcasting is ON. Otherwise, does
nothing.



ListOfStatProbes 19

public String report()

Formats a report for each probe in the list of statistical probes. The returned string is
constructed by using StatProbe.report (getName(), this).

public ListOfStatProbes<E> clone()

Clones this object. This makes a shallow copy of this list, i.e., this does not clone all the
probes in the list. The created clone is modifiable, even if the original list is unmodifiable.



20

ListOfTallies

Represents a list of tally statistical collectors. Each element of the list is an instance of
Tally, and a vector of observations can be added with the add method. This class defines
factory methods to fill a newly-constructed list with Tally or TallyStore instances.

package umontreal.iro.lecuyer.stat.list;

public class ListOfTallies<E extends Tally> extends ListOfStatProbes<E>

Constructors

public ListOfTallies()

Constructs a new empty list of tallies.

public ListOfTallies (String name)

Constructs a new empty list of tallies with name name.

Methods

public static ListOfTallies<Tally> createWithTally (int size)

This factory method constructs and returns a list of tallies with size instances of Tally.

public static ListOfTallies<TallyStore> createWithTallyStore (int size)

This factory method constructs and returns a list of tallies with size instances of TallyStore.

public void add (double[] x)

Adds the observation x[i] in tally i of this list, for i = 0,..., size() - 1. No obser-
vation is added if the value is Double.NaN, or if collecting is turned OFF. If broadcasting
is ON, the given array is notified to all registered observers. The given array x not being
stored by this object, it can be freely used and modified after the call to this method.

public int numberObs()

Assuming that each tally in this list contains the same number of observations, returns the
number of observations in tally 0, or 0 if this list is empty.

public boolean areAllNumberObsEqual()

Tests that every tally in this list contains the same number of observations. This returns
true if and only if all tallies have the same number of observations, or if this list is empty.
If observations are always added using the add method from this class, and not add from
Tally, this method always returns true.

public void average (double[] r)

Computes the average for each tally in this list, and stores the averages in the array r. If
the tally i has no observation, the Double.NaN value is stored in the array, at index i.



ListOfTallies 21

public void variance (double[] v)

For each tally in this list, computes the sample variance, and stores the variances into the
array v. If, for some tally i, there are not enough observations for estimating the variance,
Double.NaN is stored in the array.

public void standardDeviation (double[] std)

For each tally in this list, computes the sample standard deviation, and stores the standard
deviations into the array std. This is equivalent to calling variance and performing a
square root on every element of the filled array.

public double covariance (int i, int j)

Returns the empirical covariance of the observations in tallies with indices i and j. If
x1, . . . , xn represent the observations in tally i whereas y1, . . . , yn represent the observations
in tally j, then the covariance is given by

SX,Y =
1

n− 1

n∑
k=1

(xk − X̄n)(yk − Ȳn) =
1

n− 1

(
n∑

k=1

xkyk −
1
n

n∑
k=1

xk

n∑
r=1

yr

)
.

This returns Double.NaN if the tallies do not contain the same number of observations,
or if they contain less than two observations. This method throws an exception if the
underlying tallies are not capable of storing observations, i.e. if the tallies are not TallyStores.
The ListOfTalliesWithCovariance subclass provides an alternative implementation of this
method which does not require the observations to be stored.

public double correlation (int i, int j)

Returns the empirical correlation between the observations in tallies with indices i and j.
If the tally i contains a sample of the random variate X and the tally j contains a sample
of Y , this corresponds to

Cor(X,Y ) = Cov(X,Y )/
√

Var(X)Var(Y ).

This method uses covariance to obtain an estimate of the covariance, and variance in
class Tally to obtain the sample variances.

public void covariance (DoubleMatrix2D c)

Constructs and returns the sample covariance matrix for the tallies in this list. The given
d× d matrix c, where d = size(), is filled with the computed sample covariances. Element
c.get (i, j) corresponds to the result of covariance (i, j).

public void correlation (DoubleMatrix2D c)

Similar to covariance for computing the sample correlation matrix.

public ListOfTallies<E> clone()

Clones this object. This makes a shallow copy of this list, i.e., this does not clone all the
tallies in the list. The created clone is modifiable, even if the original list is unmodifiable.



22

ListOfTalliesWithCovariance

Extends ListOfTallies to add support for the computation of the sample covariance
between each pair of elements in a list, without storing all observations. This list of tallies
contains internal structures to keep track of X̄n,i for i = 0, . . . , d − 1, and

∑n−1
k=0(Xi,k −

X̄k,i)(Xj,k − X̄k,j)/n, for i = 0, . . . , d− 2 and j = 1, . . . , d− 1, with j > i. Here, X̄n,i is the
ith component of X̄n, the average vector, and X̄0,i = 0 for i = 0, . . . , d − 1. The value Xi,k

corresponds to the ith component of the kth observation Xk. These sums are updated every
time a vector is added to this list, and are used to estimate the covariances.

Note: the size of the list of tallies must remain fixed because of the data structures
used for computing sample covariances. As a result, the first call to init makes this list
unmodifiable.

Note: for the sample covariance to be computed between a pair of tallies, the number of
observations in each tally should be the same. It is therefore recommended to always add
complete vectors of observations to this list. Moreover, one must use the add method in
this class to add vectors of observations for the sums used for covariance estimation to be
updated correctly. Failure to use this method, e.g., adding observations to each individual
tally in the list, will result in an incorrect estimate of the covariances, unless the tallies in
the list can store observations. For example, the following code, which adds the vector v in
the list of tallies list, works correctly only if the list contains instances of TallyStore:

for (int i = 0; i < v.length; i++)
list.get (i).add (v[i]);

But the following code is always correct:
list.add (v);

package umontreal.iro.lecuyer.stat.list;

public class ListOfTalliesWithCovariance<E extends Tally>
extends ListOfTallies<E>

Constructors

public ListOfTalliesWithCovariance()

Creates an empty list of tallies with covariance support. One must fill the list with tallies,
and call init before adding any observation.

public ListOfTalliesWithCovariance (String name)

Creates an empty list of tallies with covariance support and name name. One must fill the
list with tallies, and call init before adding any observation.



ListOfTalliesWithCovariance 23

Methods

public static ListOfTalliesWithCovariance<Tally> createWithTally (int size)

This factory method constructs and returns a list of tallies with size instances of Tally.

public static ListOfTalliesWithCovariance<TallyStore> createWithTallyStore
(int size)

This factory method constructs and returns a list of tallies with size instances of TallyStore.

public void add (double[] x)

Adds a new vector of observations x to this list of tallies, and updates the internal data
structures computing averages, and sums of products. One must use this method instead of
adding observations to individual tallies to get a covariance estimate.

public ListOfTalliesWithCovariance<E> clone()

Clones this object. This clones the list of tallies and the data structures holding the sums
of products but not the tallies comprising the list. The created clone is modifiable, even
though the original list is unmodifiable.



REFERENCES 24

References

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, MA, second edition, 1998.


	Overview of package stat
	ObservationListener
	StatProbe
	Tally
	TallyStore
	TallyHistogram

	Overview of package stat.list
	ArrayOfObservationListener
	ListOfStatProbes
	ListOfTallies
	ListOfTalliesWithCovariance


