
SSJ User’s Guide

Package stochprocess

Stochastic Processes

Version: June 18, 2014

This package provides tools to generate various stochastic processes.



CONTENTS 1

Contents

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

StochasticProcess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

BrownianMotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

BrownianMotionBridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

BrownianMotionPCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

GeometricBrownianMotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

GeometricLevyProcess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

InverseGaussianProcess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

InverseGaussianProcessBridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

InverseGaussianProcessMSH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

InverseGaussianProcessPCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

NormalInverseGaussianProcess . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

GeometricNormalInverseGaussianProcess . . . . . . . . . . . . . . . . . . . . . . . 23

OrnsteinUhlenbeckProcess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

OrnsteinUhlenbeckProcessEuler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

CIRProcess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

CIRProcessEuler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

GammaProcess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

GammaProcessBridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

GammaProcessSymmetricalBridge . . . . . . . . . . . . . . . . . . . . . . . . . . 35

GammaProcessPCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

GammaProcessPCABridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

GammaProcessPCASymmetricalBridge . . . . . . . . . . . . . . . . . . . . . . . . 39

VarianceGammaProcess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

VarianceGammaProcessDiff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

VarianceGammaProcessDiffPCA . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

VarianceGammaProcessDiffPCABridge . . . . . . . . . . . . . . . . . . . . . . . . 46

VarianceGammaProcessDiffPCASymmetricalBridge . . . . . . . . . . . . . . . . . 47

GeometricVarianceGammaProcess . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



CONTENTS 2

Overview

This package provides classes to define stochastic processes {X(t), t ≥ 0}, and to simulate
their sample paths at a finite number of (discrete) observation times t0 ≤ t1 ≤ · · · ≤ td. The
observation of the generated path is thus the vector (X(t0), X(t1), . . . , X(td)).

The observation times t0, . . . , td can be specified (or changed) after defining the process,
with the method setObservationTimes. The random stream used to generate the sample
path can also be changed, using setStream.
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StochasticProcess

Abstract base class for a stochastic process {X(t) : t ≥ 0} sampled (or observed) at a
finite number of time points, 0 = t0 < t1 < · · · < td. The observation times are usually all
specified before generating a sample path. This can be done via setObservationTimes. The
method generatePath generates X(t1), . . . , X(td) and memorizes them in a vector, which
can be recovered by getPath.

Alternatively, for some types of processes, the observations X(tj) can be generated se-
quentially, one at a time, by invoking resetStartProcess first, and then nextObservation

repeatedly. For some types of processes, the observation times can be specified one by one as
well, when generating the path. This may be convenient or even necessary if the observation
times are random, for example.

WARNING: After having called the constructor for one of the subclass,
one must always set the observation times of the process, by calling method
setObservationTimes for example or otherwise.

package umontreal.iro.lecuyer.stochprocess;

public abstract class StochasticProcess

Methods

public void setObservationTimes (double[] T, int d)

Sets the observation times of the process to a copy of T, with t0 = T[0] and td = T[d]. The
size of T must be d+ 1.

public void setObservationTimes (double delta, int d)

Sets equidistant observation times at tj = jδ, for j = 0, . . . , d, and delta = δ.

public double[] getObservationTimes()

Returns a reference to the array that contains the observation times (t0, . . . , td). Warning :
This method should only be used to read the observation times. Changing the values in
the array directly may have unexpected consequences. The method setObservationTimes
should be used to modify the observation times.

public int getNbObservationTimes()

Returns the number of observation times excluding the time t0.

public abstract double[] generatePath();

Generates, returns, and saves the sample path {X(t0), X(t1), . . . , X(td)}. It can then be
accessed via getPath, getSubpath, or getObservation. The generation method depends
on the process type.
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public double[] generatePath (RandomStream stream)

Same as generatePath(), but first resets the stream to stream.

public double[] getPath()

Returns a reference to the last generated sample path {X(t0), ..., X(td)}. Warning : The
returned array and its size should not be modified, because this is the one that memorizes
the observations (not a copy of it). To obtain a copy, use getSubpath instead.

public void getSubpath (double[] subpath, int[] pathIndices)

Returns in subpath the values of the process at a subset of the observation times, specified
as the times tj whose indices j are in the array pathIndices. The size of pathIndices
should be at least as much as that of subpath.

public double getObservation (int j)

Returns X(tj) from the current sample path. Warning : If the observation X(tj) for the
current path has not yet been generated, then the value returned is unpredictable.

public void resetStartProcess()

Resets the observation counter to its initial value j = 0, so that the current observation X(tj)
becomes X(t0). This method should be invoked before generating observations sequentially
one by one via nextObservation, for a new sample path.

public boolean hasNextObservation()

Returns true if j < d, where j is the number of observations of the current sample path
generated since the last call to resetStartProcess. Otherwise returns false.

public double nextObservation()

Generates and returns the next observation X(tj) of the stochastic process. The processes
are usually sampled sequentially, i.e. if the last observation generated was for time tj−1,
the next observation returned will be for time tj . In some cases, subclasses extending this
abstract class may use non-sequential sampling algorithms (such as bridge sampling). The
order of generation of the tj ’s is then specified by the subclass. All the processes generated
using principal components analysis (PCA) do not have this method.

public int getCurrentObservationIndex()

Returns the value of the index j corresponding to the time tj of the last generated observa-
tion.

public double getCurrentObservation()

Returns the value of the last generated observation X(tj).

public double getX0()

Returns the initial value X(t0) for this process.

public void setX0 (double s0)

Sets the initial value X(t0) for this process to s0, and reinitializes.
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public abstract void setStream (RandomStream stream);

Resets the random stream of the underlying generator to stream.

public abstract RandomStream getStream();

Returns the random stream of the underlying generator.

public int[] getArrayMappingCounterToIndex()

Returns a reference to an array that maps an integer k to ik, the index of the observation
S(tik) corresponding to the k-th observation to be generated for a sample path of this process.
If this process is sampled sequentially, then this map is trivial (i.e. ik = k). But it can be
useful in a more general setting where the process is not sampled sequentially (for example,
by a Brownian or gamma bridge) and one wants to know which observations of the current
sample path were previously generated or will be generated next.
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BrownianMotion

This class represents a Brownian motion process {X(t) : t ≥ 0}, sampled at times
0 = t0 < t1 < · · · < td. This process obeys the stochastic differential equation

dX(t) = µdt+ σdB(t), (1)

with initial condition X(0) = x0, where µ and σ are the drift and volatility parameters, and
{B(t), t ≥ 0} is a standard Brownian motion (with drift 0 and volatility 1). This process has
stationary and independent increments over disjoint time intervals (it is a Lévy process) and
the increment over an interval of length t is normally distributed with mean µt and variance
σ2t.

In this class, this process is generated using the sequential (or random walk) technique:
X(0) = x0 and

X(tj)−X(tj−1) = µ(tj − tj−1) + σ
√
tj − tj−1Zj (2)

where Zj ∼ N(0, 1).

package umontreal.iro.lecuyer.stochprocess;

public class BrownianMotion extends StochasticProcess

Constructors

public BrownianMotion (double x0, double mu, double sigma,
RandomStream stream)

Constructs a new BrownianMotion with parameters µ = mu, σ = sigma and initial value
X(t0) = x0. The normal variates Zj in (2) will be generated by inversion using stream.

public BrownianMotion (double x0, double mu, double sigma, NormalGen gen)

Constructs a new BrownianMotion with parameters µ = mu, σ = sigma and initial value
X(t0) = x0. Here, the normal variate generator NormalGen is specified directly instead
of specifying the stream and using inversion. The normal generator gen can use another
method than inversion.

Methods

public double nextObservation (double nextTime)

Generates and returns the next observation at time tj+1 = nextTime. It uses the previous
observation time tj defined earlier (either by this method or by setObservationTimes), as
well as the value of the previous observation X(tj). Warning : This method will reset the
observations time tj+1 for this process to nextTime. The user must make sure that the tj+1

supplied is ≥ tj .
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public double nextObservation (double x, double dt)

Generates an observation of the process in dt time units, assuming that the process has
value x at the current time. Uses the process parameters specified in the constructor. Note
that this method does not affect the sample path of the process stored internally (if any).

public double[] generatePath (double[] uniform01)

Same as generatePath(), but a vector of uniform random numbers must be provided to the
method. These uniform random numbers are used to generate the path.

public void setParams (double x0, double mu, double sigma)

Resets the parameters X(t0) = x0, µ = mu and σ = sigma of the process. Warning : This
method will recompute some quantities stored internally, which may be slow if called too
frequently.

public void setStream (RandomStream stream)

Resets the random stream of the normal generator to stream.

public RandomStream getStream()

Returns the random stream of the normal generator.

public double getMu()

Returns the value of µ.

public double getSigma()

Returns the value of σ.

public NormalGen getGen()

Returns the normal random variate generator used. The RandomStream used by that gener-
ator can be changed via getGen().setStream(stream), for example.



8

BrownianMotionBridge

Represents a Brownian motion process {X(t) : t ≥ 0} sampled using the bridge sampling
technique (see for example [7]). This technique generates first the value X(td) at the last
observation time, then the value at time td/2 (or the nearest integer), then the values at time
td/4 and at time t3d/4 (or the nearest integers), and so on. If the process has already been
sampled at times ti < tk but not in between, the next sampling point in that interval will be
tj where j = b(i+k)/2c. For example, if the sampling times used are {t0, t1, t2, t3, t4, t5}, then
the observations are generated in the following order: X(t5), X(t2), X(t1), X(t3), X(t4).

Warning : Both the generatePath and the nextObservation methods from Brownian-

Motion are modified to use the bridge method. 1 In the case of nextObservation, the user
should understand that the observations returned are not ordered chronologically. However
they will be once an entire path is generated and the observations are read from the internal
array (referenced by the getPath method) that contains them.

The method nextObservation(double nextTime) differs from that of the class Brown-
ianMotion in that nextTime represents the next observation time of the Brownian bridge.
However, the ti supplied must still be non-decreasing with i.

Note also that, if the path is not entirely generated before being read from this array,
there will be “pollution” from the previous path generated, and the observations will not
represent a sample path of this process.

package umontreal.iro.lecuyer.stochprocess;

public class BrownianMotionBridge extends BrownianMotion

Constructors

public BrownianMotionBridge (double x0, double mu, double sigma,
RandomStream stream)

Constructs a new BrownianMotionBridge with parameters µ = mu, σ = sigma and ini-
tial value X(t0) = x0. The normal variates will be generated by inversion using the
RandomStream stream.

public BrownianMotionBridge (double x0, double mu, double sigma,
NormalGen gen)

Constructs a new BrownianMotionBridge with parameters µ = mu, σ = sigma and initial
value X(t0) = x0. The normal variates will be generated by the NormalGen gen.

1 From Pierre: We should probably remove the nextObservation methods from here.
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BrownianMotionPCA

A Brownian motion process {X(t) : t ≥ 0} sampled using the principal component
decomposition (PCA) [7, 8, 9].

package umontreal.iro.lecuyer.stochprocess;

public class BrownianMotionPCA extends BrownianMotion

Constructors

public BrownianMotionPCA (double x0, double mu, double sigma,
RandomStream stream)

Constructs a new BrownianMotionBridge with parameters µ = mu, σ = sigma and initial
value X(t0) = x0. The normal variates will be generated by inversion using stream.

public BrownianMotionPCA (double x0, double mu, double sigma,
NormalGen gen)

Constructs a new BrownianMotionBridge with parameters µ = mu, σ = sigma and initial
value X(t0) = x0. The normal variates will be generated by gen.

Methods

public double[] getSortedEigenvalues()

Returns the sorted eigenvalues obtained in the PCA decomposition.
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GeometricBrownianMotion

Represents a geometric Brownian motion (GBM) process {S(t), t ≥ 0}, which evolves
according to the stochastic differential equation

dS(t) = µS(t)dt+ σS(t)dB(t), (3)

where µ and σ are the drift and volatility parameters, and {B(t), t ≥ 0} is a standard
Brownian motion (for which B(t) ∼ N(0, t)). This process can also be written as the
exponential of a Brownian motion:

S(t) = S(0) exp
[
(µ− σ2/2)t+ σtB(t)

]
= S(0) exp [X(t)] , (4)

where X(t) = (µ − σ2/2)t + σtB(t). The GBM process is simulated by simulating the BM
process X and taking the exponential. This BM process is stored internally.

package umontreal.iro.lecuyer.stochprocess;

public class GeometricBrownianMotion extends StochasticProcess

Constructors

public GeometricBrownianMotion (double s0, double mu, double sigma,
RandomStream stream)

Same as GeometricBrownianMotion (s0, mu, sigma, new BrownianMotion (0.0, 0.0,
1.0, stream)).

public GeometricBrownianMotion (double s0, double mu, double sigma,
BrownianMotion bm)

Constructs a new GeometricBrownianMotion with parameters µ = mu, σ = sigma, and
S(t0) = s0, using bm as the underlying BrownianMotion. The parameters of bm are auto-
matically reset to µ−σ2/2 and σ, regardless of the original parameters of bm. The observation
times are the same as those of bm. The generation method depends on that of bm (sequential,
bridge sampling, PCA, etc.).

Methods

public void resetStartProcess()

Same as in StochasticProcess, but also invokes resetStartProcess for the underlying
BrownianMotion object.

public void setParams (double s0, double mu, double sigma)

Sets the parameters S(t0) = s0, µ = mu and σ = sigma of the process. Warning : This
method will recompute some quantities stored internally, which may be slow if called re-
peatedly.
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public void setStream (RandomStream stream)

Resets the RandomStream for the underlying Brownian motion to stream.

public RandomStream getStream()

Returns the RandomStream for the underlying Brownian motion.

public double getMu()

Returns the value of µ.

public double getSigma()

Returns the value of σ.

public NormalGen getGen()

Returns the NormalGen used.

public BrownianMotion getBrownianMotion()

Returns a reference to the BrownianMotion object used to generate the process.
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GeometricLevyProcess

Abstract class used as a parent class for the exponentiation of a Lévy process X(t):

S(t) = S(0) exp (X(t) + (r − ωRN)t) . (5)

The interest is here denoted r and is refered to as muGeom in the class below. The risk neutral
correction is given by ωRN and takes into account risk aversion in the pricing of assets; its
value depends on the specific Lévy process that is used.

GeometricNormalInverseGaussianProcess is implemented as a child of this class and
so could GeometricVarianceGammaProcess and GeometricBrownianMotion.

package umontreal.iro.lecuyer.stochprocess;

public abstract class GeometricLevyProcess extends StochasticProcess

Methods

public double[] generatePath()

Generates a path.

public double nextObservation()

Returns the next observation. It will also work on a Lévy process which is sampled using
the bridge order, but it will return the observations in the bridge order. If the underlying
Lévy process is of the PCA type, this method is not usable.

public void resetStartProcess()

Resets the step counter of the geometric process and the underlying Lévy process to the
start value.

public void setObservationTimes(double[] time, int d)

Sets the observation times on the geometric process and the underlying Lévy process.

public double getOmega()

Returns the risk neutral correction.

public double getMuGeom()

Returns the geometric drift parameter, which is usually the interest rate, r.

public void setMuGeom (double muGeom)

Sets the drift parameter (interest rate) of the geometric term.

public StochasticProcess getLevyProcess()

Returns the Lévy process.
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public void resetRiskNeutralCorrection (double omegaRN)

Changes the value of ωRN . There should usually be no need to redefine the risk neutral
correction from the value set by the constructor. However it is sometimes not unique, e.g.
in GeometricNormalInverseGaussianProcess [1].

public RandomStream getStream()

Returns the stream from the underlying Lévy process. If the underlying Lévy process has
multiple streams, it returns what the getStream() method of that process was made to
return.

public void setStream (RandomStream stream)

Resets the stream in the underlying Lévy process. If the underlying Lévy process has
multiple streams, it sets the streams on this process in the same way as setStream() for
that process.
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InverseGaussianProcess

The inverse Gaussian process is a non-decreasing process where the increments are ad-
ditive and are given by the inverse gaussian distribution, InverseGaussianDist. With
parameters δ and γ, the time increments are given by InverseGaussianDist(δdt/γ, δ2dt2).

[We here use the inverse gaussian distribution parametrized with IGDist(µ, λ), where
µ = δ/γ and λ = δ2. If we instead used the parametrization IGDist?(δ, γ), then the increment
distribution of our process would have been written more simply as IGDist?(δdt, γ).]

The increments are generated by using the inversion of the cumulative distribution func-
tion. It therefore uses only one RandomStream. Subclasses of this class use different gener-
ating methods and some need two RandomStream’s.

The initial value of this process is the initial observation time.

package umontreal.iro.lecuyer.stochprocess;

public class InverseGaussianProcess extends StochasticProcess

Constructors

public InverseGaussianProcess (double s0, double delta, double gamma,
RandomStream stream)

Constructs a new InverseGaussianProcess. The initial value s0 will be overridden by t[0]
when the observation times are set.

Methods

public double[] generatePath (double[] uniforms01)

Instead of using the internal stream to generate the path, uses an array of uniforms U [0, 1).
The array should be of the length of the number of periods in the observation times. This
method is useful for NormalInverseGaussianProcess.

public double[] generatePath (double[] uniforms01, double[] uniforms01b)

This method does not work for this class, but will be useful for the subclasses that require
two streams.

public void setParams (double delta, double gamma)

Sets the parameters.

public double getDelta()

Returns δ.

public double getGamma()

Returns γ.
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public double getAnalyticAverage (double time)

Returns the analytic average which is δt/γ, with t = time.

public double getAnalyticVariance (double time)

Returns the analytic variance which is (δt)2, with t = time.

public int getNumberOfRandomStreams()

Returns the number of random streams of this process. It is useful because some subclasses
use different number of streams. It returns 1 for InverseGaussianProcess.



16

InverseGaussianProcessBridge

Samples the path by bridge sampling: first finding the process value at the final time
and then the middle time, etc. The method nextObservation() returns the path value in
that non-sequential order. This class uses two RandomStream’s to generate a path [17].

package umontreal.iro.lecuyer.stochprocess;

public class InverseGaussianProcessBridge extends InverseGaussianProcessMSH

Constructors

public InverseGaussianProcessBridge (double s0, double delta,
double gamma, RandomStream stream,
RandomStream otherStream)

Constructs a new InverseGaussianProcessBridge. The initial value s0 will be overridden
by t[0] when the observation times are set.

Methods

public double[] generatePath()

Generates the path. The two inner RandomStream’s are sampled alternatively.

public double[] generatePath (double[] unifNorm, double[] unifOther)

Instead of using the internal streams to generate the path, it uses two arrays of uniforms
U [0, 1). The length of the arrays unifNorm and unifOther should be equal to the number
of time steps, excluding t0.

public double nextObservation()

Returns the next observation in the bridge order, not the sequential order.

public RandomStream getStream()

Only returns a stream if both inner streams are the same.

public void setStream (RandomStream stream, RandomStream otherStream)

Sets the streams.

public void setStream (RandomStream stream)

Sets both inner streams to the same stream.
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InverseGaussianProcessMSH

Uses a faster generating method (MSH) [15] than the simple inversion of the distribution
function used by InverseGaussianProcess. It is about 60 times faster. However it requires
two RandomStream’s instead of only one for InverseGaussianProcess. The second stream
is called otherStream below and it is used to randomly choose between two roots at each
time step.

package umontreal.iro.lecuyer.stochprocess;

public class InverseGaussianProcessMSH extends InverseGaussianProcess

Constructors

public InverseGaussianProcessMSH (double s0, double delta, double gamma,
RandomStream stream,
RandomStream otherStream)

Constructs a new InverseGaussianProcessMSH. The initial value s0 will be overridden by
t[0] when the observation times are set.

Methods

public double[] generatePath()

Generates the path. It is done by successively calling nextObservation(), therefore the
two RandomStreams are sampled alternatively.

public double[] generatePath (double[] unifNorm, double[] unifOther)

Instead of using the internal streams to generate the path, uses two arrays of uniforms U [0, 1).
The length of the arrays should be equal to the number of periods in the observation times.
This method is useful for NormalInverseGaussianProcess.

public double[] generatePath (double[] uniforms01)

Not implemented, requires two RandomStream’s.

public RandomStream getStream()

Only returns a stream if both inner RandomStream’s are the same.

public void setStream (RandomStream stream, RandomStream otherStream)

Sets the streams.

public void setStream (RandomStream stream)

Sets both inner streams to stream.

public void setOtherStream (RandomStream otherStream)

Sets the otherStream, which is the stream used to choose between the two roots in the MSH
method.
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public RandomStream getOtherStream()

Returns the otherStream, which is the stream used to choose between the two quadratic
roots from the MSH method.

public void setNormalGen (NormalGen normalGen)

Sets the normal generator. It also sets one of the two inner streams to the stream of the
normal generator.

public NormalGen getNormalGen()

Returns the normal generator.
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InverseGaussianProcessPCA

Approximates a principal component analysis (PCA) decomposition of the InverseGaussianProcess.
The PCA decomposition of a BrownianMotionPCA with a covariance matrix identical to the
one of our InverseGaussianProcess is used to generate the path of our InverseGaussianProcess
[10]. Such a path is a perfectly random path and it is hoped that it will provide reduction
in the simulation variance when using quasi-Monte Carlo.

The method nextObservation() cannot be used with PCA decompositions since the
whole path must be generated at once.

package umontreal.iro.lecuyer.stochprocess;

public class InverseGaussianProcessPCA extends InverseGaussianProcess

Constructors

public InverseGaussianProcessPCA (double s0, double delta, double gamma,
RandomStream stream)

Constructs a new InverseGaussianProcessPCA. The initial value s0 will be overridden by
t[0] when the observation times are set.

Methods

public double[] generatePath (double[] uniforms01)

Instead of using the internal stream to generate the path, uses an array of uniforms U [0, 1).
The length of the array should be equal to the length of the number of periods in the
observation times. This method is useful for NormalInverseGaussianProcess.

public double nextObservation()

Not implementable for PCA.

public void setObservationTimes (double t[], int d)

Sets the observation times of both the InverseGaussianProcessPCA and the inner
BrownianMotionPCA.

public void setBrownianMotionPCA (BrownianMotionPCA bmPCA)

Sets the brownian motion PCA. The observation times will be overriden when the method
observationTimes() is called on the InverseGaussianProcessPCA.

public BrownianMotion getBrownianMotionPCA()

Returns the BrownianMotionPCA.
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NormalInverseGaussianProcess

This class represents a normal inverse gaussian process (NIG). It obeys the stochastic
differential equation [4]

dX(t) = µdt+ dB(h(t)), (6)

where {B(t), t ≥ 0} is a BrownianMotion with drift β and variance 1, and h(t) is an
InverseGaussianProcess IG(ν/γ, ν2), with ν = δdt and γ =

√
α2 − β2.

In this class, the process is generated using the sequential technique: X(0) = x0 and

X(tj)−X(tj−1) = µdt+ βYj +
√
YjZj, (7)

where Zj ∼ N(0, 1), and Yj ∼ IG(ν/γ, ν2) with ν = δ(tj − tj−1).

There is one RandomStream used to generate the Zj’s and there are one or two streams
used to generate the underlying InverseGaussianProcess, depending on which IG subclass
is used.

In finance, a NIG process usually means that the log-return is given by a NIG process;
GeometricNormalInverseGaussianProcess should be used in that case.

package umontreal.iro.lecuyer.stochprocess;

public class NormalInverseGaussianProcess extends StochasticProcess

Constructors

public NormalInverseGaussianProcess (double x0, double alpha,
double beta, double mu,
double delta,
RandomStream streamBrownian,
InverseGaussianProcess igP)

Given an InverseGaussianProcess igP, constructs a new NormalInverseGaussianProcess.
The parameters and observation times of the IG process will be overriden by the parameters
of the NIG process. If there are two RandomStream’s in the InverseGaussianProcess, this
constructor assumes that both streams have been set to the same stream.

public NormalInverseGaussianProcess (double x0, double alpha,
double beta, double mu,
double delta,
RandomStream streamBrownian,
RandomStream streamIG1,
RandomStream streamIG2,
String igType)

Constructs a new NormalInverseGaussianProcess. The string argument corresponds to
the type of underlying InverseGaussianProcess. The choices are SEQUENTIAL_SLOW,
SEQUENTIAL_MSH, BRIDGE and PCA, which correspond respectively to Inverse-
GaussianProcess, InverseGaussianProcessMSH, InverseGaussianProcessBridge and Inverse-
GaussianProcessPCA. The third RandomStream, streamIG2, will not be used at all if the
SEQUENTIAL_SLOW or PCA methods are chosen.
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public NormalInverseGaussianProcess (double x0, double alpha,
double beta, double mu,
double delta,
RandomStream streamAll,
String igType)

Same as above, but all RandomStream’s are set to the same stream, streamAll.

Methods

public double[] generatePath()

Generates the path. This method samples each stream alternatively, which is useful for
quasi-Monte Carlo, where all streams are in fact the same iterator on a PointSet.

public double nextObservation()

Returns the value of the process for the next time step. If the underlying InverseGaussian-
Process is of type InverseGaussianProcessPCA, this method cannot be used. It will work
with InverseGaussianProcessBridge, but the return order of the observations is the bridge
order.

public void setObservationTimes(double t[], int d)

Sets the observation times on the NIG process as usual, but also sets the observation times
of the underlying InverseGaussianProcess. It furthermore sets the starting value of the
InverseGaussianProcess to t[0].

public void setParams (double x0, double alpha, double beta,
double mu, double delta)

Sets the parameters. Also, computes γ =
√
α2 − β2.

public double getAlpha()

Returns alpha.

public double getBeta()

Returns beta.

public double getMu()

Returns mu.

public double getDelta()

Returns delta.

public double getGamma()

Returns gamma.

public double getAnalyticAverage (double time)

Returns the analytic average, which is µt+ δtβ/γ.
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public double getAnalyticVariance (double time)

Returns the analytic variance, which is δtα2/γ3.

public RandomStream getStream()

Only returns the stream if all streams are equal, including the stream(s) in the underlying
InverseGaussianProcess.

public void setStream (RandomStream stream)

Sets all internal streams to stream, including the stream(s) of the underlying Inverse-
GaussianProcess.
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GeometricNormalInverseGaussianProcess

The geometric normal inverse gaussian (GNIG) process is the exponentiation of a Normal-
InverseGaussianProcess:

S(t) = S0 exp [(r − ωRN)t+ NIG(t;α, β, µ, δ)] , (8)

where r is the interest rate. It is a strictly positive process, which is useful in finance. There
is also a neutral correction in the exponential, ωRN = µ + δγ − δ

√
α2 − (1 + β)2, which

takes into account the market price of risk. The underlying NIG process must start at zero,
NIG(t0) = 0 and the initial time should also be set to zero, t0 = 0, both for the NIG and
GNIG.

package umontreal.iro.lecuyer.stochprocess;

public class GeometricNormalInverseGaussianProcess extends
GeometricLevyProcess

Constructors

public GeometricNormalInverseGaussianProcess (
double s0, double muGeom,
double alpha, double beta,
double mu, double delta,
RandomStream streamBrownian,
NormalInverseGaussianProcess nigP)

Constructs a new GeometricNormalInverseGaussianProcess. The parameters of the NIG
process will be overwritten by the parameters given to the GNIG, with the initial value of
the NIG set to 0. The observation times of the NIG will also be changed to those of the
GNIG.

public GeometricNormalInverseGaussianProcess (
double s0, double muGeom,
double alpha, double beta,
double mu, double delta,
RandomStream streamBrownian,
InverseGaussianProcess igP)

Constructs a new GeometricNormalInverseGaussianProcess. The process igP will be
used internally by the underlying NormalInverseGaussianProcess.

public GeometricNormalInverseGaussianProcess (
double s0, double muGeom,
double alpha, double beta,
double mu, double delta,
RandomStream streamBrownian,
RandomStream streamNIG1,
RandomStream streamNIG2,
String igType)

Constructs a new GeometricNormalInverseGaussianProcess. The drift of the geometric
term, muGeom, is usually the interest rate r. s0 is the initial value of the process and the other
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four parameters are the parameters of the underlying NormalInverseGaussianProcess pro-
cess.

public GeometricNormalInverseGaussianProcess (
double s0, double muGeom,
double alpha, double beta,
double mu, double delta,
RandomStream streamAll,
String igType)

Constructs a new GeometricNormalInverseGaussianProcess. The String igType cor-
responds to the type of InverseGaussianProcess that will be used by the underlying
NormalInverseGaussianProcess. All RandomStream’s used to generate the underlying
NormalInverseGaussianProcess and its underlying InverseGaussianProcess are set to
the same given streamAll.
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OrnsteinUhlenbeckProcess

This class represents an Ornstein-Uhlenbeck process {X(t) : t ≥ 0}, sampled at times
0 = t0 < t1 < · · · < td. This process obeys the stochastic differential equation

dX(t) = α(b−X(t))dt+ σ dB(t) (9)

with initial condition X(0) = x0, where α, b and σ are positive constants, and {B(t), t ≥ 0}
is a standard Brownian motion (with drift 0 and volatility 1). This process is mean-reverting
in the sense that it always tends to drift toward its general mean b. The process is generated
using the sequential technique [7, p. 110]

X(tj) = e−α(tj−tj−1)X(tj−1) + b
(
1− e−α(tj−tj−1)

)
+ σ

√
1− e−2α(tj−tj−1)

2α
Zj (10)

where Zj ∼ N(0, 1). The time intervals tj − tj−1 can be arbitrarily large.

package umontreal.iro.lecuyer.stochprocess;

public class OrnsteinUhlenbeckProcess extends StochasticProcess

Constructors

public OrnsteinUhlenbeckProcess (double x0, double alpha, double b,
double sigma, RandomStream stream)

Constructs a new OrnsteinUhlenbeckProcess with parameters α = alpha, b, σ = sigma
and initial value X(t0) = x0. The normal variates Zj will be generated by inversion using
the stream stream.

public OrnsteinUhlenbeckProcess (double x0, double alpha, double b,
double sigma, NormalGen gen)

Here, the normal variate generator is specified directly instead of specifying the stream. The
normal generator gen can use another method than inversion.

Methods

public double nextObservation (double nextTime)

Generates and returns the next observation at time tj+1 = nextTime, using the previous
observation time tj defined earlier (either by this method or by setObservationTimes), as
well as the value of the previous observation X(tj). Warning : This method will reset the
observations time tj+1 for this process to nextTime. The user must make sure that the tj+1

supplied is ≥ tj .

public double nextObservation (double x, double dt)

Generates an observation of the process in dt time units, assuming that the process has
value x at the current time. Uses the process parameters specified in the constructor. Note
that this method does not affect the sample path of the process stored internally (if any).
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public void setParams (double x0, double alpha, double b, double sigma)

Resets the parameters X(t0) = x0, α = alpha, b = b and σ = sigma of the process.
Warning : This method will recompute some quantities stored internally, which may be slow
if called too frequently.

public void setStream (RandomStream stream)

Resets the random stream of the normal generator to stream.

public RandomStream getStream ()

Returns the random stream of the normal generator.

public double getAlpha()

Returns the value of α.

public double getB()

Returns the value of b.

public double getSigma()

Returns the value of σ.

public NormalGen getGen()

Returns the normal random variate generator used. The RandomStream used for that gen-
erator can be changed via getGen().setStream(stream), for example.
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OrnsteinUhlenbeckProcessEuler

This class represents an Ornstein-Uhlenbeck process as in OrnsteinUhlenbeckProcess,
but the process is generated using the simple Euler scheme

X(tj)−X(tj−1) = α(b−X(tj−1))(tj − tj−1) + σ
√
tj − tj−1 Zj (11)

where Zj ∼ N(0, 1). This is a good approximation only for small time intervals tj − tj−1.

package umontreal.iro.lecuyer.stochprocess;

public class OrnsteinUhlenbeckProcessEuler extends OrnsteinUhlenbeckProcess

Constructors

public OrnsteinUhlenbeckProcessEuler (double x0, double alpha, double b,
double sigma, RandomStream stream)

Constructor with parameters α = alpha, b, σ = sigma and initial value X(t0) = x0. The
normal variates Zj will be generated by inversion using the stream stream.

public OrnsteinUhlenbeckProcessEuler (double x0, double alpha, double b,
double sigma, NormalGen gen)

Here, the normal variate generator is specified directly instead of specifying the stream. The
normal generator gen can use another method than inversion.



28

CIRProcess

This class represents a CIR (Cox, Ingersoll, Ross) process [5] {X(t) : t ≥ 0}, sampled at
times 0 = t0 < t1 < · · · < td. This process obeys the stochastic differential equation

dX(t) = α(b−X(t))dt+ σ
√
X(t) dB(t) (12)

with initial condition X(0) = x0, where α, b and σ are positive constants, and {B(t), t ≥ 0}
is a standard Brownian motion (with drift 0 and volatility 1). This process is mean-reverting
in the sense that it always tends to drift toward its general mean b. The process is generated
using the sequential technique [7, p. 122]

X(tj) =
σ2
(
1− e−α(tj−tj−1)

)
4α

χ′ 2ν

(
4αe−α(tj−tj−1)X(tj−1)

σ2
(
1− e−α(tj−tj−1)

) ) , (13)

where ν = 4bα/σ2, and χ′ 2ν (λ) is a noncentral chi-square random variable with ν degrees
of freedom and noncentrality parameter λ.

package umontreal.iro.lecuyer.stochprocess;

public class CIRProcess extends StochasticProcess

Constructors

public CIRProcess (double x0, double alpha, double b, double sigma,
RandomStream stream)

Constructs a new CIRProcess with parameters α = alpha, b, σ = sigma and initial value
X(t0) = x0. The noncentral chi-square variates χ′2ν (λ) will be generated by inversion using
the stream stream.

public CIRProcess (double x0, double alpha, double b, double sigma,
ChiSquareNoncentralGen gen)

The noncentral chi-square variate generator gen is specified directly instead of specifying
the stream. gen can use a method other than inversion.

Methods

public double nextObservation (double nextTime)

Generates and returns the next observation at time tj+1 = nextTime, using the previous
observation time tj defined earlier (either by this method or by setObservationTimes), as
well as the value of the previous observation X(tj). Warning : This method will reset the
observations time tj+1 for this process to nextTime. The user must make sure that the tj+1

supplied is ≥ tj .
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public double nextObservation (double x, double dt)

Generates an observation of the process in dt time units, assuming that the process has
value x at the current time. Uses the process parameters specified in the constructor. Note
that this method does not affect the sample path of the process stored internally (if any).

public void setParams (double x0, double alpha, double b, double sigma)

Resets the parameters X(t0) = x0, α = alpha, b = b and σ = sigma of the process.
Warning : This method will recompute some quantities stored internally, which may be slow
if called too frequently.

public void setStream (RandomStream stream)

Resets the random stream of the noncentral chi-square generator to stream.

public RandomStream getStream()

Returns the random stream of the noncentral chi-square generator.

public double getAlpha()

Returns the value of α.

public double getB()

Returns the value of b.

public double getSigma()

Returns the value of σ.

public ChiSquareNoncentralGen getGen()

Returns the noncentral chi-square random variate generator used. The RandomStream used
for that generator can be changed via getGen().setStream(stream), for example.
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CIRProcessEuler

This class represents a CIR process as in CIRProcess, but the process is generated using
the simple Euler scheme

X(tj)−X(tj−1) = α(b−X(tj−1))(tj − tj−1) + σ
√

(tj − tj−1)X(tj−1)Zj (14)

where Zj ∼ N(0, 1). This is a good approximation only for small time intervals tj − tj−1.

package umontreal.iro.lecuyer.stochprocess;

public class CIRProcessEuler extends StochasticProcess

Constructors

public CIRProcessEuler (double x0, double alpha, double b, double sigma,
RandomStream stream)

Constructs a new CIRProcessEuler with parameters α = alpha, b, σ = sigma and initial
value X(t0) = x0. The normal variates Zj will be generated by inversion using the stream
stream.

public CIRProcessEuler (double x0, double alpha, double b, double sigma,
NormalGen gen)

The normal variate generator gen is specified directly instead of specifying the stream. gen
can use another method than inversion.

Methods

public double nextObservation (double nextTime)

Generates and returns the next observation at time tj+1 = nextTime, using the previous
observation time tj defined earlier (either by this method or by setObservationTimes), as
well as the value of the previous observation X(tj). Warning : This method will reset the
observations time tj+1 for this process to nextTime. The user must make sure that the tj+1

supplied is ≥ tj .

public double nextObservation (double x, double dt)

Generates an observation of the process in dt time units, assuming that the process has
value x at the current time. Uses the process parameters specified in the constructor. Note
that this method does not affect the sample path of the process stored internally (if any).

public void setParams (double x0, double alpha, double b, double sigma)

Resets the parameters X(t0) = x0, α = alpha, b = b and σ = sigma of the process.
Warning : This method will recompute some quantities stored internally, which may be slow
if called too frequently.
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public void setStream (RandomStream stream)

Resets the random stream of the normal generator to stream.

public RandomStream getStream()

Returns the random stream of the normal generator.

public double getAlpha()

Returns the value of α.

public double getB()

Returns the value of b.

public double getSigma()

Returns the value of σ.

public NormalGen getGen()

Returns the normal random variate generator used. The RandomStream used for that gen-
erator can be changed via getGen().setStream(stream), for example.
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GammaProcess

This class represents a gamma process [12, page 82] {S(t) = G(t;µ, ν) : t ≥ 0} with
mean parameter µ and variance parameter ν. It is a continuous-time process with stationary,
independent gamma increments such that for any ∆t > 0,

S(t+ ∆t) = S(t) +X, (15)

where X is a random variate from the gamma distribution Gamma(µ2∆t/ν, µ/ν).

In this class, the gamma process is sampled sequentially using equation (15).

package umontreal.iro.lecuyer.stochprocess;

public class GammaProcess extends StochasticProcess

Constructors

public GammaProcess (double s0, double mu, double nu,
RandomStream stream)

Constructs a new GammaProcess with parameters µ = mu, ν = nu and initial value S(t0) =
s0. The gamma variates X in (15) are generated by inversion using stream.

public GammaProcess (double s0, double mu, double nu, GammaGen Ggen)

Constructs a new GammaProcess with parameters µ = mu, ν = nu and initial value S(t0) =
s0. The gamma variates X in (15) are supplied by the gamma random variate generator
Ggen. Note that the parameters of the GammaGen object Ggen are not important since the
implementation forces the generator to use the correct parameters (as defined above).

Methods

public double nextObservation (double nextT)

Generates and returns the next observation at time tj+1 = nextTime, using the previous
observation time tj defined earlier (either by this method or by setObservationTimes), as
well as the value of the previous observation X(tj). Warning : This method will reset the
observations time tj+1 for this process to nextT. The user must make sure that the tj+1

supplied is ≥ tj .

public double[] generatePath()

Generates, returns and saves the path {X(t0), X(t1), . . . , X(td)}. The gamma variates X
in (15) are generated using the RandomStream stream or the RandomStream included in the
GammaGen Ggen.

public double[] generatePath (double[] uniform01)

Generates, returns and saves the path {X(t0), X(t1), . . . , X(td)}. This method does not use
the RandomStream stream nor the GammaGen Ggen. It uses the vector of uniform random
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numbers U(0, 1) provided by the user and generates the path by inversion. The vector
uniform01 must be of dimension d.

public void setParams (double s0, double mu, double nu)

Sets the parameters S(t0) = s0, µ = mu and ν = nu of the process. Warning : This method
will recompute some quantities stored internally, which may be slow if called repeatedly.

public double getMu()

Returns the value of the parameter µ.

public double getNu()

Returns the value of the parameter ν.

public void setStream (RandomStream stream)

Resets the RandomStream of the GammaGen to stream.

public RandomStream getStream()

Returns the RandomStream stream.
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GammaProcessBridge

This class represents a gamma process {S(t) = G(t;µ, ν) : t ≥ 0} with mean parameter µ
and variance parameter ν, sampled using the gamma bridge method (see for example [16, 3]).
This is analogous to the bridge sampling used in BrownianMotionBridge.

Note that gamma bridge sampling requires not only gamma variates, but also beta vari-
ates. The latter generally take a longer time to generate than the former. The class
GammaSymmetricalBridgeProcess provides a faster implementation when the number of
observation times is a power of two.

The warning from class BrownianMotionBridge applies verbatim to this class.

package umontreal.iro.lecuyer.stochprocess;

public class GammaProcessBridge extends GammaProcess

Constructors

public GammaProcessBridge (double s0, double mu, double nu,
RandomStream stream)

Constructs a new GammaProcessBridge with parameters µ = mu, ν = nu and initial value
S(t0) = s0. Uses stream to generate the gamma and beta variates by inversion.

public GammaProcessBridge (double s0, double mu, double nu,
GammaGen Ggen, BetaGen Bgen)

Constructs a new GammaProcessBridge. Uses the random variate generators Ggen and Bgen
to generate the gamma and beta variates, respectively. Note that both generator uses the
same RandomStream. Furthermore, the parameters of the GammaGen and BetaGen objects are
not important since the implementation forces the generators to use the correct parameters.
(as defined in [16, page 7]).

Methods

public void setStream (RandomStream stream)

Resets the RandomStream of the GammaGen and the BetaGen to stream.
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GammaProcessSymmetricalBridge

This class differs from GammaProcessBridge only in that it requires the number of interval
of the path to be a power of 2 and of equal size. It is then possible to generate the bridge
process using a special implementation of the beta random variate generator (using the
symmetrical beta distribution) that is much faster (HOW MUCH? QUANTIFY!) than the
general case. Note that when the method setObservationTimes is called, the equality of
the size of the time steps is verified. To allow for differences due to floating point errors,
time steps are considered to be equal if their relative difference is less than 10−15.

package umontreal.iro.lecuyer.stochprocess;

public class GammaProcessSymmetricalBridge extends GammaProcessBridge

Constructors

public GammaProcessSymmetricalBridge (double s0, double mu, double nu,
RandomStream stream)

Constructs a new GammaProcessSymmetricalBridge with parameters µ = mu, ν = nu
and initial value S(t0) = s0. The random variables are created using the RandomStream
stream. Note that the same RandomStream stream is used for the GammaGen and for the
BetaSymmetricalGen inluded in this class.

public GammaProcessSymmetricalBridge (double s0, double mu, double nu,
GammaGen Ggen,
BetaSymmetricalGen BSgen)

Constructs a new GammaProcessSymmetricalBridge with parameters µ = mu, ν = nu and
initial value S(t0) = s0. Note that the RandomStream included in the BetaSymmetricalGen
is sets to the one included in the GammaGen to avoid confusion. This RandomStream is then
used to generate all the random variables.



36

GammaProcessPCA

Represents a gamma process sampled using the principal component analysis (PCA). To
simulate the gamma process at times t0 < t1 < · · · < td by PCA sampling, a Brownian
motion {W (t), t ≥ 0} with mean 0 and variance parameter ν is first generated at times
t0 < t1 < · · · < td by PCA sampling (see class BrownianMotionPCA). The independent
increments W (tj) −W (tj−1) of this process are then transformed into independent U(0, 1)
random variates Vj via

Vj = Φ
(√

τj − τj−1[W (τj)−W (τj−1)]
)
, j = 1, . . . , s

Finally, the increments of the Gamma process are computed as Y (tj)− Y (tj−1) = G−1(Vj),
where G is the gamma distribution function.

package umontreal.iro.lecuyer.stochprocess;

public class GammaProcessPCA extends GammaProcess

Constructors

public GammaProcessPCA (double s0, double mu, double nu,
RandomStream stream)

Constructs a new GammaProcessPCA with parameters µ = mu, ν = nu and initial value
S(t0) = s0. The random variables are created using stream. Note that the same Random-
Stream is used for the GammaProcessPCA and for the BrownianMotionPCA included in this
class. Both the GammaProcessPCA and the BrownianMotionPCA are generated by inversion.

public GammaProcessPCA (double s0, double mu, double nu, GammaGen Ggen)

Constructs a new GammaProcessPCA with parameters µ = mu, ν = nu and initial value
S(t0) = s0. All the random variables, i.e. the gamma ones and the normal ones, are created
using the RandomStream included in the GammaGen Ggen. Note that the parameters of the
GammaGen object are not important since the implementation forces the generator to use the
correct parameters (as defined above).

Methods

public double nextObservation()

This method is not implemented in this class since the path cannot be generated sequentially.

public double nextObservation (double nextT)

This method is not implemented in this class since the path cannot be generated sequentially.

public BrownianMotionPCA getBMPCA()

Returns the BrownianMotionPCA that is included in the GammaProcessPCA object.
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public void setObservationTimes (double[] t, int d)

Sets the observation times of the GammaProcessPCA and the BrownianMotionPCA.

public void setParams (double s0, double mu, double nu)

Sets the parameters s0, µ and ν to new values, and sets the variance parameters of the
BrownianMotionPCA to ν.

public void setStream (RandomStream stream)

Resets the RandomStream of the gamma generator and the RandomStream of the inner
BrownianMotionPCA to stream.
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GammaProcessPCABridge

Same as GammaProcessPCA, but the generated uniforms correspond to a bridge transfor-
mation of the BrownianMotionPCA instead of a sequential transformation.

package umontreal.iro.lecuyer.stochprocess;

public class GammaProcessPCABridge extends GammaProcessPCA

Constructors

public GammaProcessPCABridge (double s0, double mu, double nu,
RandomStream stream)

Constructs a new GammaProcessPCABridge with parameters µ = mu, ν = nu and initial value
S(t0) = s0. The same stream is used to generate the gamma and beta random numbers. All
these numbers are generated by inversion in the following order: the first uniform random
number generated is used for the gamma and the other d− 1 for the beta’s.

Methods

public BrownianMotionPCA getBMPCA()

Returns the inner BrownianMotionPCA.
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GammaProcessPCASymmetricalBridge

Same as GammaProcessPCABridge, but uses the fast inversion method for the symmetrical
beta distribution, proposed by L’Ecuyer and Simard [11], to accelerate the generation of the
beta random variables. This class works only in the case where the number of intervals is a
power of 2 and all these intervals are of equal size.

package umontreal.iro.lecuyer.stochprocess;

public class GammaProcessPCASymmetricalBridge extends GammaProcessPCABridge

Constructors

public GammaProcessPCASymmetricalBridge (double s0, double mu, double nu,
RandomStream stream)

Constructs a new GammaProcessPCASymmetricalBridge with parameters µ = mu, ν = nu
and initial value S(t0) = s0. The RandomStream stream is used in the GammaGen and in
the BetaSymmetricalGen. These two generators use inversion to generate random numbers.
The first uniform random number generated by stream is used for the gamma, and the other
d− 1 for the beta’s.
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VarianceGammaProcess

This class represents a variance gamma (VG) process {S(t) = X(t; θ, σ, ν) : t ≥ 0}. This
process is obtained as a subordinate of the Brownian motion process B(t; θ, σ) using the
operational time G(t; 1, ν) (see [6, 2]):

X(t; θ, σ, ν) := B(G(t; 1, ν), θ, σ). (16)

See also [12, 13, 14] for applications to modelling asset returns and option pricing.

The process is sampled as follows: when generatePath() is called, the method generate-

Path() of the inner GammaProcess is called; its path is then used to set the observation
times of the BrownianMotion. Finally, the method generatePath() of the BrownianMotion
is called. Warning : If one wants to reduced the variance as much as possible in a QMC sim-
ulation, this way of proceeding is not optimal. Use the method generatePath(uniform01)

instead.

If one calls the nextObservation method, the operational time is generated first, followed
by the corresponding brownian motion increment, which is then returned.

Note that if one wishes to use bridge sampling with the nextObservation method, both
the gamma process G and the Brownian motion process B should use bridge sampling so
that their observations are synchronized.

package umontreal.iro.lecuyer.stochprocess;

public class VarianceGammaProcess extends StochasticProcess

Constructors

public VarianceGammaProcess (double s0, double theta, double sigma,
double nu, RandomStream stream)

Constructs a new VarianceGammaProcess with parameters θ = theta, σ = sigma, ν = nu
and initial value S(t0) = s0. stream is used to generate both the BrownianMotion B and
the GammaProcess G in (16).

public VarianceGammaProcess (double s0, BrownianMotion BM,
GammaProcess Gamma)

Constructs a new VarianceGammaProcess. The parameters θ and σ are set to the param-
eters µ and σ, respectively, of the BrownianMotion BM and the parameter ν is set to the
parameter ν of the GammaProcess Gamma. The parameters µ and x0 of the GammaProcess
are overwritten to equal 1 and 0 respectively. The initial value of the process is S(t0) = s0.
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Methods

public double nextObservation()

Generates the observation for the next time. It also works with bridge sampling; however
both BrownianMotionBridge and GammaProcessBridge must be used in the constructor in
that case. Furthermore, for bridge sampling, the order of the observations is that of the
bridge, not sequential order.

public double[] generatePath()

Generates and returns the path. To do so, it first generates the complete path of the
inner GammaProcess and sets the observation times of the inner BrownianMotion to this
path. This method is not optimal to reduce the variance in QMC simulations; use
generatePath(double[] uniform01) for that.

public double[] generatePath (double[] uniform01)

Similar to the usual generatePath(), but here the uniform random numbers used for the
simulation must be provided to the method. This allows to properly use the uniform random
variates in QMC simulations. This method divides the table of uniform random numbers
uniform01 in two smaller tables, the first one, containing the odd indices of uniform01
which are used to generate the path of the inner GammaProcess, and the even indices (in
the second table) are used to generate the path of the inner BrownianMotion. This way of
proceeding reduces the variance as much as possible for QMC simulations.

public void resetStartProcess()

Resets the observation index and counter to 0 and applies the resetStartProcess method
to the BrownianMotion and the GammaProcess objects used to generate this process.

public void setParams (double s0, double theta, double sigma, double nu)

Sets the parameters S(t0) = s0, θ = theta, σ = sigma and ν = nu of the process. Warning :
This method will recompute some quantities stored internally, which may be slow if called
repeatedly.

public double getTheta()

Returns the value of the parameter θ.

public double getSigma()

Returns the value of the parameter σ.

public double getNu()

Returns the value of the parameter ν.

public void setObservationTimes (double t[], int d)

Sets the observation times on the VarianceGammaProcess as usual, but also sets the obser-
vation times of the underlying GammaProcess. It furthermore sets the starting value of the
GammaProcess to t[0].
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public void setStream (RandomStream stream)

Resets the RandomStream’s. Warning: this method sets both the RandomStream of the
BrownianMotion and of the GammaProcess to the same RandomStream.

public RandomStream getStream()

Returns the random stream of the BrownianMotion process, which should be the same as
for the GammaProcess.

public BrownianMotion getBrownianMotion()

Returns a reference to the inner BrownianMotion.

public GammaProcess getGammaProcess()

Returns a reference to the inner GammaProcess.



43

VarianceGammaProcessDiff

This class represents a variance gamma (VG) process {S(t) = X(t; θ, σ, ν) : t ≥ 0}.
This process is generated using difference of gamma sampling (see [3, 2]), which uses the
representation of the VG process as the difference of two independent GammaProcess’es (see
[12]):

X(t; θ, σ, ν) := X(0) + Γ+(t;µp, νp)− Γ−(t;µn, νn) (17)

where X(0) is a constant corresponding to the initial value of the process and

µp = (
√
θ2 + 2σ2/ν + θ)/2

µn = (
√
θ2 + 2σ2/ν − θ)/2

νp = νµ2
p

νn = νµ2
n

(18)

package umontreal.iro.lecuyer.stochprocess;

public class VarianceGammaProcessDiff extends VarianceGammaProcess

Constructors

public VarianceGammaProcessDiff (double s0, double theta, double sigma,
double nu, RandomStream stream)

Constructs a new VarianceGammaProcessDiff with parameters θ = theta, σ = sigma,
ν = nu and initial value S(t0) = s0. stream is used by two instances of GammaProcess,
Γ+ and Γ−, respectively. The other parameters are as in the class VarianceGammaProcess.
The GammaProcess objects for Γ+ and Γ− are constructed using the parameters from (18)
and their initial values Γ+(t0) and Γ−(t0) are set to 0.

public VarianceGammaProcessDiff (double s0, double theta, double sigma,
double nu, GammaProcess gpos,
GammaProcess gneg)

The parameters of the GammaProcess objects for Γ+ and Γ− are set to those of (18) and
their initial values Γ+(t0) and Γ−(t0) are set to t0. The RandomStream of the Γ− process is
overwritten with the RandomStream of the Γ+ process.

Methods

public double[] generatePath()

Generates, returns and saves the path. To do so, the path of Γ+ is first generated and then
the path of Γ−. This is not the optimal way of proceeding in order to reduce the variance
in QMC simulations; for that, use generatePath(double[] uniform01) instead.
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public double[] generatePath (double[] uniform01)

Similar to the usual generatePath(), but here the uniform random numbers used for the
simulation must be provided to the method. This allows to properly use the uniform random
variates in QMC simulations. This method divides the table of uniform random numbers
uniform01 in two smaller tables, the first one containing the odd indices of uniform01 are
used to generate the path of Γ+ and the even indices are used to generate the path of Γ−.
This way of proceeding further reduces the variance for QMC simulations.

public void resetStartProcess()

Sets the observation times on the VarianceGammaProcessDiff as usual, but also applies the
resetStartProcess method to the two GammaProcess objects used to generate this process.

public GammaProcess getGpos()

Returns a reference to the GammaProcess object gpos used to generate the Γ+ component
of the process.

public GammaProcess getGneg()

Returns a reference to the GammaProcess object gneg used to generate the Γ− component
of the process.

public void setObservationTimes (double t[], int d)

Sets the observation times on the VarianceGammaProcesDiff as usual, but also sets the
observation times of the underlying GammaProcess’es.

public RandomStream getStream()

Returns the RandomStream of the Γ+ process.

public void setStream (RandomStream stream)

Sets the RandomStream of the two GammaProcess’es to stream.
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VarianceGammaProcessDiffPCA

Same as VarianceGammaProcessDiff, but the two inner GammaProcess’es are of PCA
type. Also, generatePath(double[] uniforms01) distributes the uniform random variates
to the GammaProcessPCA’s according to their eigenvalues, i.e. the GammaProcessPCA with
the higher eigenvalue gets the next uniform random number. If one should decide to create
a VarianceGammaProcessDiffPCA by giving two GammaProcessPCA’s to an objet of the class
VarianceGammaProcessDiff, the uniform random numbers would not be given this way to
the GammaProcessPCA’s; this might give less variance reduction when used with QMC.

package umontreal.iro.lecuyer.stochprocess;

public class VarianceGammaProcessDiffPCA extends VarianceGammaProcessDiff

Constructors

public VarianceGammaProcessDiffPCA (double s0, double theta,
double sigma, double nu,
RandomStream stream)

Constructs a new VarianceGammaProcessDiffPCA with parameters θ = theta, σ =
sigma, ν = nu and initial value S(t0) = s0. There is only one RandomStream here
which is used for the two inner GammaProcessPCA’s. The other parameters are set as in
VarianceGammaProcessDiff.

public VarianceGammaProcessDiffPCA (double s0, double theta,
double sigma, double nu,
GammaProcessPCA gpos,
GammaProcessPCA gneg)

Constructs a new VarianceGammaProcessDiffPCA with parameters θ = theta, σ = sigma,
ν = nu and initial value S(t0) = s0. As in VarianceGammaProcessDiff, the RandomStream
of gneg is replaced by the one of gpos to avoid any confusion.

Methods

public double nextObservation()

This method is not implemented is this class since the path cannot be generated sequentially.
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VarianceGammaProcessDiffPCABridge

Same as VarianceGammaProcessDiff, but the two inner GammaProcess’es are of the type
PCABridge. Also, generatePath(double[] uniform01) distributes the lowest coordinates
uniforms to the inner GammaProcessPCABridge according to their eigenvalues.

package umontreal.iro.lecuyer.stochprocess;

public class VarianceGammaProcessDiffPCABridge extends
VarianceGammaProcessDiffPCA

Constructors

public VarianceGammaProcessDiffPCABridge (double s0, double theta,
double sigma, double nu,
RandomStream stream)

Constructs a new VarianceGammaProcessDiffPCABridge with parameters θ = theta, σ =
sigma, ν = nu and initial value S(t0) = s0. There is only one RandomStream here which
is used for the two inner GammaProcessPCABridge’s. The other parameters are set as in
VarianceGammaProcessDiff.
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VarianceGammaProcessDiffPCASymmetricalBridge

Same as VarianceGammaProcessDiff, but the two inner GammaProcess’es are of the
PCASymmetricalBridge type. Also, generatePath(double[] uniform01) distributes the
lowest coordinates uniforms to the inner GammaProcessPCA according to their eigenvalues.

package umontreal.iro.lecuyer.stochprocess;

public class VarianceGammaProcessDiffPCASymmetricalBridge extends
VarianceGammaProcessDiffPCA

Constructors

public VarianceGammaProcessDiffPCASymmetricalBridge (
double s0, double theta,
double sigma, double nu,
RandomStream stream)

Constructs a new VarianceGammaProcessDiffPCASymmetricalBridge with parameters θ =
theta, σ = sigma, ν = nu and initial value S(t0) = s0. There is only one RandomStream
here which is used for the two inner GammaProcessPCASymmetricalBridge’s. The other
parameters are set as in VarianceGammaProcessDiff.
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GeometricVarianceGammaProcess

This class represents a geometric variance gamma process S(t) (see [12, page 86]). This
stochastic process is defined by the equation

S(t) = S(0) exp(µt+X(t;σ, ν, θ) + ωt), (19)

where X is a variance gamma process and

ω = (1/ν) ln(1− θν − σ2ν/2). (20)

package umontreal.iro.lecuyer.stochprocess;

public class GeometricVarianceGammaProcess extends StochasticProcess

Constructors

public GeometricVarianceGammaProcess (double s0, double theta,
double sigma, double nu,
double mu, RandomStream stream)

Constructs a new GeometricVarianceGammaProcess with parameters θ = theta, σ =
sigma, ν = nu, µ = mu and initial value S(t0) = s0. The stream is used to generate
the VarianceGammaProcess object used to implement X in (19).

public GeometricVarianceGammaProcess (double s0, double mu,
VarianceGammaProcess vargamma)

Constructs a new GeometricVarianceGammaProcess. The parameters θ, σ, ν are set to the
parameters of the VarianceGammaProcess vargamma. The parameter µ is set to mu and the
initial values S(t0) = s0.

Methods

public void resetStartProcess()

Resets the GeometricaVarianceGammaProcess, but also applies the resetStartProcess
method to the VarianceGammaProcess object used to generate this process.

public void setParams (double s0, double theta, double sigma, double nu,
double mu)

Sets the parameters S(t0) = s0, θ = theta, σ = sigma, ν = nu and µ = mu of the process.
Warning : This method will recompute some quantities stored internally, which may be slow
if called repeatedly.

public double getTheta()

Returns the value of the parameter θ.
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public double getMu()

Returns the value of the parameter µ.

public double getNu()

Returns the value of the parameter ν.

public double getSigma()

Returns the value of the parameter σ.

public double getOmega()

Returns the value of the quantity ω defined in (20).

public VarianceGammaProcess getVarianceGammaProcess()

Returns a reference to the variance gamma process X defined in the constructor.
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