
SSJ User’s Guide

Package util

General basic utilities

Version: June 18, 2014

This document describes a set of basic utilities used in the Java software developed in
the simulation laboratory of the DIRO, at the Université de Montréal. Many of these tools
were originally implemented in the Modula-2 language and have been translated in C and
then in Java, with some adaptations along the road.

June 18, 2014 CONTENTS 1

Contents

June 18, 2014 2

Num

This class provides a few constants and some methods to compute numerical quantities
such as factorials, combinations, gamma functions, and so on.

package umontreal.iro.lecuyer.util;

public class Num

Constants

public static final double DBL_EPSILON = 2.2204460492503131e-16;

Difference between 1.0 and the smallest double greater than 1.0.

public static final int DBL_MAX_EXP = 1024;

Largest int x such that 2x−1 is representable (approximately) as a double.

public static final int DBL_MIN_EXP = -1021;

Smallest int x such that 2x−1 is representable (approximately) as a normalised double.

public static final int DBL_MAX_10_EXP = 308;

Largest int x such that 10x is representable (approximately) as a double.

public static final double DBL_MIN = 2.2250738585072014e-308;

Smallest normalized positive floating-point double.

public static final double LN_DBL_MIN = -708.3964185322641;

Natural logarithm of DBL_MIN.

public static final int DBL_DIG = 15;

Number of decimal digits of precision in a double.

public static final double EBASE = 2.7182818284590452354;

The constant e.

public static final double EULER = 0.57721566490153286;

The Euler-Mascheroni constant.

public static final double RAC2 = 1.41421356237309504880;

The value of
√

2.

public static final double IRAC2 = 0.70710678118654752440;

The value of 1/
√

2.

June 18, 2014 Num 3

public static final double LN2 = 0.69314718055994530941;

The values of ln 2.

public static final double ILN2 = 1.44269504088896340737;

The values of 1/ ln 2.

public static final double MAXINTDOUBLE = 9007199254740992.0;

Largest integer n0 = 253 such that any integer n ≤ n0 is represented exactly as a double.

public static final double MAXTWOEXP = 64;

Powers of 2 up to MAXTWOEXP are stored exactly in the array TWOEXP.

public static final double TWOEXP[]

Contains the precomputed positive powers of 2. One has TWOEXP[j]= 2j , for j = 0, . . . , 64.

public static final double TEN_NEG_POW[]

Contains the precomputed negative powers of 10. One has TEN_NEG_POW[j]= 10−j , for
j = 0, . . . , 16.

Methods

public static int gcd (int x, int y)

Returns the greatest common divisor (gcd) of x and y.

public static long gcd (long x, long y)

Returns the greatest common divisor (gcd) of x and y.

public static double combination (int n, int s)

Returns the value of
(
n
s

)
, the number of different combinations of s objects amongst n.

public static double lnCombination (int n, int s)

Returns the natural logarithm of
(
n
s

)
, the number of different combinations of s objects

amongst n.

public static double factorial (int n)

Returns the value of n!

public static double lnFactorial (int n)

Returns the value of ln(n!), the natural logarithm of factorial n. Gives 16 decimals of
precision (relative error < 0.5× 10−15).

public static double lnFactorial (long n)

Returns the value of ln(n!), the natural logarithm of factorial n. Gives 16 decimals of
precision (relative error < 0.5× 10−15).

June 18, 2014 Num 4

public static double factoPow (int n)

Returns the value of n!/nn.

public static double[][] calcMatStirling (int m, int n)

Computes and returns the Stirling numbers of the second kind

M [i, j] =
{
j
i

}
for 0 ≤ i ≤ m and 0 ≤ i ≤ j ≤ n. (1)

See [?, Section 1.2.6]. The matrix M is the transpose of Knuth’s (1973).

public static double log2 (double x)

Returns log2(x).

public static double lnGamma (double x)

Returns the natural logarithm of the gamma function Γ(x) evaluated at x. Gives 16 decimals
of precision, but is implemented only for x > 0.

public static double lnBeta (double lam, double nu)

Computes the natural logarithm of the Beta function B(λ, ν). It is defined in terms of the
Gamma function as

B(λ, ν) =
Γ(λ)Γ(ν)
Γ(λ+ ν)

with lam = λ and nu = ν.

public static double digamma (double x)

Returns the value of the logarithmic derivative of the Gamma function ψ(x) = Γ′(x)/Γ(x).

public static double trigamma (double x)

Returns the value of the trigamma function dψ(x)/dx, the derivative of the digamma func-
tion, evaluated at x.

public static double tetragamma (double x)

Returns the value of the tetragamma function d2ψ(x)/d2x, the second derivative of the
digamma function, evaluated at x.

public static double gammaRatioHalf (double x)

Returns the value of the ratio Γ(x + 1/2)/Γ(x) of two gamma functions. This ratio is
evaluated in a numerically stable way. Restriction: x > 0.

public static double sumKahan (double[] A, int n)

Implementation of the Kahan summation algorithm. Sums the first n elements of A and
returns the sum. This algorithm is more precise than the naive algorithm. See http:
//en.wikipedia.org/wiki/Kahan_summation_algorithm.

public static double harmonic (long n)

Computes the n-th harmonic number Hn =
∑n

j=1 1/j.

http://en.wikipedia.org/wiki/Kahan_summation_algorithm
http://en.wikipedia.org/wiki/Kahan_summation_algorithm

June 18, 2014 Num 5

public static double harmonic2 (long n)

Computes the sum ∑′

−n/2<j≤n/2

1
|j|
,

where the symbol
∑′ means that the term with j = 0 is excluded from the sum.

public static double volumeSphere (double p, int t)

Returns the volume V of a sphere of radius 1 in t dimensions using the norm Lp. It is given
by the formula

V =
[2Γ(1 + 1/p)]t

Γ (1 + t/p)
, p > 0,

where Γ is the gamma function. The case of the sup norm L∞ is obtained by choosing p = 0.
Restrictions: p ≥ 0 and t ≥ 1.

public static double bernoulliPoly (int n, double x)

Evaluates the Bernoulli polynomial Bn(x) of degree n at x. Only degrees n ≤ 8 are pro-
grammed for now. The first Bernoulli polynomials of even degree are:

B0(x) = 1
B2(x) = x2 − x+ 1/6
B4(x) = x4 − 2x3 + x2 − 1/30 (2)
B6(x) = x6 − 3x5 + 5x4/2− x2/2 + 1/42
B8(x) = x8 − 4x7 + 14x6/3− 7x4/3 + 2x2/3− 1/30.

public static double evalCheby (double a[], int n, double x)

Evaluates a series of Chebyshev polynomials Tj at x over the basic interval [−1, 1], using
the method of Clenshaw [?], i.e., computes and returns

y =
a0

2
+

n∑
j=1

ajTj(x).

public static double evalChebyStar (double a[], int n, double x)

Evaluates a series of shifted Chebyshev polynomials T ∗j at x over the basic interval [0, 1],
using the method of Clenshaw [?], i.e., computes and returns

y =
a0

2
+

n∑
j=1

ajT
∗
j (x).

public static double besselK025 (double x)

Returns the value of K1/4(x), where Kν is the modified Bessel’s function of the second kind.
The relative error on the returned value is less than 0.5× 10−6 for x > 10−300.

June 18, 2014 Num 6

public static double expBesselK1 (double x, double y)

Returns the value of exK1(y), where K1 is the modified Bessel function of the second kind
of order 1. Restriction: y > 0.

public static double erf (double x)

Returns the value of erf(x), the error function. It is defined as

erf(x) =
2√
π

∫ x

0
dt e−t

2
.

public static double erfc (double x)

Returns the value of erfc(x), the complementary error function. It is defined as

erfc(x) =
2√
π

∫ ∞
x

dt e−t
2
.

public static double erfInv (double u)

Returns the value of erf−1(u), the inverse of the error function. If u = erf(x), then
x = erf−1(u).

public static double erfcInv (double u)

Returns the value of erfc−1(u), the inverse of the complementary error function. If u =
erfc(x), then x = erfc−1(u).

June 18, 2014 7

TextDataReader

Provides static methods to read data from text files.

package umontreal.iro.lecuyer.util;

public class TextDataReader

public static double[] readDoubleData (Reader input) throws IOException

Reads an array of double-precision values from the reader input. For each line of text
obtained from the given reader, this method trims whitespaces, and parses the remaining
text as a double-precision value. This method ignores every character other than the digits,
the plus and minus signs, the period (.), and the letters e and E. Moreover, lines starting
with a pound sign (#) are considered as comments and thus skipped. The method returns
an array containing all the parsed values.

public static double[] readDoubleData (URL url) throws IOException

Connects to the URL referred to by the URL object url, and calls readDoubleData to
obtain an array of double-precision values from the resource.

public static double[] readDoubleData (File file) throws IOException

Opens the file referred to by the file object file, and calls readDoubleData to obtain an
array of double-precision values from the file.

public static double[] readDoubleData (String file) throws IOException

Opens the file with name file, and calls readDoubleData to obtain an array of double-
precision values from the file.

public static int[] readIntData (Reader input) throws IOException

This is equivalent to readDoubleData, for reading integers.

public static int[] readIntData (URL url) throws IOException

Connects to the URL referred to by the URL object url, and calls readIntData to obtain
an array of integers from the resource.

public static int[] readIntData (File file) throws IOException

This is equivalent to readDoubleData, for reading integers.

public static int[] readIntData (String file) throws IOException

This is equivalent to readDoubleData, for reading integers.

public static String[] readStringData (Reader input) throws IOException

Reads an array of strings from the reader input. For each line of text obtained from the
given reader, this method trims leading and trailing whitespaces, and stores the remaining
string. Lines starting with a pound sign (#) are considered as comments and thus skipped.
The method returns an array containing all the read strings.

June 18, 2014 TextDataReader 8

public static String[] readStringData (URL url) throws IOException

Connects to the URL referred to by the URL object url, and calls readStringData to
obtain an array of integers from the resource.

public static String[] readStringData (File file) throws IOException

This is equivalent to readDoubleData, for reading strings.

public static String[] readStringData (String file) throws IOException

This is equivalent to readDoubleData, for reading strings.

public static double[][] readDoubleData2D (Reader input)
throws IOException

Uses the reader input to obtain a 2-dimensional array of double-precision values. For each
line of text obtained from the given reader, this method trims whitespaces, and parses the
remaining text as an array of double-precision values. Every character other than the digits,
the plus (+) and minus (-) signs, the period (.), and the letters e and E are ignored and
can be used to separate numbers on a line. Moreover, lines starting with a pound sign (#)
are considered as comments and thus skipped. The lines containing only a semicolon sign
(;) are considered as empty lines. The method returns a 2D array containing all the parsed
values. The returned array is not always rectangular.

public static double[][] readDoubleData2D (URL url) throws IOException

Connects to the URL referred to by the URL object url, and calls readDoubleData2D to
obtain a matrix of double-precision values from the resource.

public static double[][] readDoubleData2D (File file) throws IOException

Opens the file referred to by the file object file, and calls readDoubleData2D to obtain a
matrix of double-precision values from the file.

public static double[][] readDoubleData2D (String file)
throws IOException

Opens the file with name file, and calls readDoubleData2D to obtain a matrix of double-
precision values from the file.

public static int[][] readIntData2D (Reader input) throws IOException

This is equivalent to readDoubleData2D, for reading integers.

public static int[][] readIntData2D (URL url) throws IOException

Connects to the URL referred to by the URL object url, and calls readDoubleData to
obtain a matrix of integers from the resource.

public static int[][] readIntData2D (File file) throws IOException

This is equivalent to readDoubleData2D, for reading integers.

public static int[][] readIntData2D (String file) throws IOException

This is equivalent to readDoubleData2D, for reading integers.

June 18, 2014 TextDataReader 9

public static String[][] readCSVData (Reader input, char colDelim,
char stringDelim)
throws IOException

Reads comma-separated values (CSV) from reader input, and returns a 2D array of strings
corresponding to the read data. Lines are delimited using line separators \r, \n, and \r\n.
Each line contains one or more values, separated by the column delimiter colDelim. If a
string of characters is surrounded with the string delimiter stringDelim, any line separator
and column separator appear in the string. The string delimiter can be inserted in such
a string by putting it twice. Usually, the column delimiter is the comma, and the string
delimiter is the quotation mark. The following example uses these default delimiters.

"One","Two","Three"
1,2,3
"String with "" delimiter",n,m

This produces a matrix of strings with dimensions 3× 3. The first row contains the strings
One, Two, and Three while the second row contains the strings 1, 2, and 3. The first column
of the last row contains the string String with " delimiter.

public static String[][] readCSVData (URL url, char colDelim,
char stringDelim)
throws IOException

Connects to the URL referred to by the URL object url, and calls readCSVData to obtain
a matrix of strings from the resource.

public static String[][] readCSVData (File file, char colDelim,
char stringDelim)
throws IOException

This is equivalent to readDoubleData2D, for reading strings.

public static String[][] readCSVData (String file, char colDelim,
char stringDelim)
throws IOException

This is equivalent to readDoubleData2D, for reading strings.

June 18, 2014 10

PrintfFormat

This class acts like a StringBuffer which defines new types of append methods. It
defines certain functionalities of the ANSI C printf function that also can be accessed
through static methods. The information given here is strongly inspired from the man page
of the C printf function.

Most methods of this class format numbers for the English US locale only. One can use
the Java class Formatter for performing locale-independent formatting.

package umontreal.iro.lecuyer.util;

public class PrintfFormat implements CharSequence, Appendable

Constants

public static final String NEWLINE

End-of-line symbol or line separator. It is “\n” for Unix/Linux, “\r\n” for MS-DOS/MS-
Windows, and “\r” for Apple OSX.

public static final String LINE_SEPARATOR

End-of-line symbol or line separator. Same as NEWLINE.

Constructors

public PrintfFormat()

Constructs a new buffer object containing an empty string.

public PrintfFormat (int length)

Constructs a new buffer object with an initial capacity of length.

public PrintfFormat (String str)

Constructs a new buffer object containing the initial string str.

Methods

public PrintfFormat append (String str)

Appends str to the buffer.

public PrintfFormat append (int fieldwidth, String str)

Uses the s static method to append str to the buffer. A minimum of fieldwidth characters
will be used.

public PrintfFormat append (double x)

Appends x to the buffer.

June 18, 2014 PrintfFormat 11

public PrintfFormat append (int fieldwidth, double x)

Uses the f static method to append x to the buffer. A minimum of fieldwidth characters
will be used.

public PrintfFormat append (int fieldwidth, int precision, double x)

Uses the f static method to append x to the buffer. A minimum of fieldwidth characters
will be used with the given precision.

public PrintfFormat append (int x)

Appends x to the buffer.

public PrintfFormat append (int fieldwidth, int x)

Uses the d static method to append x to the buffer. A minimum of fieldwidth characters
will be used.

public PrintfFormat append (long x)

Appends x to the buffer.

public PrintfFormat append (int fieldwidth, long x)

Uses the d static method to append x to the buffer. A minimum of fieldwidth characters
will be used.

public PrintfFormat append (int fieldwidth, int accuracy, int precision,
double x)

Uses the format static method with the same four arguments to append x to the buffer.

public PrintfFormat append (char c)

Appends a single character to the buffer.

public void clear()

Clears the contents of the buffer.

public StringBuffer getBuffer()

Returns the StringBuffer associated with that object.

public String toString()

Converts the buffer into a String.

public static String s (String str)

Same as s (0, str). If the string str is null, it returns the string “null”.

public static String s (int fieldwidth, String str)

Formats the string str like the %s in the C printf function. The fieldwidth argument
gives the minimum length of the resulting string. If str is shorter than fieldwidth, it is
left-padded with spaces. If fieldwidth is negative, the string is right-padded with spaces
if necessary. The String will never be truncated. If str is null, it calls s (fieldwidth,
‘‘null’’). The fieldwidth argument has the same effect for the other methods in this
class.

June 18, 2014 PrintfFormat 12

Integers

public static String d (long x)

Same as d (0, 1, x).

public static String d (int fieldwidth, long x)

Same as d (fieldwidth, 1, x).

public static String d (int fieldwidth, int precision, long x)

Formats the long integer x into a string like %d in the C printf function. It converts its
argument to decimal notation, precision gives the minimum number of digits that must
appear; if the converted value requires fewer digits, it is padded on the left with zeros. When
zero is printed with an explicit precision 0, the output is empty.

public static String format (long x)

Same as d (0, 1, x).

public static String format (int fieldwidth, long x)

Converts a long integer to a String with a minimum length of fieldwidth, the result
is right-padded with spaces if necessary but it is not truncated. If only one argument is
specified, a fieldwidth of 0 is assumed.

public static String formatBase (int b, long x)

Same as formatBase (0, b, x).

public static String formatBase (int fieldwidth, int b, long x)

Converts the integer x to a String representation in base b. Restrictions: 2 ≤ b ≤ 10.

Reals

public static String E (double x)

Same as E (0, 6, x).

public static String E (int fieldwidth, double x)

Same as E (fieldwidth, 6, x).

public static String E (int fieldwidth, int precision, double x)

Formats a double-precision number x like %E in C printf. The double argument is rounded
and converted in the style [-]d.dddE+-dd where there is one digit before the decimal-point
character and the number of digits after it is equal to the precision; if the precision is 0, no
decimal-point character appears. The exponent always contains at least two digits; if the
value is zero, the exponent is 00.

public static String e (double x)

Same as e (0, 6, x).

June 18, 2014 PrintfFormat 13

public static String e (int fieldwidth, double x)

Same as e (fieldwidth, 6, x).

public static String e (int fieldwidth, int precision, double x)

The same as E, except that ‘e’ is used as the exponent character instead of ‘E’.

public static String f (double x)

Same as f (0, 6, x).

public static String f (int fieldwidth, double x)

Same as f (fieldwidth, 6, x).

public static String f (int fieldwidth, int precision, double x)

Formats the double-precision x into a string like %f in C printf. The argument is rounded
and converted to decimal notation in the style [-]ddd.ddd, where the number of digits
after the decimal-point character is equal to the precision specification. If the precision is
explicitly 0, no decimal-point character appears. If a decimal point appears, at least one
digit appears before it.

public static String G (double x)

Same as G (0, 6, x).

public static String G (int fieldwidth, double x)

Same as G (fieldwidth, 6, x).

public static String G (int fieldwidth, int precision, double x)

Formats the double-precision x into a string like %G in C printf. The argument is converted
in style %f or %E. precision specifies the number of significant digits. If it is 0, it is treated
as 1. Style %E is used if the exponent from its conversion is less than −4 or greater than
or equal to precision. Trailing zeros are removed from the fractional part of the result; a
decimal point appears only if it is followed by at least one digit.

public static String g (double x)

Same as g (0, 6, x).

public static String g (int fieldwidth, double x)

Same as g (fieldwidth, 6, x).

public static String g (int fieldwidth, int precision, double x)

The same as G, except that ‘e’ is used in the scientific notation.

public static String format (int fieldwidth, int accuracy, int precision,
double x)

Returns a String containing x. Uses a total of at least fieldwidth positions (including
the sign and point when they appear), accuracy digits after the decimal point and at
least precision significant digits. accuracy and precision must be strictly smaller than

June 18, 2014 PrintfFormat 14

fieldwidth. The number is rounded if necessary. If there is not enough space to format
the number in decimal notation with at least precision significant digits (accuracy or
fieldwidth is too small), it will be converted to scientific notation with at least precision
significant digits. In that case, fieldwidth is increased if necessary.

public static String format (Locale locale, int fieldwidth, int accuracy,
int precision, double x)

This method is equivalent to format, except it formats the given value for the locale locale.

public static String formatBase (int fieldwidth, int accuracy, int b,
double x)

Converts x to a String representation in base b using formatting similar to the f methods.
Uses a total of at least fieldwidth positions (including the sign and point when they
appear) and accuracy digits after the decimal point. If fieldwidth is negative, the number
is printed left-justified, otherwise right-justified. Restrictions: 2 ≤ b ≤ 10 and |x| < 263.

Intervals

public static void formatWithError (int fieldwidth, int fieldwidtherr,
int accuracy, int precision, double x, double error, String[] res)

Stores a string containing x into res[0], and a string containing error into res[1], both
strings being formatted with the same notation. Uses a total of at least fieldwidth positions
(including the sign and point when they appear) for x, fieldwidtherr positions for error,
accuracy digits after the decimal point and at least precision significant digits. accuracy
and precision must be strictly smaller than fieldwidth. The numbers are rounded if nec-
essary. If there is not enough space to format x in decimal notation with at least precision
significant digits (accuracy or fieldwidth are too small), it will be converted to scientific
notation with at least precision significant digits. In that case, fieldwidth is increased if
necessary, and the error is also formatted in scientific notation.

public static void formatWithError (int fieldwidth, int fieldwidtherr,
int precision, double x, double error, String[] res)

Stores a string containing x into res[0], and a string containing error into res[1], both
strings being formatted with the same notation. This calls formatWithError with the
minimal accuracy for which the formatted string for error is non-zero. If error is 0, the
accuracy is 0. If this minimal accuracy causes the strings to be formatted using scientific
notation, this method increases the accuracy until the decimal notation can be used.

public static void formatWithError (Locale locale, int fieldwidth,
int fieldwidtherr, int accuracy, int precision, double x,
double error, String[] res)

This method is equivalent to formatWithError, except that it formats the given value and
error for the locale locale.

public static void formatWithError (Locale locale, int fieldwidth,
int fieldwidtherr, int precision, double x, double error,
String[] res)

This method is equivalent to formatWithError, except that it formats the given value and
error for the locale locale.

June 18, 2014 15

TableFormat

This class provides methods to format arrays and matrices into Strings in different
styles. This could be useful for printing arrays and subarrays, or for putting them in files
for further treatment by other softwares such as Mathematica, Matlab, etc.

package umontreal.iro.lecuyer.util;

public class TableFormat

Formating styles

public static final int PLAIN

Plain text matrix printing style

public static final int MATHEMATICA

Mathematica matrix printing style

public static final int MATLAB

Matlab matrix printing style

Functions to convert arrays to String

public static String format (int V[], int n1, int n2, int k, int p)

Formats a String containing the elements n1 to n2 (inclusive) of table V, k elements per
line, p positions per element. If k = 1, the array index will also appear on the left of each
element, i.e., each line i will have the form i V[i].

public static String format (double V[], int n1, int n2,
int k, int p1, int p2, int p3)

Similar to the previous method, but for an array of double’s. Gives at least p1 positions
per element, p2 digits after the decimal point, and at least p3 significant digits.

public static String format (double[][] Mat, int i1, int i2,
int j1, int j2, int w, int p,
int style, String Name)

Formats the submatrix with lines i1 ≤ i ≤ i2 and columns j1 ≤ j ≤ j2 of the matrix Mat,
using the formatting style style. The elements are formated in w positions each, with a
precision of p digits. Name provides an identifier for the submatrix. To be treated by Matlab,
the returned string must be copied to a file with extension .m. If the file is named poil.m,
for example, it can be accessed by calling poil in Matlab. For Mathematica, if the file is
named poil, it will be read using << poil;.

public static String format (int[][] Mat, int i1, int i2, int j1, int j2,
int w, int style, String Name)

Similar to the previous method, but for a matrix of int’s.

June 18, 2014 16

AbstractChrono

AbstractChrono is a class that acts as an interface to the system clock and calculates
the CPU or system time consumed by parts of a program.

Every object of class AbstractChrono acts as an independent stopwatch. Several
AbstractChrono objects can run at any given time. The method init resets the stopwatch
to zero, getSeconds, getMinutes and getHours return its current reading, and format

converts this reading to a String. The returned value includes the execution time of the
method from AbstractChrono.

Below is an example of how it may be used. A stopwatch named timer is constructed
(and initialized). When 2.1 seconds of CPU time have been consumed, the stopwatch is read
and reset to zero. Then, after an additional 330 seconds (or 5.5 minutes) of CPU time, the
stopwatch is read again and the value is printed to the output in minutes.

AbstractChrono timer = new Chrono();
... (suppose 2.1 CPU seconds are used here.)

double t = timer.getSeconds(); // Here, t = 2.1
timer.init();
t = timer.getSeconds(); // Here, t = 0.0

... (suppose 330 CPU seconds are used here.)
t = timer.getMinutes(); // Here, t = 5.5
System.out.println (timer.format()); // Prints: 0:5:30.00

package umontreal.iro.lecuyer.util;

public abstract class AbstractChrono

Timing functions

public AbstractChrono()

public void init()

Initializes this AbstractChrono to zero.

public double getSeconds()

Returns the CPU time in seconds used by the program since the last call to init for this
AbstractChrono.

public double getMinutes()

Returns the CPU time in minutes used by the program since the last call to init for this
AbstractChrono.

June 18, 2014 AbstractChrono 17

public double getHours()

Returns the CPU time in hours used by the program since the last call to init for this
AbstractChrono.

public String format()

Converts the CPU time used by the program since its last call to init for this Abstract-
Chrono to a String in the HH:MM:SS.xx format.

public static String format (double time)

Converts the time time, given in seconds, to a String in the HH:MM:SS.xx format.

June 18, 2014 18

SystemTimeChrono

Extends the AbstractChrono class to compute the total system time using Java’s builtin
System.nanoTime. The system can be used as a rough approximation of the CPU time
taken by a program if no other tasks are executed on the host while the program is running.

package umontreal.iro.lecuyer.util;

public class SystemTimeChrono extends AbstractChrono

Constructor

public SystemTimeChrono()

Constructs a new chrono object and initializes it to zero.

June 18, 2014 19

GlobalCPUTimeChrono

Extends the AbstractChrono class to compute the global CPU time used by the Java
Virtual Machine. This includes CPU time taken by any thread, including the garbage
collector, class loader, etc.

Part of this class is implemented in the C language and the implementation is unfortu-
nately operating system-dependent. The C functions for the current class have been compiled
on a 32-bit machine running Linux. For a platform-independent CPU timer (valid only with
Java–1.5 or later), one should use the class ThreadCPUTimeChrono which is programmed
directly in Java.

package umontreal.iro.lecuyer.util;

public class GlobalCPUTimeChrono extends AbstractChrono

Constructor

public GlobalCPUTimeChrono()

Constructs a Chrono object and initializes it to zero.

June 18, 2014 20

ThreadCPUTimeChrono

Extends the AbstractChrono class to compute the CPU time for a single thread. It is
available only under Java 1.5 which provides platform-independent facilities to get the CPU
time for a single thread through management API.

Note that this chrono might not work properly on some systems running Linux because
of a bug in Sun’s implementation or Linux kernel. For instance, this class unexpectedly
computes the global CPU time under Fedora Core 4, kernel 2.6.17 and JRE version 1.5.0-09.
With Fedora Core 6, kernel 2.6.20, the function is working properly. As a result, one should
not rely on this bug to get the global CPU time.

Note that the above bug does not prevent one from using this chrono to compute the
CPU time for a single-threaded application. In that case, the global CPU time corresponds
to the CPU time of the current thread.

Running timer fonctions when the associated thread is dead will return 0.

package umontreal.iro.lecuyer.util;

public class ThreadCPUTimeChrono extends AbstractChrono

Constructors

public ThreadCPUTimeChrono()

Constructs a ThreadCPUTimeChrono object associated with current thread and initializes it
to zero.

public ThreadCPUTimeChrono(Thread inThread)

Constructs a ThreadCPUTimeChrono object associated with the given Thread variable and
initializes it to zero.

June 18, 2014 21

Chrono

The Chrono class extends the AbstractChrono class and computes the CPU time for the
current thread only. This is the simplest way to use chronos. Classes AbstractChrono,
SystemTimeChrono, GlobalCPUTimeChrono and ThreadCPUTimeChrono provide different
chronos implementations. See these classes to learn more about SSJ chronos, if problems
appear with class Chrono.

package umontreal.iro.lecuyer.util;

public class Chrono extends AbstractChrono

Constructor

public Chrono()

Constructs a Chrono object and initializes it to zero.

Methods

public static Chrono createForSingleThread ()

Creates a Chrono instance adapted for a program using a single thread. Under Java 1.5, this
method returns an instance of ChronoSingleThread which can measure CPU time for one
thread. Under Java versions prior to 1.5, this returns an instance of this class. This method
must not be used to create a timer for a multi-threaded program, because the obtained CPU
times will differ depending on the used Java version.

June 18, 2014 22

ChronoSingleThread

This class is deprecated but kept for compatibility with older versions of SSJ.
Chrono should be used instead of ChronoSingleThread. The ChronoSingleThread class
extends the AbstractChrono class and computes the CPU time for the current thread only.
This is the simplest way to use chronos. Classes AbstractChrono, SystemTimeChrono,
GlobalCPUTimeChrono and ThreadCPUTimeChrono provide different chronos implementa-
tions (see these classes to learn more about SSJ chronos).

package umontreal.iro.lecuyer.util;

@Deprecated
public class ChronoSingleThread

Constructor

public ChronoSingleThread()

Constructs a ChronoSingleThread object and initializes it to zero.

June 18, 2014 23

TimeUnit

Represents a time unit for conversion of time durations. A time unit instance can be
used to get information about the time unit and as a selector to perform conversions. Each
time unit has a short name used when representing a time unit, a full descriptive name, and
the number of hours corresponding to one unit.

package umontreal.iro.lecuyer.util;

public enum TimeUnit

enum values

NANOSECOND

Represents a nanosecond which has short name ns.

MICROSECOND

Represents a microsecond which has short name us.

MILLISECOND

Represents a millisecond which has short name ms.

SECOND

Represents a second which has short name s.

MINUTE

Represents a minute which has short name min.

HOUR

Represents an hour which has short name h.

DAY

Represents a day which has short name d.

WEEK

Represents a week which has short name w.

June 18, 2014 TimeUnit 24

Methods

public String getShortName()

Returns the short name representing this unit in a string specifying a time duration.

public String getLongName()

Returns the long name of this time unit.

public String toString()

Calls getLongName.

public double getHours()

Returns this time unit represented in hours. This returns the number of hours corresponding
to one unit.

public static double convert (double value, TimeUnit srcUnit,
TimeUnit dstUnit)

Converts value expressed in time unit srcUnit to a time duration expressed in dstUnit
and returns the result of the conversion.

June 18, 2014 25

Systeme

This class provides a few tools related to the system or the computer.

package umontreal.iro.lecuyer.util;

public class Systeme

Methods

public static String getHostName()

Returns the name of the host computer.

public static String getProcessInfo()

Returns information about the running process: name, id, host name, date and time.

June 18, 2014 26

ArithmeticMod

This class provides facilities to compute multiplications of scalars, of vectors and of
matrices modulo m. All algorithms are present in three different versions. These allow
operations on double, int and long. The int and long versions work exactly like the
double ones.

package umontreal.iro.lecuyer.util;

public class ArithmeticMod

Methods using double

public static double multModM (double a, double s, double c, double m)

Computes (a× s + c) mod m. Where m must be smaller than 235. Works also if s or c are
negative. The result is always positive (and thus always between 0 and m - 1).

public static void matVecModM (double A[][], double s[], double v[],
double m)

Computes the result of A × s mod m and puts the result in v. Where s and v are both
column vectors. This method works even if s = v.

public static void matMatModM (double A[][], double B[][], double C[][],
double m)

Computes A× B mod m and puts the result in C. Works even if A = C, B = C or A = B = C.

public static void matTwoPowModM (double A[][], double B[][], double m,
int e)

Computes A2e mod m and puts the result in B. Works even if A = B.

public static void matPowModM (double A[][], double B[][], double m,
int c)

Computes Ac mod m and puts the result in B. Works even if A = B.

Methods using int

public static int multModM (int a, int s, int c, int m)

Computes (a×s+c) mod m. Works also if s or c are negative. The result is always positive
(and thus always between 0 and m - 1).

public static void matVecModM (int A[][], int s[], int v[], int m)

Exactly like matVecModM using double, but with int instead of double.

public static void matMatModM (int A[][], int B[][], int C[][], int m)

Exactly like matMatModM using double, but with int instead of double.

June 18, 2014 ArithmeticMod 27

public static void matTwoPowModM (int A[][], int B[][], int m, int e)

Exactly like matTwoPowModM using double, but with int instead of double.

public static void matPowModM (int A[][], int B[][], int m, int c)

Exactly like matPowModM using double, but with int instead of double.

Methods using long

public static long multModM (long a, long s, long c, long m)

Computes (a×s+c) mod m. Works also if s or c are negative. The result is always positive
(and thus always between 0 and m - 1).

public static void matVecModM (long A[][], long s[], long v[], long m)

Exactly like matVecModM using double, but with long instead of double.

public static void matMatModM (long A[][], long B[][], long C[][], long m)

Exactly like matMatModM using double, but with long instead of double.

public static void matTwoPowModM (long A[][], long B[][], long m, int e)

Exactly like matTwoPowModM using double, but with long instead of double.

public static void matPowModM (long A[][], long B[][], long m, int c)

Exactly like matPowModM using double, but with long instead of double.

June 18, 2014 28

BitVector

This class implements vectors of bits and the operations needed to use them. The vectors
can be of arbitrary length. The operations provided are all the binary operations available
to the int and long primitive types in Java.

All bit operations are present in two forms: a normal form and a self form. The normal
form returns a newly created object containing the result, while the self form puts the
result in the calling object (this). The return value of the self form is the calling object
itself. This is done to allow easier manipulation of the results, making it possible to chain
operations.

package umontreal.iro.lecuyer.util;

public class BitVector implements Serializable, Cloneable

Constructors

public BitVector (int length)

Creates a new BitVector of length length with all its bits set to 0.

public BitVector (int[] vect, int length)

Creates a new BitVector of length length using the data in vect. Component vect[0]
makes the 32 lowest order bits, with vect[1] being the 32 next lowest order bits, and so on.
The normal bit order is then used to fill the 32 bits (the first bit is the lowest order bit and
the last bit is largest order bit). Note that the sign bit is used as the largest order bit.

public BitVector (int[] vect)

Creates a new BitVector using the data in vect. The length of the BitVector is always
equals to 32 times the length of vect.

public BitVector (BitVector that)

Creates a copy of the BitVector that.

Methods

public Object clone()

Creates a copy of the BitVector.

public boolean equals (BitVector that)

Verifies if two BitVector’s have the same length and the same data.

public int size()

Returns the length of the BitVector.

June 18, 2014 BitVector 29

public void enlarge (int size, boolean filling)

Resizes the BitVector so that its length is equal to size. If the BitVector is enlarged,
then the newly added bits are given the value 1 if filling is set to true and 0 otherwise.

public void enlarge (int size)

Resizes the BitVector so that its length is equal to size. Any new bit added is set to 0.

public boolean getBool (int pos)

Gives the value of the bit in position pos. If the value is 1, returns true; otherwise, returns
false.

public void setBool (int pos, boolean value)

Sets the value of the bit in position pos. If value is equal to true, sets it to 1; otherwise,
sets it to 0.

public int getInt (int pos)

Returns an int containing all the bits in the interval [pos× 32, pos× 32 + 31].

public String toString()

Returns a string containing all the bits of the BitVector, starting with the highest order
bit and finishing with the lowest order bit. The bits are grouped by groups of 8 bits for ease
of reading.

public BitVector not()

Returns a BitVector which is the result of the not operator on the current BitVector. The
not operator is equivalent to the ~ operator in Java and thus swap all bits (bits previously
set to 0 become 1 and bits previously set to 1 become 0).

public BitVector selfNot()

Applies the not operator on the current BitVector and returns it.

public BitVector xor (BitVector that)

Returns a BitVector which is the result of the xor operator applied on this and that.
The xor operator is equivalent to the ^ operator in Java. All bits which were set to 0 in
one of the vector and to 1 in the other vector are set to 1. The others are set to 0. This is
equivalent to the addition in modulo 2 arithmetic.

public BitVector selfXor (BitVector that)

Applies the xor operator on this with that. Stores the result in this and returns it.

public BitVector and (BitVector that)

Returns a BitVector which is the result of the and operator with both the this and that
BitVector’s. The and operator is equivalent to the & operator in Java. Only bits which are
set to 1 in both this and that are set to 1 in the result, all the others are set to 0.

public BitVector selfAnd (BitVector that)

Applies the and operator on this with that. Stores the result in this and returns it.

June 18, 2014 BitVector 30

public BitVector or (BitVector that)

Returns a BitVector which is the result of the or operator with both the this and that
BitVector’s. The or operator is equivalent to the | operator in Java. Only bits which are
set to 0 in both this and that are set to to 0 in the result, all the others are set to 1.

public BitVector selfOr (BitVector that)

Applies the or operator on this with that. Stores the result in this and returns it.

public BitVector shift (int j)

Returns a BitVector equal to the original with all the bits shifted j positions to the right if
j is positive, and shifted j positions to the left if j is negative. The new bits that appears
to the left or to the right are set to 0. If j is positive, this operation is equivalent to the >>>
operator in Java, otherwise, it is equivalent to the << operator.

public BitVector selfShift (int j)

Shift all the bits of the current BitVector j positions to the right if j is positive, and j
positions to the left if j is negative. The new bits that appears to the left or to the rigth
are set to 0. Returns this.

public boolean scalarProduct (BitVector that)

Returns the scalar product of two BitVector’s modulo 2. It returns true if there is an odd
number of bits with a value of 1 in the result of the and operator applied on this and that,
and returns false otherwise.

June 18, 2014 31

BitMatrix

This class implements matrices of bits of arbitrary dimensions. Basic facilities for bits
operations, multiplications and exponentiations are provided.

package umontreal.iro.lecuyer.util;

public class BitMatrix implements Serializable, Cloneable

Constructors

public BitMatrix (int r, int c)

Creates a new BitMatrix with r rows and c columns filled with 0’s.

public BitMatrix (BitVector[] rows)

Creates a new BitMatrix using the data in rows. Each of the BitVector will be one of the
rows of the BitMatrix.

public BitMatrix (int[][] data, int r, int c)

Creates a new BitMatrix with r rows and c columns using the data in data. Note that the
orders of the bits for the rows are using the same order than for the BitVector. This does
mean that the first bit is the lowest order bit of the last int in the row and the last bit is
the highest order bit of the first int int the row.

public BitMatrix (BitMatrix that)

Copy constructor.

Methods

public Object clone()

Creates a copy of the BitMatrix.

public boolean equals (BitMatrix that)

Verifies that this and that are strictly identical. They must both have the same dimensions
and data.

public String toString()

Creates a String containing all the data of the BitMatrix. The result is displayed in a
matrix form, with each row being put on a different line. Note that the bit at (0,0) is at the
upper left of the matrix, while the bit at (0) in a BitVector is the least significant bit.

public String printData()

Creates a String containing all the data of the BitMatrix. The data is displayed in the same
format as are the int[][] in Java code. This allows the user to print the representation of

June 18, 2014 BitMatrix 32

a BitMatrix to be put, directly in the source code, in the constructor BitMatrix(int[][],
int, int). The output is not designed to be human-readable.

public int numRows()

Returns the number of rows of the BitMatrix.

public int numColumns()

Returns the number of columns of the BitMatrix.

public boolean getBool (int row, int column)

Returns the value of the bit in the specified row and column. If the value is 1, return true.
If it is 0, return false.

public void setBool (int row, int column, boolean value)

Changes the value of the bit in the specified row and column. If value is true, changes it
to 1. If value is false changes it to 0.

public BitMatrix transpose()

Returns the transposed matrix. The rows and columns are interchanged.

public BitMatrix not()

Returns the BitMatrix resulting from the application of the not operator on the original
BitMatrix. The effect is to swap all the bits of the BitMatrix, turning all 0 into 1 and all
1 into 0.

public BitMatrix and (BitMatrix that)

Returns the BitMatrix resulting from the application of the and operator on the original
BitMatrix and that. Only bits which were at 1 in both BitMatrix are set at 1 in the result.
All others are set to 0.

public BitMatrix or (BitMatrix that)

Returns the BitMatrix resulting from the application of the or operator on the original
BitMatrix and that. Only bits which were at 0 in both BitMatrix are set at 0 in the
result. All others are set to 1.

public BitMatrix xor (BitMatrix that)

Returns the BitMatrix resulting from the application of the xor operator on the original
BitMatrix and that. Only bits which were at 1 in only one of the two BitMatrix are set
at 1 in the result. All others are set to 0.

public BitVector multiply (BitVector vect)

Multiplies the column BitVector by a BitMatrix and returns the result. The result is A×v,
where A is the BitMatrix, and v is the BitVector.

public int multiply (int vect)

Multiplies vect, seen as a column BitVector, by a BitMatrix. (See BitVector to see the
conversion between int and BitVector.) The result is A × v, where A is the BitMatrix,
and v is the BitVector.

June 18, 2014 BitMatrix 33

public BitMatrix multiply (BitMatrix that)

Multiplies two BitMatrix’s together. The result is A×B, where A is the this BitMatrix
and B is the that BitMatrix.

public BitMatrix power (long p)

Raises the BitMatrix to the power p.

public BitMatrix power2e (int e)

Raises the BitMatrix to power 2e.

Nested Class

public class IncompatibleDimensionException extends RuntimeException

Runtime exception raised when the dimensions of the BitMatrix are not appropriate for the
operation.

June 18, 2014 34

DMatrix

This class implements a few methods for matrix calculations with double numbers.

package umontreal.iro.lecuyer.util;
import cern.colt.matrix.*;

public class DMatrix

Constructors

public DMatrix (int r, int c)

Creates a new DMatrix with r rows and c columns.

public DMatrix (double[][] data, int r, int c)

Creates a new DMatrix with r rows and c columns using the data in data.

public DMatrix (DMatrix that)

Copy constructor.

Methods

public static void CholeskyDecompose (double[][] M, double[][] L)

Given a symmetric positive-definite matrix M , performs the Cholesky decomposition of M
and returns the result as a lower triangular matrix L, such that M = LLT .

public static DoubleMatrix2D CholeskyDecompose (DoubleMatrix2D M)

Given a symmetric positive-definite matrix M , performs the Cholesky decomposition of M
and returns the result as a lower triangular matrix L, such that M = LLT .

public static void PCADecompose (double[][] M, double[][] A,
double[] lambda)

Computes the principal components decomposition M = UΛU t by using the singular value
decomposition of matrix M . Puts the eigenvalues, which are the diagonal elements of matrix
Λ, sorted by decreasing size, in vector lambda, and puts matrix A = U

√
Λ in A.

public static DoubleMatrix2D PCADecompose (DoubleMatrix2D M,
double[] lambda)

Computes the principal components decomposition M = UΛU t by using the singular value
decomposition of matrix M . Puts the eigenvalues, which are the diagonal elements of matrix
Λ, sorted by decreasing size, in vector lambda. Returns matrix A = U

√
Λ.

public static double[] solveLU (double[][] A, double[] b)

Solves the matrix equation Ax = b using LU decomposition. A is a square matrix, b and x
are vectors. Returns the solution x.

June 18, 2014 DMatrix 35

public static void solveTriangular (DoubleMatrix2D U, DoubleMatrix2D B,
DoubleMatrix2D X)

Solve the triangular matrix equation UX = B for X. U is a square upper triangular matrix.
B and X must have the same number of columns.

public static double[][] exp (double[][] A)

Similar to exp(A).

public static DoubleMatrix2D exp (final DoubleMatrix2D A)

Returns eA, the exponential of the square matrix A. The scaling and squaring method [?]
is used with Padé approximants to compute the exponential.

public static DoubleMatrix2D expBidiagonal (final DoubleMatrix2D A)

Returns eA, the exponential of the bidiagonal square matrix A. The only non-zero elements
of A are on the diagonal and on the first superdiagonal. This method is faster than exp(A)
because of the special form of A.

public static DoubleMatrix1D expBidiagonal (final DoubleMatrix2D A,
final DoubleMatrix1D b)

Computes c = eAb, where eA is the exponential of the bidiagonal square matrix A. The only
non-zero elements of A are on the diagonal and on the first superdiagonal. Uses the scaling
and squaring method [?] with Padé approximants. Returns c.

public static DoubleMatrix2D expmiBidiagonal (final DoubleMatrix2D A)

Computes eA − I, where eA is the exponential of the bidiagonal square matrix A. The only
non-zero elements of A are on the diagonal and on the first superdiagonal. Uses the scaling
and squaring method [?, ?] with Padé approximants. Returns eA − I.

public static DoubleMatrix1D expmiBidiagonal (final DoubleMatrix2D A,
final DoubleMatrix1D b)

Computes c = (eA − I)b, where eA is the exponential of the bidiagonal square matrix A.
The only non-zero elements of A are on the diagonal and on the first superdiagonal. Uses
the scaling and squaring method [?, ?] with a Taylor expansion. Returns c.

public static void copy (double[][] M, double[][] R)

Copies the matrix M into R.

public static String toString(double[][] M)

Returns matrix M as a string. It is displayed in matrix form, with each row on a line.

public String toString()

Creates a String containing all the data of the DMatrix. The result is displayed in matrix
form, with each row on a line.

public int numRows()

Returns the number of rows of the DMatrix.

June 18, 2014 DMatrix 36

public int numColumns()

Returns the number of columns of the DMatrix.

public double get (int row, int column)

Returns the matrix element in the specified row and column.

public void set (int row, int column, double value)

Sets the value of the element in the specified row and column.

public DMatrix transpose()

Returns the transposed matrix. The rows and columns are interchanged.

June 18, 2014 37

RootFinder

This class provides methods to solve non-linear equations.

package umontreal.iro.lecuyer.util;
import umontreal.iro.lecuyer.functions.MathFunction;

public class RootFinder

Methods

public static double brentDekker (double a, double b,
MathFunction f, double tol)

Computes a root x of the function in f using the Brent-Dekker method. The interval [a, b]
must contain the root x. The calculations are done with an approximate relative precision
tol. Returns x such that f(x) = 0.

public static double bisection (double a, double b,
MathFunction f, double tol)

Computes a root x of the function in f using the bisection method. The interval [a, b] must
contain the root x. The calculations are done with an approximate relative precision tol.
Returns x such that f(x) = 0.

June 18, 2014 38

MultivariateFunction

Represents a function of multiple variables. This interface specifies a method evaluate

that computes a g(x) function, where x = (x0, . . . , xd−1) ∈ Rd. It also specifies a method
evaluateGradient for computing its gradient ∇g(x).

The dimension d can be fixed or variable. When d is fixed, the methods specified by this
interface always take the same number of arguments. This is the case, for example, with a
ratio of two variables. When d is variable, the implementation can compute the function for
a vector x of any length. This can happen for a product or sum of variables.

The methods of this interface take a variable number of arguments to accomodate the
common case of fixed dimension with more convenience; the programmer can call the method
without creating an array. For the generic case, however, one can replace the arguments with
an array.

package umontreal.iro.lecuyer.util;

public interface MultivariateFunction

public int getDimension();

Returns d, the dimension of the function computed by this implementation. If the dimension
is not fixed, this method must return a negative value.

public double evaluate (double... x);

Computes the function g(x) for the vector x. The length of the given array must correspond
to the dimension of this function. The method must compute and return the result of
the function without modifying the elements in x since the array can be reused for further
computation.

public double evaluateGradient (int i, double... x);

Computes ∂g(x)/∂xi, the derivative of g(x) with respect to xi. The length of the given
array must correspond to the dimension of this function. The method must compute and
return the result of the derivative without modifying the elements in x since the array can
be reused for further computations, e.g., the gradient ∇g(x).

June 18, 2014 39

RatioFunction

Represents a function computing a ratio of two values.

package umontreal.iro.lecuyer.util;

public class RatioFunction implements MultivariateFunction

Constructors

public RatioFunction()

Constructs a new ratio function.

public RatioFunction (double zeroOverZero)

Constructs a new ratio function that returns zeroOverZero for the special case of 0/0.
See the getZeroOverZeroValue method for more information. The default value of
zeroOverZero is Double.NaN.

Methods

public double getZeroOverZeroValue()

Returns the value returned by evaluate in the case where the 0/0 function is calculated.
The default value for 0/0 is Double.NaN.

Generally, 0/0 is undefined, and therefore associated with the Double.NaN constant, meaning
not-a-number. However, in certain applications, it can be defined differently to accomodate
some special cases. For exemple, in a queueing system, if there are no arrivals, no customers
are served, lost, queued, etc. As a result, many performance measures of interest turn out
to be 0/0. Specifically, the loss probability, i.e., the ratio of lost customers over the number
of arrivals, should be 0 if there is no arrival; in this case, 0/0 means 0. On the other hand,
the service level, i.e., the fraction of customers waiting less than a fixed threshold, could be
fixed to 1 if there is no arrival.

public void setZeroOverZeroValue (double zeroOverZero)

Sets the value returned by evaluate for the undefined function 0/0 to zeroOverZero. See
getZeroOverZeroValue for more information.

June 18, 2014 40

Misc

This class provides miscellaneous functions that are hard to classify. Some may be moved
to another class in the future.

package umontreal.iro.lecuyer.util;

public class Misc

Methods

public static double quickSelect (double[] A, int n, int k)

Returns the kth smallest item of the array A of size n. Array A is unchanged by the method.
Restriction: 1 ≤ k ≤ n.

public static int quickSelect (int[] A, int n, int k)

Returns the kth smallest item of the array A of size n. Array A is unchanged by the method.
Restriction: 1 ≤ k ≤ n.

public static double getMedian (double[] A, int n)

Returns the median of the first n elements of array A.

public static double getMedian (int[] A, int n)

Returns the median of the first n elements of array A.

public static int getTimeInterval (double[] times, int start, int end,
double t)

Returns the index of the time interval corresponding to time t. Let t0 ≤ · · · ≤ tn be
simulation times stored in a subset of times. This method uses binary search to determine
the smallest value i for which ti ≤ t < ti+1, and returns i. The value of ti is stored in
times[start+i] whereas n is defined as end - start. If t < t0, this returns −1. If t ≥ tn,
this returns n. Otherwise, the returned value is greater than or equal to 0, and smaller than
or equal to n− 1. start and end are only used to set lower and upper limits of the search
in the times array; the index space of the returned value always starts at 0. Note that if
the elements of times with indices start, . . . , end are not sorted in non-decreasing order,
the behavior of this method is undefined.

public static void interpol (int n, double[] X, double[] Y, double[] C)

Computes the Newton interpolating polynomial. Given the n+1 real distinct points (x0, y0),
(x1, y1), . . . , (xn, yn), with X[i] = xi, Y[i] = yi, this function computes the n+1 coefficients
C[i] = ci of the Newton interpolating polynomial P (x) of degree n passing through these
points, i.e. such that yi = P (xi), given by

P (x) = c0 + c1(x− x0) + c2(x− x0)(x− x1) + · · ·+ cn(x− x0)(x− x1) · · · (x− xn−1). (3)

public static double evalPoly (int n, double[] X, double[] C, double z)

Given n, X and C as described in interpol(n, X, Y, C), this function returns the value
of the interpolating polynomial P (z) evaluated at z (see eq. ??).

June 18, 2014 Misc 41

public static double evalPoly (double[] C, int n, double x)

Evaluates the polynomial P (x) of degree n with coefficients cj = C[j] at x:

P (x) = c0 + c1x+ c2x
2 + · · ·+ cnx

n (4)

June 18, 2014 42

JDBCManager
This class provides some facilities to connect to a SQL database and to retrieve data stored

in it. JDBC provides a standardized interface for accessing a database independently of a
specific database management system (DBMS). The user of JDBC must create a Connection

object used to send SQL queries to the underlying DBMS, but the creation of the connection
adds a DBMS-specific portion in the application. This class helps the developer in moving
the DBMS-specific information out of the source code by storing it in a properties file. The
methods in this class can read such a properties file and establish the JDBC connection.
The connection can be made by using a DataSource obtained through a JNDI server, or by
a JDBC URI associated with a driver class. Therefore, the properties used to connect to the
database must be a JNDI name (jdbc.jndi-name), or a driver to load (jdbc.driver) with
the URI of a database (jdbc.uri).

jdbc.driver=com.mysql.jdbc.Driver

jdbc.uri=jdbc:mysql://mysql.iro.umontreal.ca/database?user=foo&password=bar

The connection is established using the connectToDatabase method. Shortcut methods
are also available to read the properties from a file or a resource before establishing the
connection. This class also provides shortcut methods to read data from a database and to
copy the data into Java arrays.

package umontreal.iro.lecuyer.util;

public class JDBCManager

Methods

public static Connection connectToDatabase (Properties prop)
throws SQLException

Connects to the database using the properties prop and returns the an object representing
the connection. The properties stored in prop must be a JNDI name (jdbc.jndi-name),
or the name of a driver (jdbc.driver) to load and the URI of the database (jdbc.uri).
When a JNDI name is given, this method constructs a context using the nullary constructor
of InitialContext, uses the context to get a DataSource object, and uses the data source
to obtain a connection. This method assumes that JNDI is configured correctly; see the
class InitialContext for more information about configuring JNDI. If no JNDI name is
specified, the method looks for a JDBC URI. If a driver class name is specified along with the
URI, the corresponding driver is loaded and registered with the JDBC DriverManager. The
driver manager is then used to obtain the connection using the URI. This method throws an
SQLException if the connection failed and an IllegalArgumentException if the properties
do not contain the required values.

public static Connection connectToDatabase (InputStream is)
throws IOException, SQLException

Returns a connection to the database using the properties read from stream is. This method
loads the properties from the given stream, and calls connectToDatabase to establish the
connection.

June 18, 2014 JDBCManager 43

public static Connection connectToDatabase (URL url)
throws IOException, SQLException

Equivalent to connectToDatabase (url.openStream()).

public static Connection connectToDatabase (File file)
throws IOException, SQLException

Equivalent to connectToDatabase (new FileInputStream (file)).

public static Connection connectToDatabase (String fileName)
throws IOException, SQLException

Equivalent to connectToDatabase (new FileInputStream (fileName)).

public static Connection connectToDatabaseFromResource (String resource)
throws IOException, SQLException

Uses connectToDatabase with the stream obtained from the resource resource. This
method searches the file resource on the class path, opens the first resource found, and
extracts properties from it. It then uses connectToDatabase to establish the connection.

public static double[] readDoubleData (Statement stmt, String query)
throws SQLException

Copies the result of the SQL query query into an array of double-precision values. This
method uses the statement stmt to execute the given query, and assumes that the first
column of the result set contains double-precision values. Each row of the result set then
becomes an element of an array of double-precision values which is returned by this method.
This method throws an SQLException if the query is not valid.

public static double[] readDoubleData (Connection connection,
String query)

throws SQLException

Copies the result of the SQL query query into an array of double-precision values. This
method uses the active connection connection to create a statement, and passes this state-
ment, with the query, to readDoubleData, which returns an array of double-precision values.

public static double[] readDoubleData (Statement stmt, String table,
String column)

throws SQLException

Returns the values of the column column of the table table. This method is equivalent to
readDoubleData (stmt, "SELECT column FROM table").

public static double[] readDoubleData (Connection connection,
String table, String column)

throws SQLException

Returns the values of the column column of the table table. This method is equivalent to
readDoubleData (connection, "SELECT column FROM table").

public static int[] readIntData (Statement stmt, String query)
throws SQLException

Copies the result of the SQL query query into an array of integers. This method uses the
statement stmt to execute the given query, and assumes that the first column of the result

June 18, 2014 JDBCManager 44

set contains integer values. Each row of the result set then becomes an element of an array
of integers which is returned by this method. This method throws an SQLException if the
query is not valid. The given statement stmt must not be set up to produce forward-only
result sets.

public static int[] readIntData (Connection connection, String query)
throws SQLException

Copies the result of the SQL query query into an array of integers. This method uses the
active connection connection to create a statement, and passes this statement, with the
query, to readIntData, which returns an array of integers.

public static int[] readIntData (Statement stmt, String table,
String column)

throws SQLException

Returns the values of the column column of the table table. This method is equivalent to
readIntData (stmt, "SELECT column FROM table").

public static int[] readIntData (Connection connection, String table,
String column)

throws SQLException

Returns the values of the column column of the table table. This method is equivalent to
readIntData (connection, "SELECT column FROM table").

public static Object[] readObjectData (Statement stmt, String query)
throws SQLException

Copies the result of the SQL query query into an array of objects. This method uses the
statement stmt to execute the given query, and extracts values from the first column of
the obtained result set by using the getObject method. Each row of the result set then
becomes an element of an array of objects which is returned by this method. The type of
the objects in the array depends on the column type of the result set, which depends on the
database and query. This method throws an SQLException if the query is not valid. The
given statement stmt must not be set up to produce forward-only result sets.

public static Object[] readObjectData (Connection connection,
String query)

throws SQLException

Copies the result of the SQL query query into an array of objects. This method uses the
active connection connection to create a statement, and passes this statement, with the
query, to readObjectData, which returns an array of integers.

public static Object[] readObjectData (Statement stmt,
String table, String column)

throws SQLException

Returns the values of the column column of the table table. This method is equivalent to
readObjectData (stmt, "SELECT column FROM table").

public static Object[] readObjectData (Connection connection,
String table, String column)

throws SQLException

Returns the values of the column column of the table table. This method is equivalent to
readObjectData (connection, "SELECT column FROM table").

June 18, 2014 JDBCManager 45

public static double[][] readDoubleData2D (Statement stmt, String query)
throws SQLException

Copies the result of the SQL query query into a rectangular 2D array of double-precision
values. This method uses the statement stmt to execute the given query, and assumes that
the columns of the result set contain double-precision values. Each row of the result set then
becomes a row of a 2D array of double-precision values which is returned by this method.
This method throws an SQLException if the query is not valid. The given statement stmt
must not be set up to produce forward-only result sets.

public static double[][] readDoubleData2D (Connection connection,
String query)

throws SQLException

Copies the result of the SQL query query into a rectangular 2D array of double-precision
values. This method uses the active connection connection to create a statement, and
passes this statement, with the query, to readDoubleData2D, which returns a 2D array of
double-precision values.

public static double[][] readDoubleData2DTable (Statement stmt,
String table)

throws SQLException

Returns the values of the columns of the table table. This method is equivalent to
readDoubleData2D (stmt, "SELECT * FROM table").

public static double[][] readDoubleData2DTable (Connection connection,
String table)

throws SQLException

Returns the values of the columns of the table table. This method is equivalent to
readDoubleData2D (connection, "SELECT * FROM table").

public static int[][] readIntData2D (Statement stmt, String query)
throws SQLException

Copies the result of the SQL query query into a rectangular 2D array of integers. This
method uses the statement stmt to execute the given query, and assumes that the columns
of the result set contain integers. Each row of the result set then becomes a row of a 2D array
of integers which is returned by this method. This method throws an SQLException if the
query is not valid. The given statement stmt must not be set up to produce forward-only
result sets.

public static int[][] readIntData2D (Connection connection, String query)
throws SQLException

Copies the result of the SQL query query into a rectangular 2D array of integers. This
method uses the active connection connection to create a statement, and passes this state-
ment, with the query, to readIntData2D, which returns a 2D array of integers.

public static int[][] readIntData2DTable (Statement stmt, String table)
throws SQLException

Returns the values of the columns of the table table. This method is equivalent to
readIntData2D (stmt, "SELECT * FROM table").

June 18, 2014 JDBCManager 46

public static int[][] readIntData2DTable (Connection connection,
String table)

throws SQLException

Returns the values of the columns of the table table. This method is equivalent to
readIntData2D (connection, "SELECT * FROM table").

public static Object[][] readObjectData2D (Statement stmt, String query)
throws SQLException

Copies the result of the SQL query query into a rectangular 2D array of objects. This
method uses the statement stmt to execute the given query, and extracts values from the
obtained result set by using the getObject method. Each row of the result set then becomes
a row of a 2D array of objects which is returned by this method. The type of the objects in
the 2D array depends on the column types of the result set, which depend on the database
and query. This method throws an SQLException if the query is not valid. The given
statement stmt must not be set up to produce forward-only result sets.

public static Object[][] readObjectData2D (Connection connection,
String query)

throws SQLException

Copies the result of the SQL query query into a rectangular 2D array of integers. This
method uses the active connection connection to create a statement, and passes this state-
ment, with the query, to readObjectData2D, which returns a 2D array of integers.

public static Object[][] readObjectData2DTable (Statement stmt,
String table)

throws SQLException

Returns the values of the columns of the table table. This method is equivalent to
readObjectData2D (stmt, "SELECT * FROM table").

public static Object[][] readObjectData2DTable (Connection connection,
String table)

throws SQLException

Returns the values of the columns of the table table. This method is equivalent to
readObjectData2D (connection, "SELECT * FROM table").

June 18, 2014 47

ClassFinder

Utility class used to convert a simple class name to a fully qualified class object. The
Class class can be used to obtain information about a class (its name, its fields, methods,
constructors, etc.), and to construct objects, even if the exact class is known at runtime only.
It provides a forName static method converting a string to a Class, but the given string
must be a fully qualified name.

Sometimes, configuration files may need to contain Java class names. After they are
extracted from the file, these class names are given to forName to be converted into Class

objects. Unfortunately, only fully qualified class names will be accepted as input, which
clutters configuration files, especially if long package names are used. This class permits the
definition of a set of import declarations in a way similar to the Java Language Specification
[?]. It provides methods to convert a simple class name to a Class object and to generate
a simple name from a Class object, based on the import rules.

The first step for using a class finder is to construct an instance of this class. Then, one
needs to retrieve the initially empty list of import declarations by using getImports, and
update it with the actual import declarations. Then, the method findClass can find a class
using the import declarations. For example, the following code retrieves the class object for
the List class in package java.util

ClassFinder cf = new ClassFinder();
cf.getImports().add ("java.util.*");
Class<?> listClass = cf.findClass ("List");

package umontreal.iro.lecuyer.util;

public class ClassFinder implements Cloneable, java.io.Serializable

private List<List<String>> imports

Contains the saved import lists. Each element of this list is a nested List containing
String’s, each string containing the fully qualified name of an imported package or class.

public ClassFinder()

Constructs a new class finder with an empty list of import declarations.

public List<String> getImports()

Returns the current list of import declarations. This list may contain only String’s of the
form java.class.name or java.package.name.*.

public void saveImports()

Saves the current import list on the import stack. This method makes a copy of the list re-
turned by getImports and puts it on top of a stack to be restored later by restoreImports.

public void restoreImports()

Restores the list of import declarations. This method removes the last list of import decla-
rations from the stack. If the stack contains only one list, this list is cleared.

June 18, 2014 ClassFinder 48

public Class<?> findClass (String name) throws
ClassNotFoundException, NameConflictException

Tries to find the class corresponding to the simple name name. The method first considers
the argument as a fully qualified class name and calls forName (name). If the class cannot be
found, it considers the argument as a simple name. A simple name refers to a class without
specifying the package declaring it. To convert simple names to qualified names, the method
iterates through all the strings in the list returned by getImports, applying the same rules
as a Java compiler to resolve the class name. However, if an imported package or class does
not exist, it will be ignored whereas the compiler would stop with an error.

For the class with simple name name to be loaded, it must be imported explicitly (single-type
import) or one of the imported packages must contain it (type import on-demand). If the
class with name name is imported explicitly, this import declaration has precedence over
any imported packages. If several import declaration match the given simple name, e.g.,
if several fully qualified names with the same simple name are imported, or if a class with
simple name name exists in several packages, a NameConflictException is thrown.

public String getSimpleName (Class<?> cls)

Returns the simple name of the class cls that can be used when the imports contained in
this class finder are used. For example, if java.lang.String.class is given to this method,
String is returned if java.lang.* is among the import declarations.

Note: this method does not try to find name conflicts. This operation is performed by
findClass only. For example, if the list of imported declarations contains foo.bar.* and
test.Foo, and the simple name for test.Foo is queried, the method returns Foo even if the
package foo.bar contains a Foo class.

public ClassFinder clone()

Clones this class finder, and copies its lists of import declarations.

June 18, 2014 49

NameConflictException

This exception is thrown by a ClassFinder when two or more fully qualified class names
can be associated with a simple class name.

package umontreal.iro.lecuyer.util;

public class NameConflictException extends Exception

Constructors

public NameConflictException()

Constructs a new name conflict exception.

public NameConflictException (String message)

Constructs a new name conflict exception with message message.

public NameConflictException (ClassFinder finder, String name,
String message)

Constructs a new name conflict exception with class finder finder, simple name name, and
message message.

Methods

public ClassFinder getClassFinder()

Returns the class finder associated with this exception.

public String getName()

Returns the simple name associated with this exception.

June 18, 2014 50

Introspection

Provides utility methods for introspection using Java Reflection API.

package umontreal.iro.lecuyer.util;

public class Introspection

public static Method[] getMethods (Class<?> c)

Returns all the methods declared and inherited by a class. This is similar to getMethods
except that it enumerates non-public methods as well as public ones. This method uses
getDeclaredMethods to get the declared methods of c. It also gets the declared methods
of superclasses. If a method is defined in a superclass and overriden in a subclass, only the
overriden method will be in the returned array.

Note that since this method uses getDeclaredMethods, it can throw a SecurityException
if a security manager is present.

public static boolean sameSignature (Method m1, Method m2)

Determines if two methods m1 and m2 share the same signature. For the signature to be
identical, methods must have the same number of parameters and the same parameter types.

public static Field[] getFields (Class<?> c)

Returns all the fields declared and inherited by a class. This is similar to getFields
except that it enumerates non-public fields as well as public ones. This method uses
getDeclaredFields to get the declared fields of c. It also gets the declared fields of super-
classes and implemented interfaces.

Note that since this method uses getDeclaredFields, it can throw a SecurityException
if a security manager is present.

public static Method getMethod (Class<?> c, String name, Class[] pt)
throws NoSuchMethodException

This is like getMethod, except that it can return non-public methods.

public static Field getField (Class<?> c, String name)
throws NoSuchFieldException

This is like getField, except that it can return non-public fields.

Note that since this method uses getDeclaredField, it can throw a SecurityException if
a security manager is present.

public static String getFieldName (Object val)

Returns the field name corresponding to the value of an enumerated type val. This method
gets the class of val and scans its fields to find a public static and final field containing val.
If such a field is found, its name is returned. Otherwise, null is returned.

June 18, 2014 Introspection 51

public static <T> T valueOf (Class<T> cls, String name)

Returns the field of class cls corresponding to the name name. This method looks for a
public, static, and final field with name name and returns its value. If no appropriate field
can be found, an IllegalArgumentException is thrown.

public static <T> T valueOfIgnoreCase (Class<T> cls, String name)

Similar to valueOf (cls, name), with case insensitive field name look-up. If cls defines
several fields with the same case insensitive name name, an IllegalArgumentException is
thrown.

June 18, 2014 52

TransformingList

Represents a list that dynamically transforms the elements of another list. This abstract
class defines a list containing an inner list of elements of a certain type, and provides facilities
to convert these inner elements to outer elements of another type. A concrete subclass simply
needs to provide methods for converting between the inner and the outer types.

package umontreal.iro.lecuyer.util;

public abstract class TransformingList<OE,IE> extends AbstractList<OE>

public TransformingList (List<IE> fromList)

Creates a new transforming list wrapping the inner list fromList.

public abstract OE convertFromInnerType (IE e)

Converts an element in the inner list to an element of the outer type.

public abstract IE convertToInnerType (OE e)

Converts an element of the outer type to an element for the inner list.

June 18, 2014 53

DoubleArrayComparator

An implementation of java.util.Comparator which compares two double arrays by
comparing their i-th element, where i is given in the constructor. Method compare(d1,

d2) returns −1, 0, or 1 depending on whether d1[i] is less than, equal to, or greater than
d2[i].

package umontreal.iro.lecuyer.util;

public class DoubleArrayComparator implements Comparator<double[]>

Constructor

public DoubleArrayComparator (int i)

Constructs a comparator, where i is the index used for the comparisons.

Methods

public int compare (double[] d1, double[] d2)

Returns −1, 0, or 1 depending on whether d1[i] is less than, equal to, or greater than
d2[i].

June 18, 2014 DoubleArrayComparator 54

Overview of package util.io

This package provides tools for exporting data to text and binary files, as well as for importing
data from files.

Each of the write() methods takes a field label as their first argument. This label can
always be set to null, in which case an anonymous field will be written. The write() meth-
ods that take one-dimensional array argument can also take an additional integer argument,
for convenience, to specify the number of elements to write in the array.

For a quick start, consult the following examples and the documentation for DataWriter
and DataReader, as well as the constructors of implementing classes (TextDataWriter,
BinaryDataWriter and BinaryDataReader).
Example of how to write data to a file:

public static void writerExample() throws IOException {
String filename = "test.dat";
DataWriter out = new BinaryDataWriter(filename);
out.write("zero", 0);
out.write("zerotxt", "ZERO");
out.write("n", new int[]{1,2,3,4,5});
out.write("pi", Math.PI);
out.write("str", new String[]{"text1", "text2"});
out.write("real", new double[]{2.5, 3.7, 8.9});
out.write("real2", new float[]{2.5f, 3.7f, 8.9f});
out.write(null, 24);
out.write(null, 39);
out.write(null, 116);
out.close();

}
Example of how to read data from a file — specific fields:

public static void readerExample1() throws IOException {
String filename = "test.dat";
DataReader in = new BinaryDataReader(filename);

// read double field labeled "pi"
System.out.println("[pi] (double) " + in.readField("pi").asDouble());

// read integer-array field labeled "n"
int[] n = in.readIntArray("n");
System.out.print("[n] (int[]) ");
for (int i = 0; i < n.length; i++)

System.out.print(" " + n[i]);
System.out.println();

in.close();
}

June 18, 2014 DoubleArrayComparator 55

Example of how to read data from a file — list all fields:

public static void readerExample2() throws IOException {
String filename = "test.dat";
DataReader in = new BinaryDataReader(filename);

Map<String,DataField> fields = in.readAllFields();
in.close();

// sort keys
Set<String> allKeys = new TreeSet<String>(fields.keySet());

for (String key : allKeys) {
System.out.print("[" + key + "]");
DataField d = fields.get(key);

if (d.isString())
System.out.print(" (String) " + d.asString());

if (d.isInt())
System.out.print(" (int) " + d.asInt());

if (d.isFloat())
System.out.print(" (float) " + d.asFloat());

if (d.isDouble())
System.out.print(" (double) " + d.asDouble());

if (d.asStringArray() != null) {
System.out.print(" (String[]) ");
String[] a = d.asStringArray();
for (int i = 0; i < a.length; i++)

System.out.print(" " + a[i]);
}

if (d.asIntArray() != null) {
System.out.print(" (int[]) ");
int[] a = d.asIntArray();
for (int i = 0; i < a.length; i++)

System.out.print(" " + a[i]);
}

if (d.asFloatArray() != null) {
System.out.print(" (float[]) ");
float[] a = d.asFloatArray();
for (int i = 0; i < a.length; i++)

System.out.print(" " + a[i]);
}

if (d.asDoubleArray() != null) {
System.out.print(" (double[]) ");
double[] a = d.asDoubleArray();
for (int i = 0; i < a.length; i++)

System.out.print(" " + a[i]);
}

System.out.println();
}

}

June 18, 2014 56

DataWriter

Data writer interface.

package umontreal.iro.lecuyer.util.io;

public interface DataWriter

Writing atomic data

public void write (String label, String s) throws IOException;

Writes an atomic string field. Writes an anonymous field if label is null.

public void write (String label, int a) throws IOException;

Writes an atomic 32-bit integer (big endian). Writes an anonymous field if label is null.

public void write (String label, float a) throws IOException;

Writes an atomic 32-bit float (big endian). Writes an anonymous field if label is null.

public void write (String label, double a) throws IOException;

Writes an atomic 64-bit double (big endian). Writes an anonymous field if label is null.

Writing one-dimensional arrays

public void write (String label, String[] a) throws IOException;

Writes a one-dimensional array of strings. Writes an anonymous field if label is null.

public void write (String label, String[] a, int n) throws IOException;

Writes the first n elements of a one-dimensional array of strings. Writes an anonymous field
if label is null.

public void write (String label, int[] a) throws IOException;

Writes a one-dimensional array of 32-bit integers (big endian). Writes an anonymous field
if label is null.

public void write (String label, int[] a, int n) throws IOException;

Writes the first n elements of a one-dimensional array of 32-bit integers (big endian). Writes
an anonymous field if label is null.

public void write (String label, float[] a) throws IOException;

Writes a one-dimensional array of 32-bit floats (big endian). Writes an anonymous field if
label is null.

public void write (String label, float[] a, int n) throws IOException;

Writes the first n elements of a one-dimensional array of 32-bit floats (big endian). Writes
an anonymous field if label is null.

June 18, 2014 DataWriter 57

public void write (String label, double[] a) throws IOException;

Writes a one-dimensional array of 64-bit doubles (big endian). Writes an anonymous field if
label is null.

public void write (String label, double[] a, int n) throws IOException;

Writes the first n elements of a one-dimensional array of 64-bit doubles (big endian). Writes
an anonymous field if label is null.

Writing two-dimensional arrays

public void write (String label, String[][] a) throws IOException;

Writes a two-dimensional array of strings. Writes an anonymous field if label is null.

public void write (String label, int[][] a) throws IOException;

Writes a two-dimensional array of 32-bit integers (big endian). Writes an anonymous field
if label is null.

public void write (String label, float[][] a) throws IOException;

Writes a two-dimensional array of 32-bit floats (big endian). Writes an anonymous field if
label is null.

public void write (String label, double[][] a) throws IOException;

Writes a two-dimensional array of 64-bit doubles (big endian). Writes an anonymous field
if label is null.

Other methods

public void close() throws IOException;

Flushes any pending data and closes the output stream.

June 18, 2014 58

AbstractDataWriter

This abstract class implements shared functionality for data writers.

package umontreal.iro.lecuyer.util.io;

public abstract class AbstractDataWriter implements DataWriter

Writing one-dimensional arrays

public void write (String label, String[] a) throws IOException

Writes a one-dimensional array of strings. If label is null, writes an anonymous field.

public void write (String label, int[] a) throws IOException

Writes a one-dimensional array of 32-bit integers (big endian). If label is null, writes an
anonymous field.

public void write (String label, float[] a) throws IOException

Writes a one-dimensional array of 32-bit floats (big endian). If label is null, writes an
anonymous field.

public void write (String label, double[] a) throws IOException

Writes a one-dimensional array of 64-bit doubles (big endian). If label is null, writes an
anonymous field.

June 18, 2014 59

CachedDataWriter

This abstract class implements shared functionality for data writers that store all fields
in memory before outputing them with close.

package umontreal.iro.lecuyer.util.io;

public abstract class CachedDataWriter extends AbstractDataWriter

Constructor

public CachedDataWriter()

Class constructor.

Writing atomic data

public void write (String label, String s) throws IOException

Writes an atomic string field. Writes an anonymous field if label is null.

public void write (String label, int a) throws IOException

Writes an atomic 32-bit integer (big endian). Writes an anonymous field if label is null.

public void write (String label, float a) throws IOException

Writes an atomic 32-bit float (big endian). Writes an anonymous field if label is null.

public void write (String label, double a) throws IOException

Writes an atomic 64-bit double (big endian). Writes an anonymous field if label is null.

Writing one-dimensional arrays

public void write (String label, String[] a, int n) throws IOException

Writes the first n elements of a one-dimensional array of strings. Writes an anonymous field
if label is null.

public void write (String label, int[] a, int n) throws IOException

Writes the first n elements of a one-dimensional array of 32-bit integers (big endian). Writes
an anonymous field if label is null.

public void write (String label, float[] a, int n) throws IOException

Writes the first n elements of a one-dimensional array of 32-bit floats (big endian). Writes
an anonymous field if label is null.

public void write (String label, double[] a, int n) throws IOException

Writes the first n elements of a one-dimensional array of 64-bit doubles (big endian). Writes
an anonymous field if label is null.

June 18, 2014 CachedDataWriter 60

Writing two-dimensional arrays

public void write (String label, String[][] a) throws IOException

Writes a two-dimensional array of strings. Writes an anonymous field if label is null.

public void write (String label, int[][] a) throws IOException

Writes a two-dimensional array of 32-bit integers (big endian). Writes an anonymous field
if label is null.

public void write (String label, float[][] a) throws IOException

Writes a two-dimensional array of 32-bit floats (big endian). Writes an anonymous field if
label is null.

public void write (String label, double[][] a) throws IOException

Writes a two-dimensional array of 64-bit doubles (big endian). Writes an anonymous field
if label is null.

June 18, 2014 61

TextDataWriter

Text data writer. Writes fields as columns or as rows in a text file.

package umontreal.iro.lecuyer.util.io;

public class TextDataWriter extends CachedDataWriter

Fields

public final String DEFAULT_COLUMN_SEPARATOR = "�";

Default value for the column separator.

public final String DEFAULT_HEADER_PREFIX = "";

Default value for the header prefix.

Enums

public enum Format { COLUMNS, ROWS }

Output format: organize fields as columns or as rows.

Constructors

public TextDataWriter (String filename, Format format, boolean withHeaders)
throws IOException

Class constructor. Truncates any existing file with the specified name.

public TextDataWriter (File file, Format format, boolean withHeaders)
throws IOException

Class constructor. Truncates any conflicting file.

public TextDataWriter (OutputStream outputStream, Format format,
boolean withHeaders)

throws IOException

Class constructor.

June 18, 2014 TextDataWriter 62

Methods

public void setFormat (Format format)

Changes the output format.

public void setFloatFormatString (String formatString)

Sets the format string used to output floating point numbers.

public void setColumnSeparator (String columnSeparator)

Changes the column separator.

public void setHeaderPrefix (String headerPrefix)

Changes the header prefix (a string that indicates the beginning of the header line for the
COLUMNS format).

public void close() throws IOException

Flushes any pending data and closes the file or stream.

June 18, 2014 63

BinaryDataWriter

Binary data writer.

Stores a sequence of fields in binary file, which can be either atoms or arrays, each of
which having the following format:

• Field label:

– Pipe character (|)

– Label length (32-bit integer, big endian)

– Label string (array of bytes of the specified length)

• Field type (byte):

– i (32-bit integer)

– f (32-bit float)

– d (64-bit double)

– S (string)

• Number of dimensions (8-bit integer)

• Dimensions (array of 32-bit integers, big endian)

• Field data (in the specified format, big endian)

In the case of an atomic field, the number of dimensions is set to zero.

A string field is stored in the following format:

• String length (32-bit integer)

• Array of bytes of the specified length

Also supports anonymous fields (fields with an empty label).

Arrays up to two dimensions are supported.

Modules for reading data exported with this class are available in Java (BinaryDataReader),
Matlab and Python (numpy).

package umontreal.iro.lecuyer.util.io;

public class BinaryDataWriter extends AbstractDataWriter

June 18, 2014 BinaryDataWriter 64

Fields

public final static byte TYPECHAR_LABEL = ’|’;

Field-type symbol indicating a label (it more accurately a field separator symbol).

public final static byte TYPECHAR_STRING = ’S’;

Field-type symbol indicating String data.

public final static byte TYPECHAR_INTEGER = ’i’;

Field-type symbol indicating int data.

public final static byte TYPECHAR_FLOAT = ’f’;

Field-type symbol indicating float data.

public final static byte TYPECHAR_DOUBLE = ’d’;

Field-type symbol indicating double data.

Constructors

public BinaryDataWriter (String filename, boolean append)
throws IOException

Data will be output to the file with the specified name.

public BinaryDataWriter (File file, boolean append) throws IOException

Data will be output to the specified file.

public BinaryDataWriter (String filename) throws IOException

Truncates any existing file with the specified name.

public BinaryDataWriter (File file) throws IOException

Truncates any existing file with the specified name.

public BinaryDataWriter (OutputStream outputStream) throws IOException

Constructor.

Writing atomic data

public void write (String label, String s) throws IOException

Writes an atomic string field. Writes an anonymous field if label is null.

public void write (String label, int a) throws IOException

Writes an atomic 32-bit integer (big endian). Writes an anonymous field if label is null.

public void write (String label, float a) throws IOException

Writes an atomic 32-bit float (big endian). Writes an anonymous field if label is null.

public void write (String label, double a) throws IOException

Writes an atomic 64-bit double (big endian). Writes an anonymous field if label is null.

June 18, 2014 BinaryDataWriter 65

Writing one-dimensional arrays

public void write (String label, String[] a, int n) throws IOException

Writes the first n elements of a one-dimensional array of strings. Writes an anonymous field
if label is null.

public void write (String label, int[] a, int n) throws IOException

Writes the first n elements of a one-dimensional array of 32-bit integers (big endian). Writes
an anonymous field if label is null.

public void write (String label, float[] a, int n) throws IOException

Writes the first n elements of a one-dimensional array of 32-bit floats (big endian). Writes
an anonymous field if label is null.

public void write (String label, double[] a, int n) throws IOException

Writes the first n elements of a one-dimensional array of 64-bit doubles (big endian). Writes
an anonymous field if label is null.

Writing two-dimensional arrays

public void write (String label, String[][] a) throws IOException

Writes a two-dimensional array of strings. Writes an anonymous field if label is null.

public void write (String label, int[][] a) throws IOException

Writes a two-dimensional array of 32-bit integers (big endian). Writes an anonymous field
if label is null.

public void write (String label, float[][] a) throws IOException

Writes a two-dimensional array of 32-bit floats (big endian). Writes an anonymous field if
label is null.

public void write (String label, double[][] a) throws IOException

Writes a two-dimensional array of 64-bit doubles (big endian). Writes an anonymous field
if label is null.

Other methods

public void close() throws IOException

Flushes any pending data and closes the file.

June 18, 2014 66

DataReader

Data reader interface.

package umontreal.iro.lecuyer.util.io;

public interface DataReader

Reading atomic data

public String readString (String label) throws IOException;

Reads the first field labeled as label and returns its String value.

public int readInt (String label) throws IOException;

Reads the first field labeled as label and returns its int value.

public float readFloat (String label) throws IOException;

Reads the first field labeled as label and returns its float value.

public double readDouble (String label) throws IOException;

Reads the first field labeled as label and returns its double value.

Reading one-dimensional arrays

public String[] readStringArray (String label) throws IOException;

Reads the first field labeled as label and returns its value as a one-dimensional array of
String’s.

public int[] readIntArray (String label) throws IOException;

Reads the first field labeled as label and returns its value as a one-dimensional array of
int’s.

public float[] readFloatArray (String label) throws IOException;

Reads the first field labeled as label and returns its value as a one-dimensional array of
float’s.

public double[] readDoubleArray (String label) throws IOException;

Reads the first field labeled as label and returns its value as a one-dimensional array of
double’s.

June 18, 2014 DataReader 67

Reading two-dimensional arrays

public String[][] readStringArray2D (String label) throws IOException;

Reads the first field labeled as label and returns its value as a two-dimensional array of
String’s.

public int[][] readIntArray2D (String label) throws IOException;

Reads the first field labeled as label and returns its value as a two-dimensional array of
int’s.

public float[][] readFloatArray2D (String label) throws IOException;

Reads the first field labeled as label and returns its value as a two-dimensional array of
float’s.

public double[][] readDoubleArray2D (String label) throws IOException;

Reads the first field labeled as label and returns its value as a two-dimensional array of
double’s.

Reading fields of unknown type

public Map<String, DataField> readAllNextFields() throws IOException;

Reads all remaining fields in the file and returns a hashmap indexed by field labels. Anony-
mous fields are mapped to "_data01_", "_data02_", . . .

public Map<String, DataField> readAllFields() throws IOException;

Reads all fields in the file and returns a hashmap indexed by field labels. Anonymous fields
are mapped to "_data01_", "_data02_", . . .

public DataField readNextField() throws IOException;

Reads the next available field.

public DataField readField (String label) throws IOException;

Reads the first field labeled as label.

Other methods

public void close() throws IOException;

Closes the input stream.

public void reset() throws IOException;

Resets the reader to its initial state, i.e. goes back to the beginning of the data stream, if
possible.

public boolean dataPending() throws IOException;

Returns true if there remains data to be read.

June 18, 2014 68

AbstractDataReader
This abstract class implements shared functionality for data readers.

package umontreal.iro.lecuyer.util.io;

public abstract class AbstractDataReader implements DataReader

Reading atomic data

public String readString (String label) throws IOException
Reads first field labeled as label and returns its String value.

public int readInt (String label) throws IOException
Reads first field labeled as label and returns its int value.

public float readFloat (String label) throws IOException
Reads first field labeled as label and returns its float value.

public double readDouble (String label) throws IOException
Reads first field labeled as label and returns its double value.

Reading one-dimensional arrays

public String[] readStringArray (String label) throws IOException
Reads first field labeled as label and returns its value as a one-dimensional array of String’s.

public int[] readIntArray (String label) throws IOException
Reads first field labeled as label and returns its value as a one-dimensional array of int’s.

public float[] readFloatArray (String label) throws IOException
Reads first field labeled as label and returns its value as a one-dimensional array of float’s.

public double[] readDoubleArray (String label) throws IOException
Reads first field labeled as label and returns its value as a one-dimensional array of double’s.

Reading two-dimensional arrays

public String[][] readStringArray2D (String label) throws IOException
Reads first field labeled as label and returns its value as a two-dimensional array of String’s.

public int[][] readIntArray2D (String label) throws IOException
Reads first field labeled as label and returns its value as a two-dimensional array of int’s.

public float[][] readFloatArray2D (String label) throws IOException
Reads first field labeled as label and returns its value as a two-dimensional array of float’s.

public double[][] readDoubleArray2D (String label) throws IOException
Reads first field labeled as label and returns its value as a two-dimensional array of double’s.

June 18, 2014 AbstractDataReader 69

Reading fields of unknown type

public Map<String, DataField> readAllNextFields() throws IOException

Reads all remaining fields in the file and returns a hashmap indexed by field labels. Anony-
mous fields are mapped to "_data01_", "_data02_", . . .

public Map<String, DataField> readAllFields() throws IOException

Reads all fields in the file and returns a hashmap indexed by field labels. Anonymous fields
are mapped to "_data01_", "_data02_", . . .

June 18, 2014 70

BinaryDataReader

Binary data reader. This class implements a module for importing data written with
BinaryDataWriter.

package umontreal.iro.lecuyer.util.io;

public class BinaryDataReader extends AbstractDataReader

Constructors

public BinaryDataReader (String filename) throws IOException

Opens the file with the specified name for reading.

public BinaryDataReader (URL url) throws IOException

Opens the file at the specified url for reading.

public BinaryDataReader (File file) throws IOException

Opens the specified file for reading.

public BinaryDataReader (InputStream inputStream) throws IOException

Opens the specified input stream for reading. When using this constructor, the method
readField might will not be able to read a field that is before the current reading position.

Reading fields of unknown type

public DataField readNextField() throws IOException

Reads the next available field.

public DataField readField (String label) throws IOException

Reads the first field labeled as label.

Other methods

public void reset() throws IOException

Reopens the file (does not work with the constructor that takes an input stream).

public boolean dataPending() throws IOException

Returns true if there remains data to be read.

public void close() throws IOException

Closes the file.

June 18, 2014 71

DataField
This class represents a data field from a file read by an instance of a class implementing

DataReader.

package umontreal.iro.lecuyer.util.io;

public class DataField

Constructors

public DataField (String label, Object data)
Constructor. Creates a field named label of value data.

public DataField (String label, Object data, int effectiveLength)
Constructor. Creates a field named label of value data. effectiveLength is the number
of significant elements contained in data if it is an array.

Information on the field

public String getLabel()
Returns the field label (or name).

public Class getType()
Returns the type of the field.

public boolean isAtomic()
Returns true if the field value is atomic data.

public boolean isArray()
Returns true if the field contains an array.

public boolean isArray2D()
Returns true if the field contains a two-dimensional array.

public int getArrayLength()
Returns the length of the array contained by the field, or -1 if it is not an array.

public boolean isString()
Returns true if the field value is an atomic String.

public boolean isInt()
Returns true if the field value is an atomic int.

public boolean isFloat()
Returns true if the field value is an atomic float.

public boolean isDouble()
Returns true if the field value is an atomic double.

June 18, 2014 DataField 72

Obtaining the value as atomic data

public String asString()

Returns the value as String, or null if it is not of type String. See isString.

public int asInt()

Returns the value as int or 0 if it is not of type int See isInt.

public float asFloat()

Returns the value as float or 0 if it is not of type float See isFloat.

public double asDouble()

Returns the value as double or 0 if it is not of type double See isDouble.

Obtaining the value as a one-dimensional array

public String[] asStringArray()

Returns the value as one-dimensional String array or null if it is not of type String[].

public int[] asIntArray()

Returns the value as one-dimensional int array or null if it is not of type int[].

public float[] asFloatArray()

Returns the value as one-dimensional float array or null if it is not of type float[].

public double[] asDoubleArray()

Returns the value as one-dimensional double array or null if it is not of type double[].

Obtaining the value as a two-dimensional array

public String[][] asStringArray2D()

Returns the value as two-dimensional String array or null if it is not of type String[][].

public int[][] asIntArray2D()

Returns the value as two-dimensional int array or null if it is not of type int[][].

public float[][] asFloatArray2D()

Returns the value as two-dimensional float array or null if it is not of type float[][].

public double[][] asDoubleArray2D()

Returns the value as two-dimensional double array or null if it is not of type double[][].

Obtaining the value as an Object

public Object asObject()

Returns the value of the field as an Object.

June 18, 2014 REFERENCES 73

References

[1] C. W. Clenshaw. Chebychev series for mathematical functions. National Physical Lab-
oratory Mathematical Tables 5, Her Majesty’s Stationery Office, London, 1962.

[2] J. Gosling, B. Joy, and G. L. Steele Jr. The Java Language Specification. Addison-Wesley,
second edition, 2000. Also available from http://java.sun.com/docs/books/jls.

[3] N. J. Higham. The scaling and squaring method for the matrix exponential revisited.
SIAM Review, 51(4):747–764, 2009.

[4] D. E. Knuth. The Art of Computer Programming, Vol. 1. Addison-Wesley, Reading,
MA, second edition, 1973.

http://java.sun.com/docs/books/jls

	Num
	TextDataReader
	PrintfFormat
	TableFormat
	AbstractChrono
	SystemTimeChrono
	GlobalCPUTimeChrono
	ThreadCPUTimeChrono
	Chrono
	ChronoSingleThread
	TimeUnit
	Systeme
	ArithmeticMod
	BitVector
	BitMatrix
	DMatrix
	RootFinder
	MultivariateFunction
	RatioFunction
	Misc
	JDBCManager
	ClassFinder
	NameConflictException
	Introspection
	TransformingList
	DoubleArrayComparator
	Overview of package util.io
	DataWriter
	AbstractDataWriter
	CachedDataWriter
	TextDataWriter
	BinaryDataWriter
	DataReader
	AbstractDataReader
	BinaryDataReader
	DataField

