
TABLES OF MAXIMALLY-EQUIDISTRIBUTEDCOMBINED LFSR GENERATORSPIERRE L'ECUYERAbstract. We give the results of a computer search for maximally-equidistributedcombined linear feedback shift register (or Tausworthe) random number gen-erators, whose components are trinomials of degrees slightly less than 32 or64. These generators are fast and have good statistical properties.1. IntroductionLinear Feedback Shift Register (LFSR) random number generators, also calledTausworthe generators, are based on linear recurrences modulo 2 with primitivecharacteristic polynomials. E�cient implementations are available for the casewhere the characteristic polynomial is a trinomial and satis�es some additionalconditions. Trinomial-based generators have important statistical defects, but com-bining them can yield generators that are relatively fast and robust. Such combi-nations have been proposed and analyzed in [4, 9, 10]. In [4], it was explained howto �nd combined generators with the best possible equidistribution properties insome sense, within speci�ed classes of combined LFSR generators. Three speci�ccombined generators, each with three components and period length near 288, werealso given. In the present paper, we provide the results of more extensive computersearches, for combined generators with larger periods. The need for large periodsis supported by several arguments given, e.g., in [2, 3, 5]. The generators givenin [4] are for 32-bit computers. Since 64-bit computers are becoming increasinglycommon, it is important to have good generators designed to fully use the 64-bitwords. Some of the generators proposed here do it.The next section explains how we combine LFSR generators and recalls de�ni-tions and properties. Section 3 gives speci�c combined generators of di�erent sizes.Section 4 provides computer implementations in C.2. Combined LFSR Generators and EquidistributionConsider the LFSR recurrencexn = (a1xn�1 + � � �+ akxn�k) mod 2; (1)whose characteristic polynomial is P (z) = zk � a1zk�1 � � � � � ak. This is a linearrecurrence in the �nite �eld F2 with two elements, 0 and 1. The recurrence has1991 Mathematics Subject Classi�cation. 65C10.Key words and phrases. Random number generation, equidistribution, combined generators,�nite �elds.This work has been supported by NSERC-Canada grants # ODGP0110050 and SMF0169893,and FCAR-Qu�ebec grant # 93ER1654. I wish to thank Luc De Bellefeuille and Armand Nganouwho helped performing the computer searches. 1



2 PIERRE L'ECUYERperiod length � = 2k � 1 if and only if P is a primitive polynomial, which we nowassume. Let un = LXi=1 xns+i�12�i; (2)where the step size s and the word length L are positive integers. If (x0; : : : ; xk�1) 6=0, and s is coprime to �, then the sequence (2) is also purely periodic with period �.An LFSR (or Tausworthe) random number generator is one that outputs a sequencefun; n � 0g de�ned by (2).Suppose now that we have J LFSR recurrences, the jth one having a primitivecharacteristic polynomial Pj(z) of degree kj, and step size sj relatively prime with�j = 2kj � 1. Assume that the Pj(z) are pairwise relatively prime, that the �j arealso relatively prime, and that these LFSRs use a common L. Let fxj;n; n � 0g bethe jth LFSR sequence, and de�ne xn = (x1;n+ � � �+xJ;n) mod 2 and un as in (2).Equivalently, if fuj;n; n � 0g is the output sequence from the jth LFSR, then un =u1;n� � � � � uJ;n where � denotes the bitwise exclusive-or in the binary expansion.The sequence fxng is called the combined LFSR sequence and a generator thatproduces this fung is called a combined LFSR generator. In fact, fxng followsa recurrence with reducible characteristic polynomial P (z) = P1(z) � � �PJ (z) [9].Under our assumptions, the sequences fxng and fung have period length � =(2k1 � 1) � � � � � (2kJ � 1). This type of combination is interesting because itpermits one to conciliate e�cient implementation with statistical robustness, bychoosing the Pj as trinomials for which the recurrence is easy to implement andruns fast, while making sure that P (z) has many non-zero coe�cients and that thecombined generator has good equidistribution properties [1, 7, 10]. Of course, thisis not the only way of constructing generators with good equidistribution; for otherapproaches, see, e.g., [5, 6, 8] and other references given there.Let Tt be the set (in the sense of amultiset) of t-dimensional vectors of successiveoutput values, from all possible initial states:Tt = �un = (un; : : : ; un+t�1) j n � 0; (x0; : : : ; xk�1) 2 f0; 1gk	 :Dividing the interval [0; 1) into 2` equal segments determines a partition of the unithypercube [0; 1)t into 2t` cubic cells of equal size, called a (t; `)-equidissection inbase 2, and the set Tt is said to be (t; `)-equidistributed if each cell contains thesame number of points of Tt. The latter is possible only if ` � L and t` � k. If Ttis (t; `�t )-equidistributed for 0 � t � k, where `�t = min(L; bk=tc), then the (output)sequence is called maximally-equidistributed (ME). An ME sequence for which allnon-empty cells contain exactly one point, for t � 1 and `�t < ` � L (i.e., when thereare more cells than points), is called collision-free (CF). ME-CF sequences enjoynice equidistribution properties; their point sets are very evenly distributed in alldimensions, in terms of equidissections. Verifying whether a sequence is ME or ME-CF amounts to computing the rank of a binary matrix that expresses the relevantbits of un in terms of (x1;0; : : : ; x1;k1�1); : : : ; (xJ;0; : : : ; xJ;kJ�1), for di�erent valuesof t, as explained in [4].The above de�nitions of ME and ME-CF are based on the ` most signi�cantbits of each un, so when t is large, we look only at a few most signi�cant bits.What about the least signi�cant bits? For the LFSR generators considered here,it turns out that any successive ` bits in each un have the same equidistributionproperties as the most signi�cant ones. More speci�cally, let r be an integer such



COMBINED LFSR GENERATORS 3that 0 � r � L � ` and de�nevn = 2run mod 1 = L�rXi=1 xr+ns+i�12�i:Then, for any box C in the (t; `)-equidissection,�vn = (vn; : : : ; vn+t�1) 2 C j n � 0; (x0; : : : ; xk�1) 2 f0; 1gk	= �un = (un; : : : ; un+t�1) 2 C j n � 0; (xr; : : : ; xr+k�1) 2 f0; 1gk	 :Therefore, the sequence fvng has exactly the same (t; `)-equidistribution propertiesas fung.3. Some Maximally-Equidistributed Collision-Free GeneratorsWe now give ME-CF combined LFSR generators with word-lengths L = 32and 64, whose components have recurrences with primitive trinomials of the formPj(z) = zkj � zqj � 1 with 0 < 2qj < kj, and with step size sj satisfying 0 < sj �kj�qj < kj � L and gcd(sj ; 2kj�1) = 1. Components that satisfy these conditionsare implemented easily using the algorithm described in [4]. When they satisfy theadditional condition that L � kj � rj � sj (3)for all j, then the initialization procedure in [4, p. 205] is not necessary. All theparameter sets given in the forthcoming tables satisfy this additional condition.For L = 32, three speci�c ME-CF generators with J = 3 were given in [4], and itwas reported that there are 4744 ME-CF generators with J = 4, k1 = 31, k2 = 29,k3 = 28, and k4 = 25, among the 3.28 million that satisfy all our conditions exceptfor (3). Since this paper was published, several people asked the author for speci�cinstances of such generators. Table 1 gives a partial list. These combined generatorshave period lengths (231�1)(229�1)(228�1)(225�1) � 2113 and their characteristicpolynomials have degree 113. The 62 generators in Table 1 satisfy (3). They allhave (q1; q2; q3; q4) = (6; 2; 13; 3), so they have the same characteristic polynomialP (z), which has 58 coe�cients equal to zero and 55 coe�cients equal to 1.The following tables give selected results of random searches for ME-CF gener-ators with L = 64, and with J = 3, 4, and 5 components. Here, k = k1 + � � �+ kJis the degree of the product polynomial associated with the combination, N1 is thenumber of coe�cients that are 1 in that polynomial, and lg� = lcm (k1; : : : ; kJ) is(approximately) the logarithm in base 2 of the period length of the generator.In Table 2, the �rst 4 generators have full period length � = (2k1 � 1)(2k2 �1)(2k3 � 1) � 2k. The remaining 6 do not have full period, because the kj are notco-prime. Note that for all generators in this table, N1 is rather small in comparisonwith k; that is, the characteristic polynomials have much more zeros than ones.Table 3 gives 8 full-period ME-CF generators with L = 64, J = 4, (k1; k2; k3; k4) =(63; 58; 55; 47), and (q1; q2; q3; q4) = (31; 19; 24; 21). Their period length is approxi-mately 2223 and their characteristic polynomialP (z) (they all have the same) has 49coe�cients (out of 223) equal to 1. Table 4 gives a partial list of ME-CF generatorswith (k1; k2; k3; k4) = (63; 58; 57; 55) and (q1; q2; q3; q4) = (1; 19; 7; 24), so k = 233and lg � = 230, whereas Table 5 gives ME-CF generators with (k1; k2; k3; k4) =(63; 60; 58; 57), which gives k = 238 and lg � = 220. In all cases, the number of ones



4 PIERRE L'ECUYERTable 1. ME-CF generators with L = 32 and J = 4.s1 s2 s3 s4 s1 s2 s3 s41 18 2 7 13 32 4 16 8 32 13 3 4 9 33 22 17 4 63 24 3 11 12 34 21 17 4 134 10 4 2 6 35 20 17 7 85 16 4 2 12 36 19 17 11 66 11 5 4 3 37 4 17 11 77 17 5 4 6 38 12 17 11 158 12 5 11 9 39 15 18 4 99 23 5 11 12 40 17 18 4 1510 23 6 7 8 41 12 18 7 411 14 8 2 9 42 15 18 8 1112 22 8 7 4 43 6 18 11 1313 21 8 11 4 44 8 19 2 914 10 9 8 2 45 13 19 4 215 22 9 11 9 46 5 19 8 316 3 10 4 15 47 6 19 8 1117 24 10 7 8 48 24 19 11 518 21 10 8 4 49 6 20 2 1019 12 10 8 15 50 13 20 4 1020 17 10 11 6 51 24 21 2 721 3 11 4 12 52 14 21 8 1322 9 11 4 13 53 10 22 8 1323 9 11 7 4 54 7 22 8 1424 11 12 4 10 55 15 23 8 525 20 12 7 15 56 9 23 11 426 17 12 11 11 57 20 24 4 827 21 13 4 14 58 16 24 4 1428 11 14 8 7 59 20 24 4 1429 6 14 8 13 60 23 24 7 330 20 15 7 13 61 14 24 8 1031 12 16 2 10 62 16 24 11 12Table 2. ME-CF generators with L = 64 and J = 3.k1 k2 k3 q1 q2 q3 s1 s2 s3 k lg � N11 63 58 55 5 19 24 24 13 7 176 176 172 63 55 52 1 24 3 27 22 14 170 170 273 63 55 47 5 24 5 22 18 21 165 165 214 63 55 47 31 24 21 17 21 5 165 165 215 63 58 57 31 19 22 20 26 13 178 175 276 63 58 57 31 19 22 26 14 15 178 175 277 63 58 57 31 19 22 20 11 16 178 175 278 63 58 57 31 19 22 29 26 20 178 175 279 63 58 57 31 19 22 11 25 27 178 175 2710 63 57 55 5 22 24 51 18 19 175 172 27in the characteristic polynomial of the combined generator is signi�cantly less thank=2, but still reasonably high.



COMBINED LFSR GENERATORS 5Table 3. Full-period ME-CF generators with L = 64, J = 4,k = 223, and N1 = 49.s1 s2 s3 s4 s1 s2 s3 s41 18 28 7 8 5 18 22 16 62 26 20 11 7 6 30 28 17 93 19 25 12 9 7 17 28 18 64 18 31 13 6 8 12 8 22 9Table 6 lists 24 full-periodME-CF generators with L = 64, J = 5, (k1; k2; k3; k4; k5) =(63; 55; 52; 47; 41), (q1; q2; q3; q4; q5) = (1; 24; 3; 5; 3), k = 258, � � 2258, and N1 =103. ME-CF generators with L = 64, J = 5, (k1; k2; k3; k4; k5) = (63; 57; 55; 52;47),(q1; q2; q3; q4; q5) = (1; 7; 24; 3; 5), k = 274, � � 2271, and N1 = 119, are given inTable 7. As J increases, N1 tends to approach k=2. With J = 6 or 7, one can prob-ably obtain N1 � k=2. However, as more components are added while making surethat lg � is close to k, one eventually comes up using polynomials Pj of relativelysmall degree kj. Increasing J further then becomes less pro�table.One could also use polynomials Pj of larger degrees; e.g., use values of kj near128, having in mind (hypothetical) computers with 128-bit words. Still larger valuesof J would then be required in order to obtain N1 near k=2.4. ImplementationsThe procedure lfsr113 in Figure 1 gives an implementation, in the languageC, of the �rst ME-CF generator in Table 1, with � � 2113. It uses the algorithmQuickTaus in Section 2.2 of [4], for each component of the combination. Beforecalling lfsr113 for the �rst time, the variables z1, z2, z3, and z4must be initializedto any (random) integers larger than 1, 7, 15, and 127, respectively. In other words,the kj most signi�cant bits of zj must be nonzero, for each j. (Note: this restrictionalso applies to the computer code given in [4], but was mistakenly not mentionedin that paper.) Ideally, the vector of initial seeds (z1; : : : ; zj) would be drawn froma uniform distribution over the set of admissible values.Figure 2 implements the �rst ME-CF generator in Table 6, whose period lengthis � � 2258. The type \unsigned long long" refers to a 64-bit unsigned integer,available on 64-bit computers.On a SUN UltraSparc 1, to generate 10 million (107) random numbers and addthem up to print the sum, it took approximately 2.5 seconds with lfsr113, 3.1seconds with lfsr258, and 0.2 seconds with the procedure dummy in Figure 1. Forthese speed comparisons, we used the cc compiler with the -fast option. We addedthe numbers and printed the sum to make sure that the optimizing compiler wasnot outsmarting us by skipping instructions after observing that the result was notused.



6 PIERRE L'ECUYERTable 4. ME-CF generators with L = 64, J = 4, k = 233, lg � =230, and N1 = 59.s1 s2 s3 s4 s1 s2 s3 s41 18 10 23 11 47 43 16 31 182 26 10 13 11 48 38 23 37 183 48 17 30 11 49 46 25 39 184 27 20 9 11 50 47 4 26 195 46 22 9 11 51 33 7 27 196 23 29 24 11 52 18 11 17 197 25 29 13 11 53 43 11 37 198 34 29 9 11 54 5 14 13 199 50 7 38 12 55 53 20 27 1910 15 8 19 12 56 24 25 25 1911 44 22 16 12 57 30 25 27 1912 6 23 29 12 58 34 29 41 1913 16 5 22 13 59 18 5 36 2014 11 10 25 13 60 15 11 18 2015 18 11 40 13 61 52 11 34 2016 19 16 30 13 62 5 22 10 2017 45 23 24 13 63 9 22 10 2018 17 7 9 14 64 16 23 38 2019 52 11 20 14 65 17 23 26 2020 52 22 30 14 66 40 23 37 2021 25 23 26 14 67 46 23 5 2022 27 7 19 15 68 6 28 27 2023 25 11 13 15 69 25 28 33 2024 6 26 31 15 70 5 32 26 2025 19 28 25 15 71 13 7 37 2126 38 28 37 15 72 26 8 41 2127 53 28 18 15 73 37 10 43 2128 50 29 32 15 74 38 10 11 2129 17 32 41 15 75 30 13 39 2130 39 8 12 16 76 38 16 43 2131 53 13 33 16 77 9 17 32 2132 12 5 13 17 78 34 25 17 2133 16 5 11 17 79 38 26 41 2134 25 7 32 17 80 8 28 31 2135 54 10 36 17 81 19 29 12 2136 45 11 29 17 82 37 32 27 2137 30 20 18 17 83 27 8 5 2238 39 20 43 17 84 8 10 29 2239 19 22 22 17 85 41 10 25 2240 50 23 25 17 86 50 13 4 2241 11 26 19 17 87 55 13 37 2242 19 26 11 17 88 50 17 36 2243 13 29 40 17 89 39 26 29 2244 46 32 29 17 90 55 26 23 2245 20 4 31 18 91 13 28 16 2246 5 10 33 18 92 51 32 10 22



COMBINED LFSR GENERATORS 7Table 5. ME-CF generators with L = 64, J = 4, k = 238, lg � =220, and N1 = 71.q1 q2 q3 q4 s1 s2 s3 s41 31 1 19 22 30 23 17 182 31 1 19 22 13 23 26 53 31 1 19 22 17 38 23 244 31 1 19 22 26 47 17 195 31 11 19 22 26 34 20 176 31 11 19 22 29 38 28 18Table 6. ME-CF generators with L = 64, J = 5, k = 258, lg � =258, and N1 = 103.s1 s2 s3 s4 s5 s1 s2 s3 s4 s51 10 5 29 23 8 13 26 5 31 14 132 12 5 11 16 15 14 36 5 32 16 83 17 5 16 6 7 15 36 5 32 21 84 17 5 19 16 14 16 39 5 19 6 85 18 5 37 7 3 17 43 5 14 20 156 19 5 31 15 13 18 44 5 14 15 157 20 5 11 13 6 19 44 5 29 6 138 22 5 17 10 11 20 44 5 34 25 99 23 5 37 13 7 21 45 5 16 21 810 24 5 7 16 8 22 51 5 28 3 1211 26 5 22 4 9 23 53 5 26 16 812 26 5 26 13 12 24 54 5 28 13 3Table 7. ME-CF generators with L = 64, J = 5, k = 274, lg � =271, and N1 = 119.s1 s2 s3 s4 s5 s1 s2 s3 s4 s51 9 34 5 26 18 11 22 40 5 4 182 9 32 5 31 6 12 22 19 5 14 193 9 25 5 37 22 13 22 41 5 16 64 10 24 5 7 12 14 22 16 5 32 45 12 17 5 14 8 15 26 9 5 11 146 12 40 5 16 22 16 26 19 5 29 37 12 26 5 34 23 17 44 20 5 8 68 17 27 5 13 9 18 44 31 5 22 149 17 8 5 37 19 19 53 8 5 23 1710 20 41 5 14 6 20 53 12 5 31 18



8 PIERRE L'ECUYERunsigned long z1, z2, z3, z4;double lfsr113 (){ /* Generates numbers between 0 and 1. */unsigned long b;b = (((z1 << 6) ^ z1) >> 13);z1 = (((z1 & 4294967294) << 18) ^ b);b = (((z2 << 2) ^ z2) >> 27);z2 = (((z2 & 4294967288) << 2) ^ b);b = (((z3 << 13) ^ z3) >> 21);z3 = (((z3 & 4294967280) << 7) ^ b);b = (((z4 << 3) ^ z4) >> 12);z4 = (((z4 & 4294967168) << 13) ^ b);return ((z1 ^ z2 ^ z3 ^ z4) * 2.3283064365387e-10);}double dummy (){return 0.5} Figure 1. A 32-bit combined LFSR generator with 4 components.unsigned long long z1, z2, z3, z4, z5;double lfsr258 (){ /* Generates numbers between 0 and 1. */unsigned long long b;b = (((z1 << 1) ^ z1) >> 53);z1 = (((z1 & 18446744073709551614) << 10) ^ b);b = (((z2 << 24) ^ z2) >> 50);z2 = (((z2 & 18446744073709551104) << 5) ^ b);b = (((z3 << 3) ^ z3) >> 23);z3 = (((z3 & 18446744073709547520) << 29) ^ b);b = (((z4 << 5) ^ z4) >> 24);z4 = (((z4 & 18446744073709420544) << 23) ^ b);b = (((z5 << 3) ^ z5) >> 33);z5 = (((z5 & 18446744073701163008) << 8) ^ b);return ((z1 ^ z2 ^ z3 ^ z4 ^ z5) * 5.4210108624275221e-20);} Figure 2. A 64-bit combined LFSR generator with 5 components.
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