
SSJ User’s Guide

Package rng

Random Number Generators

Version: December 17, 2014

CONTENTS 1

Contents

Overview . 2

RandomStream . 4

CloneableRandomStream . 6

RandomStreamBase . 7

RandomPermutation . 9

RandomStreamManager . 12

RandomStreamFactory . 13

BasicRandomStreamFactory . 14

RandomStreamInstantiationException . 15

RandomStreamWithCache . 16

AntitheticStream . 18

BakerTransformedStream . 19

TruncatedRandomStream . 20

RandMrg . 21

MRG32k3a . 23

MRG32k3aL . 25

MRG31k3p . 26

LFSR113 . 28

LFSR258 . 29

WELL512 . 31

WELL607 . 32

WELL1024 . 33

GenF2w32 . 34

MT19937 . 35

F2NL607 . 36

RandRijndael . 39

2 CONTENTS

Overview

This package offers the basic facilities for generating uniform random numbers. It provides
an interface called RandomStream and some implementations of that interface. The interface
specifies that each stream of random numbers is partitioned into multiple substreams and
that methods are available to jump between the substreams, as discussed in [9, 8, 11]. For
an example of how to use these streams properly, see InventoryCRN in the set of example
programs.

Each implementation uses a specific backbone uniform random number generator (RNG),
whose period length is typically partitioned into very long non-overlapping segments to
provide the streams and substreams. A stream can generate uniform variates (real numbers)
over the interval (0,1), uniform integers over a given range of values {i, . . . , j}, and arrays of
these.

The generators provided here have various speeds and period lengths. MRG32k3a is the
one that has been most extensively tested, but it is not among the fastest. The LFSR113,
GenF2w32, MT19937, and the WELL generators produce sequences of bits that obey a linear
recurrence, so they eventually fail statistical tests that measure the linear complexity of these
bits sequences. But this can affect only very special types of applications.

For each generator, the following tables give the approximate period length (period), the
CPU time (in seconds) to generate 109 U(0, 1) random numbers (gen. time), and the CPU
time to jump ahead 106 times to the next substream (jump time). The following timings
are on a 2100 MHz 32-bit AMD Athlon XP 2800+ computer running Linux, with the JDK
1.4.2.

RNG period gen. time jump time

LFSR113 2113 51 0.08
WELL512 2512 55 372
WELL1024 21024 55 1450
MT19937 219937 56 60
WELL607 2607 61 523
GenF2w32 2800 62 937
MRG31k3p 2185 66 1.8
MRG32k3a 2191 109 2.3
F2NL607 2637 125 523
RandRijndael 2130 260 0.9

The following timings are on a 2400 MHz 64-bit AMD Athlon 64 Processor 4000+ com-
puter running Linux, with the JDK 1.5.0.

CONTENTS 3

RNG period gen. time jump time

LFSR113 2113 31 0.08
WELL607 2607 33 329
WELL512 2512 33 234
WELL1024 21024 34 917
LFSR258 2258 35 0.18
MT19937 219937 36 46
GenF2w32 2800 43 556
MRG31k3p 2185 51 0.89
F2NL607 2637 65 329
MRG32k3a 2191 70 1.1
RandRijndael 2130 127 0.6

Other tools included in this package permit one to manage and synchronize several
streams simultaneously (RandomStreamManager), to create random stream factories for a
given type of stream (BasicRandomStreamFactory), and to apply automatic transforma-
tions to the output of a given stream (AntitheticStream and BakerTransformedStream).

For further details about uniform RNGs, we refer the reader to [1, 6, 7].

4

RandomStream

This interface defines the basic structures to handle multiple streams of uniform (pseudo)-
random numbers and convenient tools to move around within and across these streams.
The actual random number generators (RNGs) are provided in classes that implement this
RandomStream interface. Each stream of random numbers is an object of the class that
implements this interface, and can be viewed as a virtual random number generator.

For each type of base RNG (i.e., each implementation of the RandomStream interface),
the full period of the generator is cut into adjacent streams (or segments) of length Z, and
each of these streams is partitioned into V substreams of length W , where Z = VW . The
values of V and W depend on the specific RNG, but are usually larger than 250. Thus,
the distance Z between the starting points of two successive streams provided by an RNG
usually exceeds 2100. The initial seed of the RNG is the starting point of the first stream.
It has a default value for each type of RNG, but this initial value can be changed by calling
setPackageSeed for the corresponding class. Each time a new RandomStream is created, its
starting point (initial seed) is computed automatically, Z steps ahead of the starting point
of the previously created stream of the same type, and its current state is set equal to this
starting point.

For each stream, one can advance by one step and generate one value, or go ahead to
the beginning of the next substream within this stream, or go back to the beginning of the
current substream, or to the beginning of the stream, or jump ahead or back by an arbitrary
number of steps. Denote by Cg the current state of a stream g, Ig its initial state, Bg the
state at the beginning of the current substream, and Ng the state at the beginning of the
next substream. The following diagram shows an example of a stream whose state is at the
6th value of the third substream, i.e., 2W + 5 steps ahead of its initial state Ig and 5 steps
ahead of its state Bg. The form of the state of a stream depends on its type. For example,
the state of a stream of class MRG32k3a is a vector of six 32-bit integers represented internally
as floating-point numbers (in double).

Cg
⇓.

Ig Bg Ng

The methods for manipulating the streams and generating random numbers are imple-
mented differently for each type of RNG. The methods whose formal parameter types do
not depend on the RNG type are specified in the interface RandomStream. The others (e.g.,
for setting the seeds) are given only in the classes that implement the specific RNG types.

See [2, 9, 11] for examples of situations where the multiple streams offered here are useful.

Methods for generating random variates from non-uniform distributions are provided in
the randvar package.

RandomStream 5

package umontreal.iro.lecuyer.rng;

public interface RandomStream

Methods

public void resetStartStream();

Reinitializes the stream to its initial state Ig: Cg and Bg are set to Ig.

public void resetStartSubstream();

Reinitializes the stream to the beginning of its current substream: Cg is set to Bg.

public void resetNextSubstream();

Reinitializes the stream to the beginning of its next substream: Ng is computed, and Cg and
Bg are set to Ng.

public String toString();

Returns a string containing the current state of this stream.

public double nextDouble();

Returns a (pseudo)random number from the uniform distribution over the interval (0, 1),
using this stream, after advancing its state by one step. The generators programmed in SSJ
never return the values 0 or 1.

public void nextArrayOfDouble (double[] u, int start, int n);

Generates n (pseudo)random numbers from the uniform distribution and stores them into
the array u starting at index start.

public int nextInt (int i, int j);

Returns a (pseudo)random number from the discrete uniform distribution over the integers
{i, i + 1, . . . , j}, using this stream. (Calls nextDouble once.)

public void nextArrayOfInt (int i, int j, int[] u, int start, int n);

Generates n (pseudo)random numbers from the discrete uniform distribution over the inte-
gers {i, i + 1, . . . , j}, using this stream and stores the result in the array u starting at index
start. (Calls nextInt n times.)

6

CloneableRandomStream

CloneableRandomStream extends RandomStream and Cloneable. All classes that imple-
ments this interface are able to produce cloned objects.

The cloned object is entirely independent of the older odject. Moreover the cloned object
has all the same properties as the older one. All his seeds are duplicated, and therefore both
generators will produce the same random number sequence.

package umontreal.iro.lecuyer.rng;

public interface CloneableRandomStream extends RandomStream, Cloneable

Methods

public CloneableRandomStream clone();

Clones the current object and returns its copy.

7

RandomStreamBase

This class provides a convenient foundation on which RNGs can be built. It imple-
ments all the methods which do not depend directly on the generator itself, but only on its
output, which is to be defined by implementing the abstract method nextValue. In the
present class, all methods returning random numbers directly or indirectly (nextDouble,
nextArrayOfDouble, nextInt and nextArrayOfInt) call nextValue. Thus, to define a
subclass that implements a RNG, it suffices to implement nextValue, in addition to the
reset... and toString methods. Of course, the other methods may also be overridden for
improved efficiency.

If the nextValue already generates numbers with a precision of 53-bits or higher, then
nextDouble can be overridden to improve the performance. The mechanism for increasing
the precision assumes that nextValue returns at least 29 bits of precision, in which case
the higher precision numbers will have roughly 52 bits of precision. This mechanism was
designed primarily for RNGs that return numbers with around 30 to 32 bits of precision.

RandomStreamBase and its subclasses are implementing the Serializable interface.
Each class has a serial number wich represent the class version. For instance 70510 means
that the last change was the 10th May 2007.

package umontreal.iro.lecuyer.rng;

public abstract class RandomStreamBase implements CloneableRandomStream,
Serializable

public abstract void resetStartStream();
public abstract void resetStartSubstream();
public abstract void resetNextSubstream();
public abstract String toString();

public void increasedPrecision (boolean incp)

After calling this method with incp = true, each call to the RNG (direct or indirect) for
this stream will return a uniform random number with more bits of precision than what is
returned by nextValue, and will advance the state of the stream by 2 steps instead of 1
(i.e., nextValue will be called twice for each random number).

More precisely, if s is a stream of a subclass of RandomStreamBase, when the preci-
sion has been increased, the instruction “u = s.nextDouble()”, is equivalent to “u =
(s.nextValue() + s.nextValue()*fact) % 1.0” where the constant fact is equal to
2−24. This also applies when calling nextDouble indirectly (e.g., via nextInt, etc.). By
default, or if this method is called again with incp = false, each call to nextDouble for
this stream advances the state by 1 step and returns the same number as nextValue.

protected abstract double nextValue();

This method should return the next random number (between 0 and 1) from the current
stream. If the stream is set to the high precision mode (increasedPrecision(true) was
called), then each call to nextDouble will call nextValue twice, otherwise it will call it only
once.

8 RandomStreamBase

public double nextDouble()

Returns a uniform random number between 0 and 1 from the stream. Its behavior depends
on the last call to increasedPrecision. The generators programmed in SSJ never return
the values 0 or 1.

public void nextArrayOfDouble (double[] u, int start, int n)

Calls nextDouble n times to fill the array u.

public int nextInt (int i, int j)

Calls nextDouble once to create one integer between i and j. This method always uses the
highest order bits of the random number. It should be overridden if a faster implementation
exists for the specific generator.

public void nextArrayOfInt (int i, int j, int[] u, int start, int n)

Calls nextInt n times to fill the array u. This method should be overridden if a faster
implementation exists for the specific generator.

@Deprecated
public String formatState()

Use the toString method.

public RandomStreamBase clone()

Clones the current generator and return its copy.

9

RandomPermutation

Provides methods to randomly shuffle arrays or lists using a random stream.

package umontreal.iro.lecuyer.rng;

public class RandomPermutation

public static void init (byte[] array, int n)

Initializes array with the first n positive integers in natural order as array[i − 1] = i, for
i = 1, ..., n. The size of array must be at least n.

public static void init (short[] array, int n)

Similar to init(byte[], int).

public static void init (int[] array, int n)

Similar to init(byte[], int).

public static void init (long[] array, int n)

Similar to init(byte[], int).

public static void init (float[] array, int n)

Similar to init(byte[], int).

public static void init (double[] array, int n)

Similar to init(byte[], int).

public static void shuffle (List<?> list, RandomStream stream)

Same as java.util.Collections.shuffle(List<?>, Random), but uses a RandomStream
instead of java.util.Random.

public static void shuffle (Object[] array, RandomStream stream)

Randomly permutes array using stream. This method permutes the whole array.

public static void shuffle (byte[] array, RandomStream stream)

Randomly permutes array using stream. This method permutes the whole array.

public static void shuffle (short[] array, RandomStream stream)

Similar to shuffle(byte[], RandomStream).

public static void shuffle (int[] array, RandomStream stream)

Similar to shuffle(byte[], RandomStream).

public static void shuffle (long[] array, RandomStream stream)

Similar to shuffle(byte[], RandomStream).

10 RandomPermutation

public static void shuffle (char[] array, RandomStream stream)

Similar to shuffle(byte[], RandomStream).

public static void shuffle (boolean[] array, RandomStream stream)

Similar to shuffle(byte[], RandomStream).

public static void shuffle (float[] array, RandomStream stream)

Similar to shuffle(byte[], RandomStream).

public static void shuffle (double[] array, RandomStream stream)

Similar to shuffle(byte[], RandomStream).

public static void shuffle (List<?> list, int k, RandomStream stream)

Partially permutes list as follows using stream: draws the first k new elements of list
randomly among the n old elements of list, assuming that k ≤ n = list.size(). In other
words, k elements are selected at random without replacement from the n list entries and
are placed in the first k positions, in random order.

public static void shuffle (Object[] array, int n, int k,
RandomStream stream)

Partially permutes array as follows using stream: draws the new k elements, array[0]
to array[k-1], randomly among the old n elements, array[0] to array[n-1], assuming
that k ≤ n ≤ array.length. In other words, k elements are selected at random without
replacement from the first n array elements and are placed in the first k positions, in random
order.

public static void shuffle (byte[] array, int n, int k,
RandomStream stream)

Similar to shuffle(Object[], n, k, RandomStream).

public static void shuffle (short[] array, int n, int k,
RandomStream stream)

Similar to shuffle(Object[], n, k, RandomStream).

public static void shuffle (int[] array, int n, int k,
RandomStream stream)

Similar to shuffle(Object[], n, k, RandomStream).

public static void shuffle (long[] array, int n, int k,
RandomStream stream)

Similar to shuffle(Object[], n, k, RandomStream).

public static void shuffle (char[] array, int n, int k,
RandomStream stream)

Similar to shuffle(Object[], n, k, RandomStream).

RandomPermutation 11

public static void shuffle (boolean[] array, int n, int k,
RandomStream stream)

Similar to shuffle(Object[], n, k, RandomStream).

public static void shuffle (float[] array, int n, int k,
RandomStream stream)

Similar to shuffle(Object[], n, k, RandomStream).

public static void shuffle (double[] array, int n, int k,
RandomStream stream)

Similar to shuffle(Object[], n, k, RandomStream).

12

RandomStreamManager

Manages a list of random streams for more convenient synchronization. All streams in
the list can be reset simultaneously by a single call to the appropriate method of this stream
manager, instead of calling explicitly the reset method for each individual stream.

After a random stream manager is constructed, any existing RandomStream object can
be registered to this stream manager (i.e., added to the list) and eventually unregistered
(removed from the list).

package umontreal.iro.lecuyer.rng;

public class RandomStreamManager

public RandomStream add (RandomStream stream)

Adds the given stream to the internal list of this random stream manager and returns the
added stream.

public boolean remove (RandomStream stream)

Removes the given stream from the internal list of this random stream manager. Returns
true if the stream was properly removed, false otherwise.

public void clear()

Removes all the streams from the internal list of this random stream manager.

public List getStreams()

Returns an unmodifiable list containing all the random streams in this random stream
manager. The returned list, constructed by unmodifiableList, can be assumed to contain
non-null RandomStream instances.

public void resetStartStream()

Forwards to the resetStartStream methods of all streams in the list.

public void resetStartSubstream()

Forwards to the resetStartSubstream methods of all streams in the list.

public void resetNextSubstream()

Forwards to the resetNextSubstream methods of all streams in the list.

13

RandomStreamFactory

Represents a random stream factory capable of constructing instances of a given type
of random stream by invoking the newInstance method each time a new random stream is
needed, instead of invoking directly the specific constructor of the desired type. Hence, if
several random streams of a given type (class) must be constructed at different places in a
large simulation program, and if we decide to change the type of stream in the future, there
is no need to change the code at those different places. With the random stream factory,
the class-specific code for constructing these streams appears at a single place, where the
factory is constructed.

The class BasicRandomStreamFactory provides an implementation of this interface.

package umontreal.iro.lecuyer.rng;

public interface RandomStreamFactory

public RandomStream newInstance();

Constructs and returns a new random stream. If the instantiation of the random stream
fails, this method throws a RandomStreamInstantiationException.

14

BasicRandomStreamFactory

Represents a basic random stream factory that can constructs new instances of a given
RandomStream implementation via the newInstance method. The class name of the imple-
mentation to be used must be passed to the constructor as a String, which must be the
name of a nullary constructor of a RandomStream object (i.e., a constructor that has no
parameters). The streams are constructed by the factory by reflection from this String.

package umontreal.iro.lecuyer.rng;

public class BasicRandomStreamFactory implements RandomStreamFactory

public BasicRandomStreamFactory (Class rsClass)

Constructs a new basic random stream factory with random stream class rsClass. The
supplied class object must represent an implementation of RandomStream and must provide
a nullary constructor. For example, to construct a factory producing MRG32k3a random
streams, this constructor must be called with MRG33k3a.class.

public Class getRandomStreamClass()

Returns the random stream class associated with this object.

public void setRandomStreamClass (Class rsClass)

Sets the associated random stream class to rsClass. The supplied class object must repre-
sent an implementation of RandomStream and must provide a nullary constructor.

15

RandomStreamInstantiationException

This exception is thrown when a random stream factory cannot instantiate a stream on
a call to its newInstance method.

package umontreal.iro.lecuyer.rng;

public class RandomStreamInstantiationException extends RuntimeException

public RandomStreamInstantiationException (RandomStreamFactory factory)

Constructs a new random stream instantiation exception with no message, no cause, and
thrown by the given factory.

public RandomStreamInstantiationException (RandomStreamFactory factory,
String message)

Constructs a new random stream instantiation exception with the given message, no cause,
and concerning factory.

public RandomStreamInstantiationException (RandomStreamFactory factory,
Throwable cause)

Constructs a new random stream instantiation exception with no message, the given cause,
and concerning factory.

public RandomStreamInstantiationException (RandomStreamFactory factory,
String message, Throwable cause)

Constructs a new random stream instantiation exception with the given message, the sup-
plied cause, and concerning factory.

public RandomStreamFactory getRandomStreamFactory()

Returns the random stream factory concerned by this exception.

public String toString()

Returns a short description of the exception. If getRandomStreamFactory returns null,
this calls super.toString. Otherwise, the result is the concatenation of:

a) the name of the actual class of the exception;
b) the string ": For random stream factory ";
c) the result of getRandomStreamFactory.toString();
d) if getMessage is non-null, ", " followed by the result of getMessage.

16

RandomStreamWithCache

This class represents a random stream whose uniforms are cached for more efficiency when
using common random numbers. An object from this class is constructed with a reference
to a RandomStream instance used to get the random numbers. These numbers are stored in
an internal array to be retrieved later. The dimension of the array increases as the values
are generated. If the nextDouble method is called after the object is reset, it gives back the
cached values instead of computing new ones. If the cache is exhausted before the stream is
reset, new values are computed, and added to the cache.

Such caching allows for a better performance with common random numbers, when gen-
erating uniforms is time-consuming. It can also help with restoring the simulation to a
certain state without setting stream-specific seeds. However, using such caching may lead
to memory problems if a large quantity of random numbers are needed.

package umontreal.iro.lecuyer.rng;

public class RandomStreamWithCache implements RandomStream

Constructors

public RandomStreamWithCache (RandomStream stream)

Constructs a new cached random stream with internal stream stream.

public RandomStreamWithCache (RandomStream stream, int initialCapacity)

Constructs a new cached random stream with internal stream stream. The initialCapacity
parameter is used to set the initial capacity of the internal array which can grow as needed;
it does not limit the total size of the cache.

Methods

public boolean isCaching()

Determines if the random stream is caching values, default being true. When caching is
turned OFF, the nextDouble method simply calls the corresponding method on the internal
random stream, without storing the generated uniforms.

public void setCaching (boolean caching)

Sets the caching indicator to caching. If caching is turned OFF, this method calls
clearCache to clear the cached values.

public RandomStream getCachedStream()

Returns a reference to the random stream whose values are cached.

public void setCachedStream (RandomStream stream)

Sets the random stream whose values are cached to stream. If the stream is changed, the
clearCache method is called to clear the cache.

RandomStreamWithCache 17

public void clearCache()

Clears the cached values for this random stream. Any subsequent call will then obtain new
values from the internal stream.

public void initCache()

Resets this random stream to recover values from the cache. Subsequent calls to nextDouble
will return the cached uniforms until all the values are returned. When the array of cached
values is exhausted, the internal random stream is used to generate new values which are
added to the internal array as well. This method is equivalent to calling setCacheIndex.

public int getNumCachedValues()

Returns the total number of values cached by this random stream.

public int getCacheIndex()

Return the index of the next cached value that will be returned by the stream. If the cache is
exhausted, the returned value corresponds to the value returned by getNumCachedValues,
and a subsequent call to nextDouble will generate a new variate rather than reading a
previous one from the cache. If caching is disabled, this always returns 0.

public void setCacheIndex (int newIndex)

Sets the index, in the cache, of the next value returned by nextDouble. If newIndex is 0,
this is equivalent to calling initCache. If newIndex is getNumCachedValues, subsequent
calls to nextDouble will add new values to the cache.

public DoubleArrayList getCachedValues()

Returns an array list containing the values cached by this random stream.

public void setCachedValues (DoubleArrayList values)

Sets the array list containing the cached values to values. This resets the cache index to
the size of the given array.

18

AntitheticStream

This container class allows the user to force any RandomStream to return antithetic vari-
ates. That is, nextDouble returns 1− u instead of u and the corresponding change is made
in nextInt. Any instance of this class behaves exactly like a RandomStream, except that it
depends on another random number generator stream, called the base stream, to generate
its numbers. Any call to one of the next... methods of this class will modify the state of
the base stream.

package umontreal.iro.lecuyer.rng;

public class AntitheticStream implements RandomStream

Constructors

public AntitheticStream (RandomStream stream)

Constructs a new antithetic stream, using the random numbers from the base stream stream.

Methods

public String toString()

Returns a string starting with "Antithetic of " and finishing with the result of the call
to the toString method of the generator.

public double nextDouble()

Returns 1.0 - s.nextDouble() where s is the base stream.

public int nextInt (int i, int j)

Returns j - i - s.nextInt(i, j) where s is the base stream.

public void nextArrayOfDouble (double[] u, int start, int n)

Calls nextArrayOfDouble (u, start, n) for the base stream, then replaces each u[i] by
1.0 - u[i].

public void nextArrayOfInt (int i, int j, int[] u, int start, int n)

Calls nextArrayOfInt (i, j, u, start, n) for the base stream, then replaces each u[i]
by j - i - u[i].

19

BakerTransformedStream

This container class permits one to apply the baker’s transformation to the output of
any RandomStream. It transforms each u ∈ [0, 1] into 2u if u ≤ 1/2 and 2(1− u) if u > 1/2.
The nextDouble method will return the result of this transformation and the other next...
methods are affected accordingly. Any instance of this class contains a RandomStream called
its base stream, used to generate its numbers and to which the transformation is applied.
Any call to one of the next... methods of this class will modify the state of the base stream.

The baker transformation is often applied when the RandomStream is actually an iterator
over a point set used for quasi-Monte Carlo integration (see the hups package).

package umontreal.iro.lecuyer.rng;

public class BakerTransformedStream implements RandomStream

Constructors

public BakerTransformedStream (RandomStream stream)

Constructs a new baker transformed stream, using the random numbers from the base stream
stream.

Methods

public String toString()

Returns a string starting with "Baker transformation of " and finishing with the result
of the call to the toString method of the generator.

public double nextDouble()

Returns the baker transformation of s.nextDouble() where s is the base stream.

public int nextInt (int i, int j)

Generates a random integer in {i, ..., j} via nextDouble (in which the baker transformation
is applied).

public void nextArrayOfDouble (double[] u, int start, int n)

Calls nextArrayOfDouble (u, start, n) for the base stream, then applies the baker trans-
formation.

public void nextArrayOfInt (int i, int j, int[] u, int start, int n)

Fills up the array by calling nextInt (i, j).

20

TruncatedRandomStream

Represents a container random stream generating numbers in an interval (a, b) instead
of in (0, 1), where 0 ≤ a < b ≤ 1, by using the contained stream. If nextDouble returns u
for the contained stream, it will return v = a + (b − a)u, which is uniform over (a, b), for
the truncated stream. The method nextInt returns the integer that corresponds to v (by
inversion); this integer is no longer uniformly distributed in general.

package umontreal.iro.lecuyer.rng;

public class TruncatedRandomStream implements RandomStream

Constructor

public TruncatedRandomStream (RandomStream stream, double a, double b)

21

RandMrg

USE MRG32k3a INSTEAD of this class. This class implements the interface RandomStream
directly, with a few additional tools. It uses the same backbone (or main) generator as
MRG32k3a, but it is an older implementation that does not extend RandomStreamBase, and
it is about 10% slower.

package umontreal.iro.lecuyer.rng;

@Deprecated
public class RandMrg implements CloneableRandomStream, Serializable

Constructors

public RandMrg()

Constructs a new stream, initializes its seed Ig, sets Bg and Cg equal to Ig, and sets its
antithetic switch to false. The seed Ig is equal to the initial seed of the package given by
setPackageSeed if this is the first stream created, otherwise it is Z steps ahead of that of
the stream most recently created in this class.

public RandMrg (String name)

Constructs a new stream with an identifier name (can be used when printing the stream
state, in error messages, etc.).

Methods

public static void setPackageSeed (long seed[])

Sets the initial seed for the class RandMrg to the six integers in the vector seed[0..5]. This
will be the seed (initial state) of the first stream. If this method is not called, the default
initial seed is (12345, 12345, 12345, 12345, 12345, 12345). If it is called, the first 3 values of
the seed must all be less than m1 = 4294967087, and not all 0; and the last 3 values must
all be less than m2 = 4294944443, and not all 0.

public void increasedPrecis (boolean incp)

After calling this method with incp = true, each call to the generator (direct or indirect)
for this stream will return a uniform random number with (roughly) 53 bits of resolution
instead of 32 bits, and will advance the state of the stream by 2 steps instead of 1. More
precisely, if s is a stream of the class RandMrg, in the non-antithetic case, the instruc-
tion “u = s.nextDouble()”, when the resolution has been increased, is equivalent to “u =
(s.nextDouble() + s.nextDouble()*fact) % 1.0” where the constant fact is equal to
2−24. This also applies when calling nextDouble indirectly (e.g., via nextInt, etc.).

By default, or if this method is called again with incp = false, each call to nextDouble
for this stream advances the state by 1 step and returns a number with 32 bits of resolution.

22 RandMrg

public void advanceState (int e, int c)

Advances the state of this stream by k values, without modifying the states of other streams
(as in setSeed), nor the values of Bg and Ig associated with this stream. If e > 0, then
k = 2e + c; if e < 0, then k = −2−e + c; and if e = 0, then k = c. Note: c is allowed to take
negative values. This method should be used only in very exceptional cases; proper use of
the reset... methods and of the stream constructor cover most reasonable situations.

public void setSeed (long seed[])

Sets the initial seed Ig of this stream to the vector seed[0..5]. This vector must satisfy the
same conditions as in setPackageSeed. The stream is then reset to this initial seed. The
states and seeds of the other streams are not modified. As a result, after calling this method,
the initial seeds of the streams are no longer spaced Z values apart. For this reason, this
method should be used only in very exceptional situations; proper use of reset... and of
the stream constructor is preferable.

public double[] getState()

Returns the current state Cg of this stream. This is a vector of 6 integers represented in
floating-point format. This method is convenient if we want to save the state for subsequent
use.

public String toStringFull()

Returns a string containing the name of this stream and the values of all its internal variables.

public double nextDouble()

Returns a (pseudo)random number from the uniform distribution over the interval (0, 1),
using this stream, after advancing its state by one step. Normally, the returned number has
32 bits of resolution, in the sense that it is always a multiple of 1/(232 − 208). However, if
the precision has been increased by calling increasedPrecis for this stream, the resolution
is higher and the stream state advances by two steps.

public RandMrg clone()

Clones the current generator and return its copy.

23

MRG32k3a

Extends the abstract class RandomStreamBase by using as a backbone (or main) gener-
ator the combined multiple recursive generator (CMRG) MRG32k3a proposed by L’Ecuyer
[4], implemented in 64-bit floating-point arithmetic. This backbone generator has a period
length of ρ ≈ 2191. The values of V , W , and Z are 251, 276, and 2127, respectively. (See
RandomStream for their definition.) The seed of the RNG, and the state of a stream at
any given step, are six-dimensional vectors of 32-bit integers, stored in double. The default
initial seed of the RNG is (12345, 12345, 12345, 12345, 12345, 12345).

package umontreal.iro.lecuyer.rng;

public class MRG32k3a extends RandomStreamBase

Constructors

public MRG32k3a()

Constructs a new stream, initializes its seed Ig, sets Bg and Cg equal to Ig, and sets its
antithetic switch to false. The seed Ig is equal to the initial seed of the package given by
setPackageSeed if this is the first stream created, otherwise it is Z steps ahead of that of
the stream most recently created in this class.

public MRG32k3a (String name)

Constructs a new stream with an identifier name (used when printing the stream state).

Methods

public static void setPackageSeed (long seed[])

Sets the initial seed for the class MRG32k3a to the six integers in the vector seed[0..5]. This
will be the seed (initial state) of the first stream. If this method is not called, the default
initial seed is (12345, 12345, 12345, 12345, 12345, 12345). If it is called, the first 3 values of
the seed must all be less than m1 = 4294967087, and not all 0; and the last 3 values must
all be less than m2 = 4294944443, and not all 0.

public void setSeed (long seed[])

Sets the initial seed Ig of this stream to the vector seed[0..5]. This vector must satisfy
the same conditions as in setPackageSeed. The stream is then reset to this initial seed.
The states and seeds of the other streams are not modified. As a result, after calling this
method, the initial seeds of the streams are no longer spaced Z values apart. For this reason,
this method should be used only in very exceptional situations (I have never used it myself!);
proper use of reset... and of the stream constructor is preferable.

public long[] getState()

Returns the current state Cg of this stream. This is a vector of 6 integers. This method is
convenient if we want to save the state for subsequent use.

24 MRG32k3a

public String toString()

Returns a string containing the name and the current state Cg of this stream.

public String toStringFull()

Returns a string containing the name of this stream and the values of all its internal variables.

public MRG32k3a clone()

Clones the current generator and return its copy.

25

MRG32k3aL

The same generator as MRG32k3a, except here it is implemented with type long instead
of double. (See MRG32k3a for more information.)

package umontreal.iro.lecuyer.rng;

public class MRG32k3aL extends RandomStreamBase

Constructors

public MRG32k3aL()

public MRG32k3aL (String name)

Methods

See the description of the same methods in class MRG32k3a.

public static void setPackageSeed (long seed[])

public void setSeed (long seed[])

public long[] getState()

public String toString()

public String toStringFull()

public MRG32k3aL clone()

26

MRG31k3p

Extends the abstract class RandomStreamBase, thus implementing the RandomStream

interface indirectly. The backbone generator is the combined multiple recursive generator
(CMRG) MRG31k3p proposed by L’Ecuyer and Touzin [12], implemented in 32-bit integer
arithmetic. This RNG has a period length of ρ ≈ 2185. The values of V , W and Z are 262,
272 and 2134 respectively. (See RandomStream for their definition.) The seed and the state of
a stream at any given step are six-dimensional vectors of 32-bit integers. The default initial
seed is (12345, 12345, 12345, 12345, 12345, 12345). The method nextValue provides 31 bits
of precision.

The difference between the RNG of class MRG32k3a and this one is that this one has all
its coefficients of the form a = ±2q ± 2r. This permits a faster implementation than for
arbitrary coefficients. On a 32-bit computer, MRG31k3p is about twice as fast as MRG32k3a.
On the other hand, the latter does a little better in the spectral test and has been more
extensively tested.

package umontreal.iro.lecuyer.rng;

public class MRG31k3p extends RandomStreamBase

Constructors

public MRG31k3p()

Constructs a new stream, initialized at its beginning. Its seed is Z = 2134 steps away from
the previous seed.

public MRG31k3p (String name)

Constructs a new stream with the identifier name (used when formatting the stream state).

Methods

public static void setPackageSeed (int seed[])

Sets the initial seed for the class MRG31k3p to the six integers of the vector seed[0..5]. This
will be the initial state (or seed) of the next created stream. By default, if this method is not
called, the first stream is created with the seed (12345, 12345, 12345, 12345, 12345, 12345). If
it is called, the first 3 values of the seed must all be less than m1 = 2147483647, and not all
0; and the last 3 values must all be less than m2 = 2147462579, and not all 0.

public void setSeed (int seed[])

Use of this method is strongly discouraged. Initializes the stream at the beginning of a
stream with the initial seed seed[0..5]. This vector must satisfy the same conditions
as in setPackageSeed. This method only affects the specified stream, all the others are
not modified, so the beginning of the streams are no longer spaced Z values apart. For
this reason, this method should be used only in very exceptional situations; proper use of
reset... and of the stream constructor is preferable.

MRG31k3p 27

public int[] getState()

Returns the current state Cg of this stream. This is a vector of 6 integers represented. This
method is convenient if we want to save the state for subsequent use.

public MRG31k3p clone()

Clones the current generator and return its copy.

28

LFSR113

Extends RandomStreamBase using a composite linear feedback shift register (LFSR) (or
Tausworthe) RNG as defined in [3, 17]. This generator is the LFSR113 proposed by [5]. It has
four 32-bit components combined by a bitwise xor. Its period length is ρ ≈ 2113. The values
of V , W and Z are 235, 255 and 290 respectively (see RandomStream for their definition). The
seed of the RNG, and the state of a stream at any given step, are four-dimensional vectors of
32-bit integers. The default initial seed of the RNG is 1 (987654321, 987654321, 987654321,
987654321). The nextValue method returns numbers with 32 bits of precision.

package umontreal.iro.lecuyer.rng;

public class LFSR113 extends RandomStreamBase

Constructors

public LFSR113()

Constructs a new stream.

public LFSR113 (String name)

Constructs a new stream with the identifier name.

Methods

public static void setPackageSeed (int[] seed)

Sets the initial seed for the class LFSR113 to the four integers of the vector seed[0..3]. This
will be the initial state of the next created stream. The default seed for the first stream is 2

(987654321, 987654321, 987654321, 987654321). The first, second, third and fourth integers
of seed must be either negative, or greater than or equal to 2, 8, 16 and 128 respectively.

public void setSeed (int[] seed)

This method is discouraged for normal use. Initializes the stream at the beginning of a
stream with the initial seed seed[0..3]. The seed must satisfy the same conditions as in
setPackageSeed. This method only affects the specified stream; the others are not modified,
so the beginning of the streams will not be spaced Z values apart. For this reason, this
method should only be used in very exceptional cases; proper use of the reset... methods
and of the stream constructor is preferable.

public int[] getState()

Returns the current state of the stream, represented as an array of four integers.

public LFSR113 clone()

Clones the current generator and return its copy.

1In previous versions, it was (12345, 12345, 12345, 12345).
2In previous versions, it was (12345, 12345, 12345, 12345).

29

LFSR258

Extends RandomStreamBase using a 64-bit composite linear feedback shift register
(LFSR) (or Tausworthe) RNG as defined in [3, 17]. This generator is the LFSR258 pro-
posed in [5]. It has five components combined by a bitwise xor. Its period length is
ρ ≈ 2258. The values of V , W and Z are 2100, 2100 and 2200 respectively (see RandomStream

for their definition). The seed of the RNG, and the state of a stream at any given step,
are five-dimensional vectors of 64-bit integers. The default initial seed 3 of the RNG
is (123456789123456789, 123456789123456789, 123456789123456789, 123456789123456789,
123456789123456789). The nextValue method returns numbers with 53 bits of precision.
This generator is fast for 64-bit machines.

package umontreal.iro.lecuyer.rng;

public class LFSR258 extends RandomStreamBase

Constructors

public LFSR258()

Constructs a new stream.

public LFSR258 (String name)

Constructs a new stream with the identifier name.

Methods

public static void setPackageSeed (long seed[])

Sets the initial seed for the class LFSR258 to the five integers of array seed[0..4]. This
will be the initial state of the next created stream. The default seed 4 for the first stream
is (123456789123456789, 123456789123456789, 123456789123456789, 123456789123456789,
123456789123456789). The first, second, third, fourth and fifth integers of seed must be
either negative, or greater than or equal to 2, 512, 4096, 131072 and 8388608 respectively.

public void setSeed (long seed[])

This method is discouraged for normal use. Initializes the stream at the beginning of a
stream with the initial seed seed[0..4]. The seed must satisfy the same conditions as in
setPackageSeed. This method only affects the specified stream; the others are not modified,
so the beginning of the streams will not be spaced Z values apart. For this reason, this
method should only be used in very exceptional cases; proper use of the reset... methods
and of the stream constructor is preferable.

public long[] getState()

Returns the current state of the stream, represented as an array of five integers.

3In previous versions, it was (1234567890, 1234567890, 1234567890, 1234567890, 1234567890).
4In previous versions, it was (1234567890, 1234567890, 1234567890, 1234567890, 1234567890).

30 LFSR258

public LFSR258 clone()

Clones the current generator and return its copy.

31

WELL512

This class implements the RandomStream interface via inheritance from RandomStreamBase.
The backbone generator is a Well Equidistributed Long period Linear Random Number Gen-
erator (WELL), proposed by F. Panneton in [16, 14], and which has a state size of 512 bits
and a period length of ρ ≈ 2512. The values of V , W and Z are 2150, 2200 and 2350 respectively
(see RandomStream for their definition). The seed of the RNG, and the state of a stream at
any given step, is a 16-dimensional vector of 32-bit integers.

package umontreal.iro.lecuyer.rng;

public class WELL512 extends RandomStreamBase

Constructors

public WELL512()

Constructs a new stream.

public WELL512 (String name)

Constructs a new stream with the identifier name (used in the toString method).

Methods

public static void setPackageSeed (int seed[])

Sets the initial seed of the class WELL512 to the 16 integers of the vector seed[0..15]. This
will be the initial seed of the class of the next created stream. At least one of the integers
must be non-zero.

public void setSeed (int seed[])

This method is discouraged for normal use. Initializes the stream at the beginning of a
stream with the initial seed seed[0..15]. The seed must satisfy the same conditions as in
setPackageSeed. This method only affects the specified stream; the others are not modified.
Hence after calling this method, the beginning of the streams will no longer be spaced Z
values apart. For this reason, this method should only be used in very exceptional cases;
proper use of the reset... methods and of the stream constructor is preferable.

public int[] getState()

Returns the current state of the stream, represented as an array of 16 integers.

public WELL512 clone()

Clones the current generator and return its copy.

32

WELL607

This class implements the RandomStream interface via inheritance from RandomStreamBase.
The backbone generator is a Well Equidistributed Long period Linear Random Number
Generator (WELL), proposed by F. Panneton in [16, 14]. The implemented generator is the
WELL607, which has a state size of 607 bits and a period length of ρ ≈ 2607. The values of
V , W and Z are 2150, 2250 and 2400 respectively (see RandomStream for their definition). The
seed of the RNG, and the state of a stream at any given step, is a 19-dimensional vector of
32-bit integers. The output of nextValue has 32 bits of precision.

package umontreal.iro.lecuyer.rng;

public class WELL607 extends WELL607base

Constructors

public WELL607()

Constructs a new stream.

public WELL607 (String name)

Constructs a new stream with the identifier name (used in the toString method).

Methods

public static void setPackageSeed (int seed[])

Sets the initial seed of the class WELL607 to the 19 integers of the vector seed[0..18]. This
will be the initial seed of the next created stream. At least one of the integers must not be
zero and if this integer is the last one, it must not be equal to 0x80000000.

public void setSeed (int seed[])

This method is discouraged for normal use. Initializes the stream at the beginning of a
stream with the initial seed seed[0..18]. The seed must satisfy the same conditions as in
setPackageSeed. This method only affects the specified stream; the others are not modified.
Hence after calling this method, the beginning of the streams will no longer be spaced Z
values apart. For this reason, this method should only be used in very exceptional cases;
proper use of the reset... methods and of the stream constructor is preferable.

public int[] getState()

Returns the current state of the stream, represented as an array of 19 integers.

public WELL607 clone()

Clones the current generator and return its copy.

33

WELL1024

Implements the RandomStream interface via inheritance from RandomStreamBase. The
backbone generator is a Well Equidistributed Long period Linear Random Number Generator
(WELL), proposed by F. Panneton in [16, 14], and which has a state size of 1024 bits and
a period length of ρ ≈ 21024. The values of V , W and Z are 2300, 2400 and 2700 respectively
(see RandomStream for their definition). The seed of the RNG, and the state of a stream at
any given step, is a 16-dimensional vector of 32-bit integers. The output of nextValue has
32 bits of precision.

package umontreal.iro.lecuyer.rng;

public class WELL1024 extends RandomStreamBase

Constructors

public WELL1024()

Constructs a new stream.

public WELL1024 (String name)

Constructs a new stream with the identifier name (used in the toString method).

Methods

public static void setPackageSeed (int seed[])

Sets the initial seed of this class to the 32 integers of array seed[0..31]. This will be the
initial seed of the class and of the next created stream. At least one of the integers must be
non-zero.

public void setSeed (int seed[])

This method is discouraged for normal use. Initializes the stream at the beginning of a
stream with the initial seed seed[0..31]. The seed must satisfy the same conditions as in
setPackageSeed. This method only affects the specified stream; the others are not modified.
Hence after calling this method, the beginning of the streams will no longer be spaced Z
values apart. For this reason, this method should only be used in very exceptional cases;
proper use of the reset... methods and of the stream constructor is preferable.

public int[] getState()

Returns the current state of the stream, represented as an array of 32 integers.

public WELL1024 clone()

Clones the current generator and return its copy.

34

GenF2w32

Implements the RandomStream interface via inheritance from RandomStreamBase. The
backbone generator is a Linear Congruential Generator (LCG) in the finite field F2w instead
of F2. The implemented generator is the GenF2w2_32 proposed by Panneton [15, 14]. Its
state is 25 32-bit words and it has a period length of 2800 − 1. The values of V , W and
Z are 2200, 2300 and 2500 respectively (see RandomStream for their definition). The seed of
the RNG, and the state of a stream at any given step, is a 25-dimensional vector of 32-bits
integers. Its nextValue method returns numbers with 32 bits of precision.

package umontreal.iro.lecuyer.rng;

public class GenF2w32 extends RandomStreamBase

Constructors

public GenF2w32()

Constructs a new stream.

public GenF2w32 (String name)

Constructs a new stream with the identifier name (used in the toString method).

Methods

public static void setPackageSeed (int seed[])

Sets the initial seed of the class GenF2w2r32 to the 25 integers of the vector seed[0..24].
This will be the initial seed of the class for the next created stream. At least one of the
integers must be non-zero.

public void setSeed (int seed[])

This method is discouraged for normal use. Initializes the stream at the beginning of a
stream with the initial seed seed[0..24]. The seed must satisfy the same conditions as in
setPackageSeed. This method only affects the specified stream; the others are not modified.
Hence after calling this method, the beginning of the streams will no longer be spaced Z
values apart. For this reason, this method should only be used in very exceptional cases;
proper use of the reset... methods and of the stream constructor is preferable.

public int[] getState()

Returns the current state of the stream, represented as an array of 25 integers.

public GenF2w32 clone()

Clones the current generator and return its copy.

35

MT19937

Implements the RandomStream interface via inheritance from RandomStreamBase. The
backbone generator is the MT19937 Mersenne Twister, proposed by Matsumoto and
Nishimura [13], which has a state size of 19937 bits and a period length of ρ ≈ 219937.
Each instance uses another CloneableRandomStream to fill its initial state. With this de-
sign, the initial states of successive streams are not spaced by an equal number of steps, and
there is no guarantee that different streams do not overlap, but damaging overlap is unlikely
because of the huge size of the state space. The seed of the RNG, and the state of a stream
at any given step, is a 624-dimensional vector of 32-bit integers. The output of nextValue

has 32 bits of precision.

package umontreal.iro.lecuyer.rng;

public class MT19937 extends RandomStreamBase

Constructors

public MT19937 (CloneableRandomStream rng)

Constructs a new stream, using rng to fill its initial state.

public MT19937 (CloneableRandomStream rng, String name)

Constructs a new stream with the identifier name (used in the toString method).

Methods

public MT19937 clone()

Clones the current generator and return its copy.

36

F2NL607

Implements the RandomStream interface by using as a backbone generator the combina-
tion of the WELL607 proposed in [14, 16] (and implemented in WELL607) with a nonlinear
generator. This nonlinear generator is made up of a small number of components (say n)
combined via addition modulo 1. Each component contains an array already filled with a
“random” permutation of {0, ..., s− 1} where s is the size of the array. These numbers and
the lengths of the components can be changed by the user. Each call to the generator uses
the next number in each array (or the first one if we are at the end of the array). By de-
fault, there are 3 components of lengths 1019, 1021, and 1031, respectively. The non-linear
generator is combined with the WELL using a bitwise XOR operation. This ensures that
the new generator has at least as much equidistribution as the WELL607, as shown in [10].

The combined generator has a period length of ρ ≈ 2637. The values of V , W and Z
are 2250, 2150, and 2400, respectively (see RandomStream for their definition). The seed of the
RNG has two part: the linear part is a 19-dimensional vector of 32-bit integers, while the
nonlinear part is made up of a n-dimensional vector of indices, representing the position of
the generator in each array of the nonlinear components.

package umontreal.iro.lecuyer.rng;

public class F2NL607

Constructors

public F2NL607()

Constructs a new stream, initializing it at its beginning. Also makes sure that the seed of
the next constructed stream is Z steps away. Sets its antithetic switch to false and sets
the stream to normal precision mode (offers 32 bits of precision).

public F2NL607 (String name)

Constructs a new stream with the identifier name (used in the toString method).

Methods

public static void setPackageLinearSeed (int seed[])

Sets the initial seed of the linear part of the class F2NL607 to the 19 integers of the vector
seed[0..18]. This will be the initial seed (or seed) of the next created stream. At least
one of the integers must be non-zero and if this integer is the last one, it must not be equal
to 0x7FFFFFFF.

public void setLinearSeed (int seed[])

This method is discouraged for normal use. Initializes the stream at the beginning of a
stream with the initial linear seed seed[0..18]. The seed must satisfy the same conditions

F2NL607 37

as in setPackageSeed. The non-linear seed is not modified; thus the non-linear part of the
random number generator is reset to the beginning of the old stream. This method only
affects the specified stream; the others are not modified. Hence after calling this method,
the beginning of the streams will no longer be spaced Z values apart. For this reason, this
method should only be used in very exceptional cases; proper use of the reset... methods
and of the stream constructor is preferable.

public int[] getLinearState()

Returns the current state of the linear part of the stream, represented as an array of 19
integers.

public static void setPackageNonLinearSeed (int seed[])

Sets the non-linear part of the initial seed of the class F2NL607 to the n integers of the vector
seed[0..n-1], where n is the number of components of the non-linear part. The default
is n = 3. Each of the integers must be between 0 and the length of the corresponding
component minus one. By default, the lengths are (1019, 1021, 1031).

public void setNonLinearSeed (int seed[])

This method is discouraged for normal use. Initializes the stream at the beginning of a
stream with the initial non-linear seed seed[0..n-1], where n is the number of components
of the non-linear part of the generator. The linear seed is not modified so the linear part of
the random number generator is reset to the beginning of the old stream. This method only
affects the specified stream; the others are not modified. Hence after calling this method,
the beginning of the streams will no longer be spaced Z values apart. For this reason, this
method should only be used in very exceptional cases; proper use of the reset... methods
and of the stream constructor is preferable.

public int[] getNonLinearState()

Returns the current state of the non-linear part of the stream, represented as an array of n
integers, where n is the number of components in the non-linear generator.

public static int[][] getNonLinearData()

Return the data of all the components of the non-linear part of the random number generator.
This data is explained in the introduction.

public static void setNonLinearData (int[][] data)

Selects new data for the components of the non-linear generator. The number of arrays in
data will decide the number of components. Each of the arrays will be assigned to one of
the components. The period of the resulting non-linear generator will be equal to the lowest
common multiple of the lengths of the arrays. It is thus recommended to choose only prime
length for the best results.

NOTE : This method cannot be called if at least one instance of F2NL607 has been con-
structed. In that case, it will throw an IllegalStateException.

public static void setScrambleData (RandomStream rand, int steps,
int[] size)

Selects new data for the components of the non-linear generator. The number of arrays in
data will decide the number of components. Each of the arrays will be assigned to one of

38 F2NL607

the components. The period of the resulting non-linear generator will be equal to the lowest
common multiple of the lengths of the arrays. It is thus recommended to choose only prime
length for the best results.

NOTE : This method cannot be called if at least one instance of F2NL607 has been con-
structed. In that case, it will throw an IllegalStateException.

public F2NL607 clone()

Clones the current generator and return its copy.

39

RandRijndael
Implements a RNG using the Rijndael block cipher algorithm (AES) with key and block

lengths of 128 bits. A block of 128 bits is encrypted by the Rijndael algorithm to generate
128 pseudo-random bits. Those bits are split into four words of 32 bits which are returned
successively by the method nextValue. The unencrypted block is the state of the generator.
It is incremented by 1 at every four calls to nextValue. Thus, the period is 2130 and jumping
ahead is easy. The values of V , W and Z are 240, 242 and 282, respectively (see RandomStream
for their definition). Seeds/states must be given as 16-dimensional vectors of bytes (8-bit
integers). The default initial seed is a vector filled with zeros.

The Rijndael implementation used here is that of the Cryptix Development Team, which
can be found on the Rijndael creators’ page http://www.esat.kuleuven.ac.be/~rijmen/

rijndael/.

package umontreal.iro.lecuyer.rng;

public class RandRijndael extends RandomStreamBase

Constructors

public RandRijndael()
Constructs a new stream.

public RandRijndael (String name)
Constructs a new stream with the identifier name (used in the toString method).

Methods

public static void setPackageSeed (byte seed[])
Sets the initial seed for the class RandRijndael to the 16 bytes of the vector seed[0..15].
This will be the initial state (or seed) of the next created stream. The default seed for the
first stream is (0, 0, . . . , 0, 0).

public void setSeed (byte seed[])
This method is discouraged for normal use. Initializes the stream at the beginning of a
stream with the initial seed seed[0..15]. This method only affects the specified stream;
the others are not modified, so the beginning of the streams will not be spaced Z values
apart. For this reason, this method should only be used in very exceptional cases; proper
use of the reset... methods and of the stream constructor is preferable.

public byte[] getState()
Returns the current state of the stream, represented as an array of four integers. It should
be noted that each state of this generator returns 4 successive values. The particular value
of these 4 which will be returned next is not given by this method.

public RandRijndael clone()
Clones the current generator and return its copy.

http://www.esat.kuleuven.ac.be/~rijmen/rijndael/
http://www.esat.kuleuven.ac.be/~rijmen/rijndael/
http://www.esat.kuleuven.ac.be/~rijmen/rijndael/

40 REFERENCES

References

[1] D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms. Addison-Wesley, Reading, MA, third edition, 1998.

[2] A. M. Law and W. D. Kelton. Simulation Modeling and Analysis. McGraw-Hill, New
York, NY, third edition, 2000.

[3] P. L’Ecuyer. Maximally equidistributed combined Tausworthe generators. Mathematics
of Computation, 65(213):203–213, 1996.

[4] P. L’Ecuyer. Good parameters and implementations for combined multiple recursive
random number generators. Operations Research, 47(1):159–164, 1999.

[5] P. L’Ecuyer. Tables of maximally equidistributed combined LFSR generators. Mathe-
matics of Computation, 68(225):261–269, 1999.

[6] P. L’Ecuyer. Software for uniform random number generation: Distinguishing the good
and the bad. In Proceedings of the 2001 Winter Simulation Conference, pages 95–105,
Piscataway, NJ, 2001. IEEE Press.

[7] P. L’Ecuyer. Random number generation. In J. E. Gentle, W. Haerdle, and Y. Mori,
editors, Handbook of Computational Statistics, pages 35–70. Springer-Verlag, Berlin,
2004. Chapter II.2.

[8] P. L’Ecuyer and T. H. Andres. A random number generator based on the combination
of four LCGs. Mathematics and Computers in Simulation, 44:99–107, 1997.

[9] P. L’Ecuyer and S. Côté. Implementing a random number package with splitting
facilities. ACM Transactions on Mathematical Software, 17(1):98–111, 1991.

[10] P. L’Ecuyer and J. Granger-Piché. Combined generators with components from different
families. Mathematics and Computers in Simulation, 62:395–404, 2003.

[11] P. L’Ecuyer, R. Simard, E. J. Chen, and W. D. Kelton. An object-oriented random-
number package with many long streams and substreams. Operations Research,
50(6):1073–1075, 2002.

[12] P. L’Ecuyer and R. Touzin. Fast combined multiple recursive generators with multipliers
of the form a = ±2q ± 2r. In Proceedings of the 2000 Winter Simulation Conference,
pages 683–689, Piscataway, NJ, 2000. IEEE Press.

[13] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Transactions on Modeling
and Computer Simulation, 8(1):3–30, 1998.

[14] F. Panneton. Construction d’ensembles de points basée sur des récurrences linéaires
dans un corps fini de caractéristique 2 pour la simulation Monte Carlo et l’intégration
quasi-Monte Carlo. PhD thesis, Département d’informatique et de recherche opérationnelle,
Université de Montréal, Canada, August 2004.

REFERENCES 41

[15] F. Panneton and P. L’Ecuyer. Random number generators based on linear recurrences
in F2w . In H. Niederreiter, editor, Monte Carlo and Quasi-Monte Carlo Methods 2002,
pages 367–378, Berlin, 2004. Springer-Verlag.

[16] F. Panneton, P. L’Ecuyer, and M. Matsumoto. Improved long-period generators based
on linear recurrences modulo 2. ACM Transactions on Mathematical Software, 32(1):1–
16, 2006.

[17] S. Tezuka and P. L’Ecuyer. Efficient and portable combined Tausworthe random
number generators. ACM Transactions on Modeling and Computer Simulation, 1(2):99–
112, 1991.

	Overview
	RandomStream
	CloneableRandomStream
	RandomStreamBase
	RandomPermutation
	RandomStreamManager
	RandomStreamFactory
	BasicRandomStreamFactory
	RandomStreamInstantiationException
	RandomStreamWithCache
	AntitheticStream
	BakerTransformedStream
	TruncatedRandomStream
	RandMrg
	MRG32k3a
	MRG32k3aL
	MRG31k3p
	LFSR113
	LFSR258
	WELL512
	WELL607
	WELL1024
	GenF2w32
	MT19937
	F2NL607
	RandRijndael

