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SSJ stands for stochastic simulation in Java. The SSJ library provides facil-
ities for generating uniform and nonuniform random variates, computing dif-
ferent measures related to probability distributions, performing goodness-of-fit
tests, applying quasi-Monte Carlo methods, collecting statistics, and program-
ming discrete-event simulations with both events and processes. This document
provides a very brief overview of this library and presents several examples of
small simulation programs in Java, based on this library. The examples are com-
mented in detail. They can serve as a good starting point for learning how to
use SSJ. The first part of the guide gives very simple examples that do not need
event or process scheduling. The second part contains examples of discrete-event
simulation programs implemented with an event view, while the third part gives
examples of implementations based on the process view.

1SSJ was designed and implemented in the Simulation laboratory of the Département
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2 1 INTRODUCTION

1 Introduction

The aim of this document is to provide an introduction to SSJ via a brief overview and a
series of examples. The examples are collected in three groups:

(1) those that need no event or process scheduling;

(2) those based on the discrete-event simulation paradigm and implemented with an event
view using the package simevents;

(3) those implemented with the process view, supported by the package simprocs.

Sections 3 to 5 of this guide correspond to these three groups. Some examples (e.g., the
single-server queue) are carried across two or three sections to illustrate different ways of
implementing the same model. The Java code of all these examples is available on-line from
the SSJ web page (just type “SSJ iro” in Google).

While studying the examples, the reader can refer to the functional definitions (the APIs)
of the SSJ classes and methods in the guides of the corresponding packages. Each package in
SSJ has its own user’s guide in the form of a .pdf document that contains the detailed API
and complete documentation, and starts with an overview of one or two pages. We strongly
recommend reading each of these overviews. We also recommend to refer to the .pdf versions
of the guides, because they contain a more detailed and complete documentation than the
.html versions, which are better suited for quick on-line referencing for those who are already
familiar with SSJ.
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2 Overview of SSJ

SSJ is an organized set of packages whose purpose is to facilitate stochastic simulation
programming in the Java language. The facilities offered are grouped into different packages,
each one having its own user’s guide as a .pdf file. This is the official documentation. There
is also a simplified on-line documentation in HTML format, produced via javadoc. Early
descriptions of SSJ are given in [11, 10]. Some of the tools can also be used for modeling
(e.g., selecting and fitting distributions). SSJ is still growing actively. New packages, classes,
and methods will be added in forthcoming years and others will be refined.

The packages currently offered are the following:

util contains utility classes used in the implementation of SSJ, and which are of-
ten useful elsewhere. For example, there are timers (for CPU usage), utilities
to read or format numbers and arrays from/to text, operations on binary vec-
tors and matrices, some mathematical functions and constants, root-finding
tools, facilities for SQL database interface, and so on.

probdist contains a set of Java classes providing methods to compute mass,
density, distribution, complementary distribution, and inverse distribution
functions for many discrete and continuous probability distributions, as well
as estimating the parameters of these distributions.

probdistmulti contains a set of Java classes providing methods to compute
mass, density, distribution, complementary distribution, for some multi-
dimensionnal discrete and continuous probability distributions.

rng provides facilities for generating uniform random numbers over the interval
(0, 1), or over a given range of integer values, and other types of simple random
objects such as random permutations.

hups provides classes implementing highly uniform point sets and sequences
(HUPS), also called low-discrepancy sets and sequences, and tools for their
randomization.

randvar provides a collection of classes for non-uniform random variate genera-
tion, primarily from standard distributions.

randvarmulti provides a collection of classes for random number generators for
some multi-dimensional distributions.

gof contains tools for performing univariate goodness-of-fit (GOF) statistical
tests.

stat provides elementary tools for collecting statistics and computing confidence
intervals.

stat.list this subpackage of stat provides support to manage lists of statistical
collectors.
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simevents provides and manages the event-driven simulation facilities as well as
the simulation clock. Can manage several simulations in parallel, in the same
program.

simevents.eventlist this subpackage of simevents offers several kinds of event
list implementations.

simprocs provides and manages the process-driven simulation facilities.

functions contains classes that allow one to pass an arbitrary function of one
variable as argument to a method and to apply elementary mathematical
operations on generic functions.

functionfit provides basic facilities for curve fitting and interpolation with
polynomials.

charts provides tools for easy construction, visualization, and customization of
xy plots, histograms, and empirical styled charts from a Java program.

stochprocess implements different kinds of stochastic processes.

Dependence on other libraries

SSJ uses some classes from other free Java libraries.

The Colt library, developed at the Centre Européen de Recherche Nucléaire (CERN) in
Geneva [5], is a large library that provides a wide range of facilities for high performance
scientific and technical computing in Java. SSJ uses the class DoubleArrayList from Colt
in a few of its classes, namely in packages stat and hups. The reason is that this class
provides a very efficient and convenient implementation of an (automatically) extensible
array of double, together with several methods for computing statistics for the observations
stored in the array (see, e.g., Descriptive). The Colt library is distributed with the SSJ
package as colt.jar. It must be added in the CLASSPATH environment variable.

The linear_algebra library is based on public domain LINPACK routines. They were
translated from Fortran to Java by Steve Verrill at the USDA Forest Products Laboratory
Madison, Wisconsin, USA. This software is also in the public domain and is included in the
SSJ distribution as the Blas.jar archive. It is used only in the probdist package to compute
maximum likelihood estimators.

The optimization package of Steve Verrill includes Java translations of the MINPACK
routines [6] for nonlinear least squares problems as well as UNCMIN routines [14] for uncon-
strained optimization. They were translated from Fortran to Java by Steve Verrill and are
in the public domain. They are included in the SSJ distribution as the optimization.jar
archive. It is used only in the probdist package to compute maximum likelihood estimators.

JFreeChart is a free Java library that can generate a wide variety of charts and plots for
use in applications, applets and servlets. JFreeChart currently supports, amongst others,
bar charts, pie charts, line charts, XY-plots, histograms, scatter plots and time series plots.
It is distributed with SSJ as jfreechart-*.jar. JCommon is a free general purpose Java

http://acs.lbl.gov/software/colt/
http://simul.iro.umontreal.ca/Uncmin_f77/Minpack_f77.html
http://simul.iro.umontreal.ca/Uncmin_f77/Uncmin_f77.html
http://www.jfree.org/jfreechart/index.html
http://www.jfree.org/jcommon/index.php
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library containing many useful classes used by JFreeChart and other Java packages. It is
distributed with SSJ as jcommon-*.jar. JFreeChart (and JCommon) are used in the SSJ
package charts to create different kinds of charts.

SSJ also provides an interface to the UNURAN library for nonuniform random number
generation [13], in the randvar package. UNURAN does not have to be installed to be used
with SSJ, because it is linked statically with the appropriate SSJ native library. However,
the UNURAN documentation will be required to take full advantage of the library.

http://statistik.wu-wien.ac.at/unuran/
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3 Some Elementary Examples

We start with elementary examples that illustrate how to generate uniform and nonuniform
random numbers, construct probability distributions, collect elementary statistics, and com-
pute confidence intervals, compare similar systems, and use randomized quasi-Monte Carlo
point sets, with SSJ.

The models considered here are quite simple and some of the performance measures can
be computed by (more accurate) numerical methods rather than by simulation. The fact
that we use these models to give a first tasting of SSJ should not be interpreted to mean
that simulation is necessarily the best tool for them.

3.1 Collisions in a hashing system

We want to estimate the expected number of collisions in a hashing system. There are k
locations (or addresses) and m distinct items. Each item is assigned a random location,
independently of the other items. A collision occurs each time an item is assigned a location
already occupied. Let C be the number of collisions. We want to estimate E[C], the expected
number of collisions, by simulation. A theoretical result states that when k → ∞ while
λ = m2/(2k) is fixed, C converges in distribution to a Poisson random variable with mean
λ. For finite values of k and m, we may want to approximate the distribution of C by the
Poisson distribution with mean λ, and use Monte Carlo simulation to assess the quality
of this approximation. To do that, we can generate n independent realizations of C, say
C1, . . . , Cn, compute their empirical distribution and empirical mean, and compare with the
Poisson distribution.

The Java program in Listing 1 simulates C1, . . . , Cn and computes a 95% confidence
interval on E[C]. The results for k = 10000, m = 500, and n = 100000, are in Listing 2.
The reported confidence interval is (12.25, 12.29), whereas λ = 12.5. This indicates that the
asymptotic result underestimates E[C] by nearly 2%.

The Java program imports the SSJ packages rng and stat. It uses only two types of
objects from SSJ: a RandomStream object, defined in the rng package, that generates a
stream of independent random numbers from the uniform distribution, and a Tally ob-
ject, from the stat package, to collect statistical observations and produce the report.
In SSJ, RandomStream is actually just an interface that specifies all the methods that
must be provided by its different implementations, which correspond to different brands
of random streams (i.e., different types of uniform random number generators). The class
MRG32k3a, whose constructor is invoked in the main program, is one such implementation
of RandomStream. This is the one we use here. The class Tally provides the simplest type
of statistical collector. It receives observations one by one, and after each new observation,
it updates the number, average, variance, minimum, and maximum of the observations. At
any time, it can return these statistics or compute a confidence interval for the theoretical
mean of these observations, assuming that they are independent and identically distributed
with the normal distribution. Other types of collectors that memorize the observations are
also available in SSJ.



3.1 Collisions in a hashing system 7

Listing 1: Simulating the number of collisions in a hashing system

import umontreal.iro.lecuyer.rng.*;
import umontreal.iro.lecuyer.stat.*;

public class Collision {
int k; // Number of locations.
int m; // Number of items.
double lambda; // Theoretical expectation of C (asymptotic).
boolean[] used; // Locations already used.

public Collision (int k, int m) {
this.k = k;
this.m = m;
lambda = (double) m * m / (2.0 * k);
used = new boolean[k];

}

// Generates and returns the number of collisions.
public int generateC (RandomStream stream) {

int C = 0;
for (int i = 0; i < k; i++) used[i] = false;
for (int j = 0; j < m; j++) {

int loc = stream.nextInt (0, k-1);
if (used[loc]) C++;
else used[loc] = true;

}
return C;

}

// Performs n indep. runs using stream and collects statistics in statC.
public void simulateRuns (int n, RandomStream stream, Tally statC) {

statC.init();
for (int i=0; i<n; i++) statC.add (generateC (stream));
statC.setConfidenceIntervalStudent();
System.out.println (statC.report (0.95, 3));
System.out.println (" Theoretical mean: " + lambda);

}

public static void main (String[] args) {
Tally statC = new Tally ("Statistics on collisions");
Collision col = new Collision (10000, 500);
col.simulateRuns (100000, new MRG32k3a(), statC);

}
}

The class Collision offers the facilities to simulate copies of C. Its constructor specifies
k and m, computes λ, and constructs a boolean array of size k to memorize the locations
used so far, in order to detect the collisions. The method generateC initializes the boolean
array to false, generates the m locations, and computes C. The method simulateRuns
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first resets the statistical collector statC, then generates n independent copies of C and
pass these n observations to the collector via the method add. The method statC.report

computes a confidence interval from these n observations and returns a statistical report in
the form of a character string. This report is printed, together with the value of λ.

Listing 2: Results of the program Collision

REPORT on Tally stat. collector ==> Statistics on collisions
num. obs. min max average standard dev.
100000 1.000 29.000 12.271 3.380

95.0% confidence interval for mean (student): ( 12.250, 12.292 )

Theoretical mean: 12.5

3.2 Nonuniform variate generation and simple quantile estimates

The program of Listing 3 simulates the following artificial model. Define the random variable

X = Y1 + · · ·+ YN +W1 + . . .+WM ,

where N is Poisson with mean λ, M is geometric with parameter p, the Yj’s are gamma
with parameters (α, β), the Wj’s are lognormal with parameters (µ, σ), and all these random
variables are independent. We want to generate n copies of X, say X1, . . . , Xn, and estimate
the 0.10, 0.50, 0.90, and 0.99 quantiles of the distribution of X, simply from the quantiles
of the empirical distribution.

The method simulateRuns generates n copies ofX and pass them to a statistical collector
of class TallyStore, that stores the individual observations. These observations are sorted in
increasing order by invoking quickSort, and the appropriate empirical quantiles are printed,
together with a short report.

Listing 3: Simulating nonuniform variates and observing quantiles

import umontreal.iro.lecuyer.rng.*;
import umontreal.iro.lecuyer.probdist.*;
import umontreal.iro.lecuyer.randvar.*;
import umontreal.iro.lecuyer.stat.*;

public class Nonuniform {
// The parameter values are hardwired here to simplify the program.
double lambda = 5.0; double p = 0.2;
double alpha = 2.0; double beta = 1.0;
double mu = 5.0; double sigma = 1.0;
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RandomStream stream = new LFSR113();
RandomVariateGenInt genN = new RandomVariateGenInt

(stream, new PoissonDist (lambda)); // For N
RandomVariateGen genY = new GammaAcceptanceRejectionGen

(stream, new GammaDist (alpha, beta)); // For Y_j
RandomVariateGen genW = new RandomVariateGen

(stream, new LognormalDist (mu, sigma)); // For W_j

// Generates and returns X.
public double generateX () {

int N; int M; int j; double X = 0.0;
N = genN.nextInt();
M = GeometricDist.inverseF (p, stream.nextDouble()); // Uses static method
for (j = 0; j < N; j++) X += genY.nextDouble();
for (j = 0; j < M; j++) X += genW.nextDouble();
return X;

}

// Performs n indep. runs and collects statistics in statX.
public void simulateRuns (int n) {

TallyStore statX = new TallyStore (n);
for (int i=0; i<n; i++) statX.add (generateX ());
System.out.println (statX.report ());
statX.quickSort();
double[] data = statX.getArray();
System.out.printf ("0.10 quantile: %9.3f%n", data[(int)(0.10 * n)]);
System.out.printf ("0.50 quantile: %9.3f%n", data[(int)(0.50 * n)]);
System.out.printf ("0.90 quantile: %9.3f%n", data[(int)(0.90 * n)]);
System.out.printf ("0.99 quantile: %9.3f%n", data[(int)(0.99 * n)]);

}

public static void main (String[] args) {
(new Nonuniform ()).simulateRuns (10000);

}
}

To simplify the program, all the parameters are fixed as constants at the beginning of
the class. This is simpler, but not recommended in general because it does not permit
one to perform experiments with different parameter sets in a single program. Passing the
parameters to the constructor as in Listing 1 would require more lines of code, but would
provide more flexibility.

The class initialization also constructs a RandomStream of type LFSR113 (this is a faster
uniform generator that MRG32k3a), used to generate all the random numbers. For the gener-
ation of N , we construct a Poisson distribution with mean λ (without giving it a name), and
pass it together with the random stream to the constructor of class PoissonGen. The re-
turned object genN is random number generator that generate Poisson random variables with
mean λ, via inversion. As similar procedure is used to construct genY and genW, which gener-
ate gamma and lognormal random variates, respectively. Note that a RandomVariateGenInt
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Listing 4: Results of the program Nonuniform

REPORT on Tally stat. collector ==> null
num. obs. min max average standard dev.
10000 0.000 13184.890 989.135 1261.431

0.10 quantile: 9.469
0.50 quantile: 553.019
0.90 quantile: 2555.540
0.99 quantile: 5836.938

produces integer-valued random variates, while a RandomVariateGen produces real-valued
random variates. For the gamma distribution, we use a special type of random number
generator based on a rejection method, which is faster than inversion. These constructors
precompute some (hidden) constants once for all, to speedup the random variate genera-
tion. For the Poisson distribution with mean λ, the constructor of PoissonDist actually
precomputes the distribution function in a table, and uses this table to compute the inverse
distribution function each time a Poisson random variate needs to be generated with this
particular distribution. This is possible because all Poisson random variates have the same
parameter λ. If a different λ was used for each variate, then we would use the static method
of PoissonDist instead of constructing a Poisson distribution, otherwise we would have to
reconstruct the distribution each time. The static method reconstructs part of the table each
time, with the given λ, so it is slower if we want to generate several Poisson variates with
the same λ. As an illustration, we use the static method to generate the geometric random
variates (in generateX), instead of constructing a geometric distribution and variate gener-
ator. To generate M , we invoke the static method inverseF of the class GeometricDist,
which evaluates the inverse geometric distribution function for a given parameter p and a
given uniform random variate.

The results of this program, with n = 10000, are in Listing 4. We see that X has
a coefficient of variation larger than 1, and the quantiles indicate that the distribution is
skewed, with a long thick tail to the right. We have X < 553 about half the time, but values
over several thousands are not uncommon. This probably happens when N or M takes a
large value. There are also cases where N = M = 0, in which case X = 0.

3.3 A discrete-time inventory system

Consider a simple inventory system where the demands for a given product on successive
days are independent Poisson random variables with mean λ. If Xj is the stock level at the
beginning of day j and Dj is the demand on that day, then there are min(Dj, Xj) sales,
max(0, Dj − Xj) lost sales, and the stock at the end of the day is Yj = max(0, Xj − Dj).
There is a revenue c for each sale and a cost h for each unsold item at the end of the day.
The inventory is controlled using a (s, S) policy: If Yj < s, order S − Yj items, otherwise do
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not order. When an order is made in the evening, with probability p it arrives during the
night and can be used for the next day, and with probability 1− p it never arrives (in which
case a new order will have to be made the next evening). When the order arrives, there is a
fixed cost K plus a marginal cost of k per item. The stock at the beginning of the first day
is X0 = S.

We want to simulate this system for m days, for a given set of parameters and a given
control policy (s, S), and replicate this simulation n times independently to estimate the
expected profit per day over a time horizon of m days. Eventually, we might want to
optimize the values of the decision parameters (s, S) via simulation, but we do not do that
here. (In practice, this is usually done for more complicated models.)

Listing 5: A simulation program for the simple inventory system

import umontreal.iro.lecuyer.rng.*;
import umontreal.iro.lecuyer.randvar.*;
import umontreal.iro.lecuyer.probdist.PoissonDist;
import umontreal.iro.lecuyer.stat.Tally;
import umontreal.iro.lecuyer.util.*;

public class Inventory {

double lambda; // Mean demand size.
double c; // Sale price.
double h; // Inventory cost per item per day.
double K; // Fixed ordering cost.
double k; // Marginal ordering cost per item.
double p; // Probability that an order arrives.

RandomVariateGenInt genDemand;
RandomStream streamDemand = new MRG32k3a();
RandomStream streamOrder = new MRG32k3a();
Tally statProfit = new Tally ("stats on profit");

public Inventory (double lambda, double c, double h,
double K, double k, double p) {

this.lambda = lambda;
this.c = c; this.h = h; this.K = K; this.k = k; this.p = p;
genDemand = new PoissonGen (streamDemand, new PoissonDist (lambda));

}

// Simulates the system for m days, with the (s,S) policy,
// and returns the average profit per day.
public double simulateOneRun (int m, int s, int S) {

int Xj = S, Yj; // Stock in the morning and in the evening.
double profit = 0.0; // Cumulated profit.
for (int j = 0; j < m; j++) {

Yj = Xj - genDemand.nextInt(); // Subtract demand for the day.
if (Yj < 0) Yj = 0; // Lost demand.
profit += c * (Xj - Yj) - h * Yj;
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if ((Yj < s) && (streamOrder.nextDouble() < p)) {
// We have a successful order.
profit -= K + k * (S - Yj);
Xj = S;

} else
Xj = Yj;

}
return profit / m;

}

// Performs n independent simulation runs of the system for m days,
// with the (s,S) policy, and returns a report with a 90% confidence
// interval on the expected average profit per day.
public void simulateRuns (int n, int m, int s, int S) {

for (int i = 0; i < n; i++)
statProfit.add (simulateOneRun (m, s, S));

}

public static void main (String[] args) {
Chrono timer = new Chrono();
Inventory system = new Inventory (100.0, 2.0, 0.1, 10.0, 1.0, 0.95);
system.simulateRuns (500, 2000, 80, 200);
system.statProfit.setConfidenceIntervalStudent();
System.out.println (system.statProfit.report (0.9, 3));
System.out.println ("Total CPU time: " + timer.format());

}
}

Listing 5 gives a Java program, based on the SSJ library, that performs the required
simulation for n = 500, m = 2000, s = 80, S = 200, λ = 100, c = 2, h = 0.1, K = 10, k = 1,
and p = 0.95.

The import statements at the beginning of the program retrieve the SSJ packages/classes
that are needed. The Inventory class has a constructor that initializes the model parameters
(saving their values in class variables) and constructs the required random number generators
and the statistical collector. To generate the demands Dj on successive days, we create (in
the last line of the constructor) a random number stream and a Poisson distribution with
mean λ, and then a Poisson random variate generator genDemand that uses this stream and
this distribution. This mechanism will (automatically) precompute tables to ensure that the
Poisson variate generation is efficient. This can be done because the value of λ does not
change during the simulation. The random number stream streamOrder, used to decide
which orders are received, and the statistical collector statProfit, are also created when
the Inventory constructor is invoked. The code that invokes their constructors is outside
the Inventory constructor, but it could have been inside as well. On the other hand,
genDemand must be constructed inside the Inventory constructor, because the value of λ
is not yet defined outside. The random number streams can be viewed as virtual random
number generators that generate random numbers in the interval [0, 1) according to the
uniform probability distribution.
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The method simulateOneRun simulates the system for m days, with a given policy, and
returns the average profit per day. For each day, we generate the demand Dj, compute the
stock Yj at the end of the day, and add the sales revenues minus the leftover inventory costs
to the profit. If Yj < s, we generate a uniform random variable U over the interval (0, 1)
and an order of size S − Yj is received the next morning if U < p (that is, with probability
p). In case of a successful order, we pay for it and the stock level is reset to S.

The method simulateRuns performs n independent simulation runs of this system and
returns a report that contains a 90% confidence interval for the expected profit. The main
program constructs an Inventory object with the desired parameters, asks for n simulation
runs, and prints the report. It also creates a timer that computes the total CPU time to
execute the program, and prints it. The results are in Listing 6. The average profit per
day is approximately 85. It took 0.39 seconds (on a 2.4 GHz computer running Linux) to
simulate the system for 2000 days, compute the statistics, and print the results.

Listing 6: Results of the program Inventory

REPORT on Tally stat. collector ==> stats on profit
num. obs. min max average standard dev.

500 83.969 85.753 84.961 0.324
90.0% confidence interval for mean (student): ( 84.938, 84.985 )

Total CPU time: 0:0:0.39

In Listing 7, we extend the Inventory class to a class InventoryCRN that compares two
sets of values of the inventory control policy parameters (s, S).

Listing 7: Comparing two inventory policies with common random numbers

import umontreal.iro.lecuyer.stat.Tally;
import umontreal.iro.lecuyer.util.Chrono;

public class InventoryCRN extends Inventory {

Tally statDiff = new Tally ("stats on difference");

public InventoryCRN (double lambda, double c, double h,
double K, double k, double p) {

super (lambda, c, h, K, k, p);
}

public void simulateDiff (int n, int m, int s1, int S1, int s2, int S2) {
statDiff.init();
for (int i = 0; i < n; i++) {

double value1 = simulateOneRun (m, s1, S1);
double value2 = simulateOneRun (m, s2, S2);
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statDiff.add (value2 - value1);
}

}

public void simulateDiffCRN (int n, int m, int s1, int S1, int s2, int S2) {
statDiff.init();
streamDemand.resetStartStream();
streamOrder.resetStartStream();
for (int i = 0; i < n; i++) {

double value1 = simulateOneRun (m, s1, S1);
streamDemand.resetStartSubstream();
streamOrder.resetStartSubstream();
double value2 = simulateOneRun (m, s2, S2);
statDiff.add (value2 - value1);
streamDemand.resetNextSubstream();
streamOrder.resetNextSubstream();

}
}

public static void main (String[] args) {
InventoryCRN system = new InventoryCRN (100.0, 2.0, 0.1, 10.0, 1.0, 0.95);
Chrono timer = new Chrono();

system.simulateDiff (5000, 200, 80, 198, 80, 200);
system.statDiff.setConfidenceIntervalStudent();
System.out.println (system.statDiff.report (0.9, 3));
double varianceIndep = system.statDiff.variance();
System.out.println ("Total CPU time: " + timer.format() + "\n");

timer.init();
system.simulateDiffCRN (5000, 200, 80, 198, 80, 200);
System.out.println (system.statDiff.report (0.9, 3));
double varianceCRN = system.statDiff.variance();
System.out.println ("Total CPU time: " + timer.format());
System.out.printf ("Variance ratio: %8.4g%n", varianceIndep/varianceCRN);

}
}

The method simulateDiff simulates the system with policies (s1, S1) and (s2, S2) inde-
pendently, computes the difference in profits, and repeats this n times. These n differences
are tallied in statistical collector statDiff, to estimate the expected difference in average
daily profits between the two policies.

The method simulateDiffCRN does the same, but using common random numbers across
pairs of simulation runs. After running the simulation with policy (s1, S1), the two random
number streams are reset to the start of their current substream, so that they produce exactly
the same sequence of random numbers when the simulation is run with policy (s2, S2). Then
the difference in profits is given to the statistical collector statDiff as before and the two
streams are reset to a new substream for the next pair of simulations.
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Why not use the same stream for both the demands and orders? In this example, we
need one random number to generate the demand each day, and also one random number to
know if the order arrives, but only on the days where we make an order. These days where
we make an order are not necessarily the same for the two policies. So if we use a single
stream for both the demands and orders, the random numbers will not necessarily be used
for the same purpose across the two policies: a random number used to decide if the order
arrives in one case may end up being used to generate a demand in the other case. This can
greatly diminish the power of the common random numbers technology. Using two different
streams as in Listing 7 ensures at least that the random numbers are used for the same
purpose for the two policies. For more explanations and examples about common random
numbers, see [8, 12].

The main program estimates the expected difference in average daily profits for policies
(s1, S1) = (80, 198) and (s2, S2) = (80, 200), first with independent random numbers, then
with common random numbers. The other parameters are the same as before. The results
are in Listing 8. We see that use of common random numbers reduces the variance by a
factor of approximately 19 in this case.

Listing 8: Results of the program InventoryCRN

REPORT on Tally stat. collector ==> stats on difference
num. obs. min max average standard dev.
5000 -4.961 5.737 0.266 1.530

90.0% confidence interval for mean (student): ( 0.230, 0.302 )

Total CPU time: 0:0:0.56

REPORT on Tally stat. collector ==> stats on difference
num. obs. min max average standard dev.
5000 -1.297 2.124 0.315 0.352

90.0% confidence interval for mean (student): ( 0.307, 0.324 )

Total CPU time: 0:0:0.44
Variance ratio: 18.85

3.4 A single-server queue with Lindley’s recurrence

We consider here a single-server queue, where customers arrive randomly and are served one
by one in their order of arrival, i.e., first in, first out (FIFO). We suppose that the times
between successive arrivals are exponential random variables with mean 1/λ, that the service
times are exponential random variables with mean 1/µ, and that all these random variables
are mutually independent. The customers arriving while the server is busy must join the
queue. The system initially starts empty. We want to simulate the first m customers in the
system and compute the mean waiting time per customer.
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This simple model is well-known in queuing theory: It is called an M/M/1 queue. Simple
formulas are available for this model to compute the average waiting time per customer,
average queue length, etc., over an infinite time horizon [7]. For a finite number of customers
or a finite time horizon, these expectations can also be computed by numerical methods, but
here we just want to show how it can be simulated.

In a single-server queue, if Wi and Si are the waiting time and service time of the ith
customer, and Ai is the time between the arrivals of the ith and (i+1)th customers, we have
W1 = 0 and the Wi’s follow the recurrence

Wi+1 = max(0, Wi + Si − Ai), (1)

known as Lindley’s equation [7].

Listing 9: A simulation based on Lindley’s recurrence

import umontreal.iro.lecuyer.stat.*;
import umontreal.iro.lecuyer.rng.*;
import umontreal.iro.lecuyer.probdist.ExponentialDist;
import umontreal.iro.lecuyer.util.Chrono;

public class QueueLindley {

RandomStream streamArr = new MRG32k3a();
RandomStream streamServ = new MRG32k3a();
Tally averageWaits = new Tally ("Average waits");

public double simulateOneRun (int numCust, double lambda, double mu) {
double Wi = 0.0;
double sumWi = 0.0;
for (int i = 2; i <= numCust; i++) {

Wi += ExponentialDist.inverseF (mu, streamServ.nextDouble()) -
ExponentialDist.inverseF (lambda, streamArr.nextDouble());

if (Wi < 0.0) Wi = 0.0;
sumWi += Wi;

}
return sumWi / numCust;

}

public void simulateRuns (int n, int numCust, double lambda, double mu) {
averageWaits.init();
for (int i=0; i<n; i++)

averageWaits.add (simulateOneRun (numCust, lambda, mu));
}

public static void main (String[] args) {
Chrono timer = new Chrono();
QueueLindley queue = new QueueLindley();
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queue.simulateRuns (100, 10000, 1.0, 2.0);
System.out.println (queue.averageWaits.report());
System.out.println ("Total CPU time: " + timer.format());

}
}

The program of Listing 9 exploits (1) to compute the average waiting time of the first
m customers in the queue, repeats it n times independently, and prints a summary of the
results. Here, for a change, we pass the model parameters to the methods instead of to
the constructor, and the random variates are generated by static methods instead of via
a RandomVariateGen object as in the Inventory class (previous example). This illustrates
various ways of doing the same thing. The instruction “Wi += ...” could also be replaced
by

Wi += - Math.log (1.0 - streamServ.nextDouble()) / mu
+ Math.log (1.0 - streamArr.nextDouble()) / lambda;

which directly implements inversion of the exponential distribution.

3.5 Using the observer design pattern

Listing 10 adds a few ingredients to the program QueueLindley, in order to illustrate the
observer design pattern implemented in package stat. This mechanism permits one to
separate data generation from data processing. It can be very helpful in large simulation
programs or libraries, where different objects may need to process the same data in different
ways. These objects may have the task of storing observations or displaying statistics in
different formats, for example, and they are not necessarily fixed in advance.

The observer pattern, supported by the ObservationListener interface in SSJ, of-
fers the appropriate flexibility for that kind of situation. A statistical probe maintains
a list of registered ObservationListener objects, and broadcasts information to all its
registered observers whenever appropriate. Any object that implements the interface
ObservationListener can register as an observer.

StatProbe in package stat, as well as its subclasses Tally and Accumulate, contains a
list of ObservationListener’s. Whenever they receive a new statistical observation, e.g.,
via Tally.add or Accumulate.update, they send the new value to all registered observers.
To register as an observer, an object must implement the interface ObservationListener

This implies that it must provide an implementation of the method newObservation, whose
purpose is to recover the information that the object has registered for.

In the example, the statistical collector waitingTimes transmits to all its registered
listeners each new statistical observation that it receives via its add method. More
specifically, each call to waitingTimes.add(x) generates in the background a call to
o.newObservation(waitingTimes, x) for all registered observers o.
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Two observers register to receive observations from waitingTimes in the example. They
are anonymous objects of classes ObservationTrace and LargeWaitsCollector, respec-
tively. Each one is informed of any new observation Wi via its newObservation method.
The task of the ObservationTrace observer is to print the waiting times W5, W10, W15, . . . ,
whereas the LargeWaitsCollector observer stores in an array all waiting times that exceed
2. The statistical collector waitingTimes itself also stores appropriate information to be
able to provide a statistical report when required.

The ObservationListener interface specifies that newObservation must have two for-
mal parameters, of classes StatProbe and double, respectively. The second parame-
ter is the value of the observation. In the case where the observer registers to several
ObservationListener objects, the first parameter of newObservation tells it which one is
sending the information, so it can adopt the correct behavior for this sender.

Listing 10: A simulation of Lindley’s recurrence using observers

import java.util.*;
import umontreal.iro.lecuyer.stat.*;
import umontreal.iro.lecuyer.simevents.*;
import umontreal.iro.lecuyer.rng.*;
import umontreal.iro.lecuyer.randvar.*;

public class QueueObs {

Tally waitingTimes = new Tally ("Waiting times");
Tally averageWaits = new Tally ("Average wait");
RandomVariateGen genArr;
RandomVariateGen genServ;
int cust; // Number of the current customer.

public QueueObs (double lambda, double mu, int step) {
genArr = new ExponentialGen (new MRG32k3a(), lambda);
genServ = new ExponentialGen (new MRG32k3a(), mu);
waitingTimes.setBroadcasting (true);
waitingTimes.addObservationListener (new ObservationTrace (step));
waitingTimes.addObservationListener (new LargeWaitsCollector (2.0));

}

public double simulateOneRun (int numCust) {
waitingTimes.init();
double Wi = 0.0;
waitingTimes.add (Wi);
for (cust = 2; cust <= numCust; cust++) {

Wi += genServ.nextDouble() - genArr.nextDouble();
if (Wi < 0.0) Wi = 0.0;
waitingTimes.add (Wi);

}
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return waitingTimes.average();
}

public void simulateRuns (int n, int numCust) {
averageWaits.init();
for (int i=0; i<n; i++)

averageWaits.add (simulateOneRun (numCust));
}

public class ObservationTrace implements ObservationListener {
private int step;

public ObservationTrace (int step) { this.step = step; }

public void newObservation (StatProbe probe, double x) {
if (cust % step == 0)

System.out.println ("Customer " + cust + " waited "
+ x + " time units.");

}
}

public class LargeWaitsCollector implements ObservationListener {
double threshold;
ArrayList<Double> largeWaits = new ArrayList<Double>();

public LargeWaitsCollector (double threshold) {
this.threshold = threshold;

}

public void newObservation (StatProbe probe, double x) {
if (x > threshold) largeWaits.add (x);

}

public String formatLargeWaits () {
// Should print the list largeWaits.
return "not yet implemented...";

}
}

public static void main (String[] args) {
QueueObs queue = new QueueObs (1.0, 2.0, 5);
queue.simulateRuns (2, 100);
System.out.println ("\n\n" + queue.averageWaits.report());

}
}
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3.6 Pricing an Asian option

A geometric Brownian motion (GBM) {S(ζ), ζ ≥ 0} satisfies

S(ζ) = S(0) exp
[
(r − σ2/2)ζ + σB(ζ)

]
where r is the risk-free appreciation rate, σ is the volatility parameter, and B is a standard
Brownian motion, i.e., a stochastic process whose increments over disjoint intervals are in-
dependent normal random variables, with mean 0 and variance δ over an interval of length δ
(see, e.g., [4]). The GBM process is a popular model for the evolution in time of the market
price of financial assets. A discretely-monitored Asian option on the arithmetic average of
a given asset has discounted payoff

X = e−rT max[S̄ −K, 0] (2)

where K is a constant called the strike price and

S̄ =
1

t

t∑
j=1

S(ζj), (3)

for some fixed observation times 0 < ζ1 < · · · < ζt = T . The value (or fair price) of the Asian
option is c = E[X] where the expectation is taken under the so-called risk-neutral measure
(which means that the parameters r and σ have to be selected in a particular way; see [4]).

This value c can be estimated by simulation as follows. Generate t independent and
identically distributed (i.i.d.) N(0, 1) random variables Z1, . . . , Zt and put B(ζj) = B(ζj−1)+√
ζj − ζj−1Zj, for j = 1, . . . , t, where B(ζ0) = ζ0 = 0. Then,

S(ζj) = S(0)e(r−σ
2/2)ζj+σB(ζj) = S(ζj−1)e

(r−σ2/2)(ζj−ζj−1)+σ
√
ζj−ζj−1Zj (4)

for j = 1, . . . , t and the payoff can be computed via (2). This can be replicated n times,
independently, and the option value is estimated by the average discounted payoff. The Java
program of Listing 11 implement this procedure.

Note that generating the sample path and computing the payoff is done in two different
methods. This way, other methods could eventually be added to compute payoffs that are
defined differently (e.g., based on the geometric average, or with barriers, etc.) over the
same generated sample path.

Listing 11: Pricing an Asian option on a GMB process

import umontreal.iro.lecuyer.rng.*;
import umontreal.iro.lecuyer.probdist.NormalDist;
import umontreal.iro.lecuyer.stat.Tally;
import umontreal.iro.lecuyer.util.*;

public class Asian {
double strike; // Strike price.
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int s; // Number of observation times.
double discount; // Discount factor exp(-r * zeta[t]).
double[] muDelta; // Differences * (r - sigma^2/2).
double[] sigmaSqrtDelta; // Square roots of differences * sigma.
double[] logS; // Log of the GBM process: logS[t] = log (S[t]).

// Array zeta[0..s] must contain zeta[0]=0.0, plus the s observation times.
public Asian (double r, double sigma, double strike,

double s0, int s, double[] zeta) {
this.strike = strike;
this.s = s;
discount = Math.exp (-r * zeta[s]);
double mu = r - 0.5 * sigma * sigma;
muDelta = new double[s];
sigmaSqrtDelta = new double[s];
logS = new double[s+1];
double delta;
for (int j = 0; j < s; j++) {

delta = zeta[j+1] - zeta[j];
muDelta[j] = mu * delta;
sigmaSqrtDelta[j] = sigma * Math.sqrt (delta);

}
logS[0] = Math.log (s0);

}

// Generates the process S.
public void generatePath (RandomStream stream) {

for (int j = 0; j < s; j++)
logS[j+1] = logS[j] + muDelta[j] + sigmaSqrtDelta[j]

* NormalDist.inverseF01 (stream.nextDouble());
}

// Computes and returns the discounted option payoff.
public double getPayoff () {

double average = 0.0; // Average of the GBM process.
for (int j = 1; j <= s; j++) average += Math.exp (logS[j]);
average /= s;
if (average > strike) return discount * (average - strike);
else return 0.0;

}

// Performs n indep. runs using stream and collects statistics in statValue.
public void simulateRuns (int n, RandomStream stream, Tally statValue) {

statValue.init();
for (int i=0; i<n; i++) {

generatePath (stream);
statValue.add (getPayoff ());
stream.resetNextSubstream();

}
}
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public static void main (String[] args) {
int s = 12;
double[] zeta = new double[s+1]; zeta[0] = 0.0;
for (int j=1; j<=s; j++)

zeta[j] = (double)j / (double)s;
Asian process = new Asian (0.05, 0.5, 100.0, 100.0, s, zeta);
Tally statValue = new Tally ("Stats on value of Asian option");

Chrono timer = new Chrono();
int n = 100000;
process.simulateRuns (n, new MRG32k3a(), statValue);
statValue.setConfidenceIntervalStudent();
System.out.println (statValue.report (0.95, 3));
System.out.println ("Total CPU time: " + timer.format() + "\n");

}
}

The method simulateRuns performs n independent simulation runs using the given
random number stream and put the n observations of the net payoff in the statistical collector
statValue. In the main program, we first specify the 12 observation times ζj = j/12 for
j = 1, . . . , 12, and put them in the array zeta (of size 13) together with ζ0 = 0. We then
construct an Asian object with parameters r = 0.05, σ = 0.5, K = 100, S(0) = 100, t = 12,
and the observation times contained in array zeta. We then create the statistical collector
statValue, perform 105 simulation runs, and print the results. The discount factor e−rT

and the constants σ
√
ζj − ζj−1 and (r−σ2/2)(ζj− ζj−1) are precomputed in the constructor

Asian, to speed up the simulation.

The program in Listing 12 extends the class Asian to AsianQMC, whose method simulate-

QMC estimates the option value via randomized quasi-Monte Carlo. It uses m independently
randomized copies of digital net p and puts the results in statistical collector statAverage.
The randomization is a left matrix scramble followed by a digital random shift, applied before
each batch of n simulation runs.

Listing 12: Pricing an Asian option on a GMB process with quasi-Monte Carlo

import umontreal.iro.lecuyer.rng.*;
import umontreal.iro.lecuyer.hups.*;
import umontreal.iro.lecuyer.stat.Tally;
import umontreal.iro.lecuyer.util.Chrono;

public class AsianQMC extends Asian {

public AsianQMC (double r, double sigma, double strike,
double s0, int s, double[] zeta) {

super (r, sigma, strike, s0, s, zeta);
}

// Makes m independent randomizations of the digital net p using stream
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// noise. For each of them, performs one simulation run for each point
// of p, and adds the average over these points to the collector statQMC.
public void simulateQMC (int m, DigitalNet p,

RandomStream noise, Tally statQMC) {
Tally statValue = new Tally ("stat on value of Asian option");
PointSetIterator stream = p.iterator ();
for (int j=0; j<m; j++) {

p.leftMatrixScramble (noise);
p.addRandomShift (0, p.getDimension(), noise);
stream.resetStartStream();
simulateRuns (p.getNumPoints(), stream, statValue);
statQMC.add (statValue.average());

}
}

public static void main (String[] args) {
int s = 12;
double[] zeta = new double[s+1];
for (int j=0; j<=s; j++)

zeta[j] = (double)j / (double)s;
AsianQMC process = new AsianQMC (0.05, 0.5, 100.0, 100.0, s, zeta);
Tally statValue = new Tally ("value of Asian option");
Tally statQMC = new Tally ("QMC averages for Asian option");

Chrono timer = new Chrono();
int n = 100000;
System.out.println ("Ordinary MC:\n");
process.simulateRuns (n, new MRG32k3a(), statValue);
statValue.setConfidenceIntervalStudent();
System.out.println (statValue.report (0.95, 3));
System.out.println ("Total CPU time: " + timer.format());
double varMC = statValue.variance();
double cpuMC = timer.getSeconds() / n; // CPU seconds per run.
System.out.println ("------------------------\n");

timer.init();
DigitalNet p = new SobolSequence (16, 31, s); // 2^{16} points.
n = p.getNumPoints();
int m = 20; // Number of QMC randomizations.
process.simulateQMC (m, p, new MRG32k3a(), statQMC);
System.out.println ("QMC with Sobol point set with " + n +

" points and affine matrix scramble:\n");
statQMC.setConfidenceIntervalStudent();
System.out.println (statQMC.report (0.95, 3));
System.out.println ("Total CPU time: " + timer.format() + "\n");
double varQMC = p.getNumPoints() * statQMC.variance();
double cpuQMC = timer.getSeconds() / (m * n);
System.out.printf ("Variance ratio: %9.4g%n", varMC/varQMC);
System.out.printf ("Efficiency ratio: %9.4g%n",

(varMC * cpuMC) / (varQMC * cpuQMC));
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}
}

The random number stream passed to the method simulateRuns is an iterator that enu-
merates the points and coordinates of the randomized point set p. These point set iterators,
available for each type of point set in package hups, implement the RandomStream interface
and permit one to easily replace the uniform random numbers by (randomized) highly-
uniform point sets or sequences, without changing the code of the model itself. The method
resetStartStream, invoked immediately after each randomization, resets the iterator to the
first coordinate of the first point of the point set p. The number n of simulation runs is equal
to the number of points. The points correspond to substreams in the RandomStream inter-
face. The method resetNextSubstream, invoked after each simulation run in simulateRuns,
resets the iterator to the first coordinate of the next point. Each generation of a uniform
random number (directly or indirectly) with this stream during the simulation moves the
iterator to the next coordinate of the current point.

The point set used in this example is a Sobol’ net with n = 216 points in t dimensions.
The main program passes this point set to simulateQMC and asks for m = 20 independent
randomizations. It then computes the empirical variance and CPU time per simulation
run for both MC and randomized QMC. It prints the ratio of variances, which can be
interpreted as the estimated variance reduction factor obtained when using QMC instead of
MC in this example, and the ratio of efficiencies, which can be interpreted as the estimated
efficiency improvement factor. (The efficiency of an estimator is defined as 1/(variance ×
CPU time per run.) The results are in Listing 13: QMC reduces the variance by a factor of
around 250 and improves the efficiency by a factor of over 500. Randomized QMC not only
reduces the variance, it also runs faster than MC. The main reason for this is the call to
resetNextSubstream in simulateRuns, which is rather costly for a random number stream
of class MRG32k3a (with the current implementation) and takes negligible time for an iterator
over a digital net in base 2. In fact, in the the case of MC, the call to resetNextSubstream

is not really needed. Removing it for that case reduces the CPU time by more than 40%.
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Listing 13: Results of the program AsianQMC

Ordinary MC:

REPORT on Tally stat. collector ==> value of Asian option
num. obs. min max average standard dev.
100000 0.000 386.378 13.119 22.696

95.0% confidence interval for mean (student): ( 12.978, 13.260 )

Total CPU time: 0:0:0.71
------------------------

QMC with Sobol point set with 65536 points and affine matrix scramble:

REPORT on Tally stat. collector ==> QMC averages for Asian option
num. obs. min max average standard dev.

20 13.108 13.133 13.120 5.6E-3
95.0% confidence interval for mean (student): ( 13.118, 13.123 )

Total CPU time: 0:0:3.43

Variance ratio: 250.2
Efficiency ratio: 678.8
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4 Discrete-Event Simulation

Examples of discrete-event simulation programs, based on the event view supported by the
package simevents, are given in this section.

4.1 The single-server queue with an event view

We return to the single-server queue considered in Section 3.4. This time, instead of sim-
ulating a fixed number of customers, we simulate the system for a fixed time horizon of
1000.

Listing 14: Event-oriented simulation of an M/M/1 queue

import umontreal.iro.lecuyer.simevents.*;
import umontreal.iro.lecuyer.rng.*;
import umontreal.iro.lecuyer.randvar.*;
import umontreal.iro.lecuyer.stat.*;
import java.util.LinkedList;

public class QueueEv {

RandomVariateGen genArr;
RandomVariateGen genServ;
LinkedList<Customer> waitList = new LinkedList<Customer> ();
LinkedList<Customer> servList = new LinkedList<Customer> ();
Tally custWaits = new Tally ("Waiting times");
Accumulate totWait = new Accumulate ("Size of queue");

class Customer { double arrivTime, servTime; }

public QueueEv (double lambda, double mu) {
genArr = new ExponentialGen (new MRG32k3a(), lambda);
genServ = new ExponentialGen (new MRG32k3a(), mu);

}

public void simulateOneRun (double timeHorizon) {
Sim.init();
new EndOfSim().schedule (timeHorizon);
new Arrival().schedule (genArr.nextDouble());
Sim.start();

}

class Arrival extends Event {
public void actions() {

new Arrival().schedule (genArr.nextDouble()); // Next arrival.
Customer cust = new Customer(); // Cust just arrived.
cust.arrivTime = Sim.time();
cust.servTime = genServ.nextDouble();
if (servList.size() > 0) { // Must join the queue.
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waitList.addLast (cust);
totWait.update (waitList.size());

} else { // Starts service.
custWaits.add (0.0);
servList.addLast (cust);
new Departure().schedule (cust.servTime);

}
}

}

class Departure extends Event {
public void actions() {

servList.removeFirst();
if (waitList.size() > 0) {

// Starts service for next one in queue.
Customer cust = waitList.removeFirst();
totWait.update (waitList.size());
custWaits.add (Sim.time() - cust.arrivTime);
servList.addLast (cust);
new Departure().schedule (cust.servTime);

}
}

}

class EndOfSim extends Event {
public void actions() {

Sim.stop();
}

}

public static void main (String[] args) {
QueueEv queue = new QueueEv (1.0, 2.0);
queue.simulateOneRun (1000.0);
System.out.println (queue.custWaits.report());
System.out.println (queue.totWait.report());

}
}

Listing 14 gives an event-oriented simulation program, where a subclass of the class Event
is defined for each type of event that can occur in the simulation: arrival of a customer
(Arrival), departure of a customer (Departure), and end of the simulation (EndOfSim).
Each event instance is inserted into the event list upon its creation, with a scheduled time of
occurrence, and is executed when the simulation clock reaches this time. Executing an event
means invoking its actions method. Each event subclass must implement this method. The
simulation clock and the event list (i.e., the list of events scheduled to occur in the future)
are maintained behind the scenes by the class Sim of package simevents.

When QueueEv is instantiated by the main method, the program creates two streams
of random numbers, two random variate generators, two lists, and two statistical probes
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(or collectors). The random number streams are attached to random variate generators
genArr and genServ which are used to generate the times between successive arrivals and
the service times, respectively. We can use such an attached generator because the means
(parameters) do not change during simulation. The lists waitList and servList contain the
customers waiting in the queue and the customer in service (if any), respectively. Maintain-
ing a list for the customer in service may seem exaggerated, because this list never contains
more than one object, but the current design has the advantage of working with very little
change if the queuing model has more than one server, and in other more general situations.
Note that we could have used the class LinkedListStat from package simevents instead of
java.util.LinkedList. However, with our current implementation, the automatic statis-
tical collection in that LinkedListStat class would not count the customers whose waiting
time is zero, because they are never placed in the list.

The statistical probe custWaits collects statistics on the customer’s waiting times. It is
of the class Tally, which is appropriate when the statistical data of interest is a sequence of
observations X1, X2, . . . of which we might want to compute the sample mean, variance, and
so on. A new observation is given to this probe by the add method each time a customer
starts its service. Every add to a Tally probe brings a new observation Xi, which corresponds
here to a customer’s waiting time in the queue. The other statistical probe, totWait, is of
the class Accumulate, which means that it computes the integral (and, eventually, the time-
average) of a continuous-time stochastic process with piecewise-constant trajectory. Here,
the stochastic process of interest is the length of the queue as a function of time. One must
call totWait.update whenever there is a change in the queue size, to update the (hidden)
accumulator that keeps the current value of the integral of the queue length. This integral is
equal, after each update, to the total waiting time in the queue, for all the customers, since
the beginning of the simulation.

Each customer is an object with two fields: arrivTime memorizes this customer’s arrival
time to the system, and servTime memorizes its service time. This object is created, and
its fields are initialized, when the customer arrives.

The method simulateOneRun simulates this system for a fixed time horizon. It first
invokes Sim.init, which initializes the clock and the event list. The method Sim.start

actually starts the simulation by advancing the clock to the time of the first event in the
event list, removing this event from the list, and executing it. This is repeated until either
Sim.stop is called or the event list becomes empty. Sim.time returns the current time on
the simulation clock. Here, two events are scheduled before starting the simulation: the end
of the simulation at time horizon, and the arrival of the first customer at a random time that
has the exponential distribution with rate λ (i.e., mean 1/λ), generated by genArr using
inversion and its attached random stream. The method genArr.nextDouble returns this
exponential random variate.

The method actions of the class Arrival describes what happens when an arrival occurs.
Arrivals are scheduled by a domino effect: the first action of each arrival event schedules the
next event in a random number of time units, generated from the exponential distribution
with rate λ. Then, the newly arrived customer is created, its arrival time is set to the
current simulation time, and its service time is generated from the exponential distribution
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with mean 1/µ, using the random variate generator genServ. If the server is busy, this
customer is inserted at the end of the queue (the list waitList) and the statistical probe
totWait, that keeps track of the size of the queue, is updated. Otherwise, the customer is
inserted in the server’s list servList, its departure is scheduled to happen in a number of
time units equal to its service time, and a new observation of 0.0 is given to the statistical
probe custWaits that collects the waiting times.

When a Departure event occurs, the customer in service is removed from the list (and dis-
appears). If the queue is not empty, the first customer is removed from the queue (waitList)
and inserted in the server’s list, and its departure is scheduled. The waiting time of that
customer (the current time minus its arrival time) is given as a new observation to the probe
custWaits, and the probe totWait is also updated with the new (reduced) size of the queue.

The event EndOfSim stops the simulation. Then the main routine regains control and
prints statistical reports for the two probes. The results are shown in Listing 15. When call-
ing report on an Accumulate object, an implicit update is done using the current simulation
time and the last value given to update. In this example, this ensures that the totWait ac-
cumulator will integrate the total wait until the time horizon, because the simulation clock
is still at that time when the report is printed. Without such an automatic update, the
accumulator would integrate only up to the last update time before the time horizon.

Listing 15: Results of the program QueueEv

REPORT on Tally stat. collector ==> Waiting times
num. obs. min max average standard dev.
1037 0.000 6.262 0.495 0.835

REPORT on Accumulate stat. collector ==> Size of queue
from time to time min max average
0.00 1000.00 0.000 10.000 0.513

4.2 Continuous simulation: A prey-predator system

We consider a classical prey-predator system, where the preys are food for the predators
(see, e.g., [8], page 87). Let x(t) and z(t) be the numbers of preys and predators at time
t, respectively. These numbers are integers, but as an approximation, we shall assume that
they are real-valued variables evolving according to the differential equations

x′(t) = rx(t)− cx(t)z(t)

z′(t) = −sz(t) + dx(t)z(t)

with initial values x(0) = x0 > 0 et z(0) = z0 > 0. This is a Lotka-Volterra system
of differential equations, which has a known analytical solution. Here, in the program of
Listing 16, we simply simulate its evolution, to illustrate the continuous simulation facilities
of SSJ.



30 4 DISCRETE-EVENT SIMULATION

Listing 16: Simulation of the prey-predator system

import umontreal.iro.lecuyer.simevents.*;

public class PreyPred {
double r = 0.005, c = 0.00001,

s = 0.01, d = 0.000005, h = 5.0;
double x0 = 2000.0, z0 = 150.0;
double horizon = 501.0;
Simulator sim = new Simulator();
Continuous x;
Continuous z;

public static void main (String[] args) { new PreyPred(); }

public PreyPred() {
x = new Preys(sim);
z = new Preds(sim);
sim.init();
new EndOfSim(sim).schedule (horizon);
new PrintPoint(sim).schedule (h);
(sim.continuousState()).selectRungeKutta4 (h);
x.startInteg (x0);
z.startInteg (z0);
sim.start();

}

public class Preys extends Continuous {
public Preys(Simulator sim) { super(sim); }

public double derivative (double t) {
return (r * value() - c * value() * z.value());

}
}

public class Preds extends Continuous {
public Preds(Simulator sim) { super(sim); }

public double derivative (double t) {
return (-s * value() + d * x.value() * value());

}
}

class PrintPoint extends Event {
public PrintPoint(Simulator sim) { super(sim); }
public void actions() {

System.out.println (sim.time() + " " + x.value() + " " + z.value());
this.schedule (h);
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}
}

class EndOfSim extends Event {
public EndOfSim(Simulator sim) { super(sim); }
public void actions() { sim.stop(); }

}
}

Note that, instead of using the default simulator, this program explicitly creates a
discrete-event Simulator object to manage the execution of the simulation, unlike the other
examples in this section.

The program prints the triples (t, x(t), z(t)) at values of t that are multiples of h, one
triple per line. This is done by an event of class PrintPoint, which is rescheduled at every
h units of time. This output can be redirected to a file for later use, for example to plot a
graph of the trajectory. The continuous variables x and z are instances of the classes Preys
and Preds, whose method derivative give their derivative x′(t) and z′(t), respectively. The
differential equations are integrated by a Runge-Kutta method of order 4.

4.3 A simplified bank

This is Example 1.4.1 of [2], page 14. A bank has a random number of tellers every morning.
On any given day, the bank has t tellers with probability qt, where q3 = 0.80, q2 = 0.15, and
q1 = 0.05. All the tellers are assumed to be identical from the modeling viewpoint.
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Figure 1: Arrival rate of customers to the bank.

Listing 17: Event-oriented simulation of the bank model

import umontreal.iro.lecuyer.simevents.*;
import umontreal.iro.lecuyer.rng.*;
import umontreal.iro.lecuyer.randvar.*;
import umontreal.iro.lecuyer.stat.*;

public class BankEv {
static final double minute = 1.0 / 60.0;
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int nbTellers; // Number of tellers.
int nbBusy; // Number of tellers busy.
int nbWait; // Queue length.
int nbServed; // Number of customers served so far
double meanDelay; // Mean time between arrivals.
Event nextArriv = new Arrival(); // The next arrival.
RandomStream streamArr = new MRG32k3a(); // Customer’s arrivals
ErlangGen genServ = new ErlangConvolutionGen (new MRG32k3a(), 2, 1.0/minute);
RandomStream streamTeller = new MRG32k3a(); // Number of tellers
RandomStream streamBalk = new MRG32k3a(); // Balking decisions
Tally statServed = new Tally ("Nb. served per day");
Tally avWait = new Tally ("Average wait per day (hours)");
Accumulate wait = new Accumulate ("cumulated wait for this day");

Event e9h45 = new Event() {
public void actions() {

meanDelay = 2.0*minute;
nextArriv.schedule

(ExponentialGen.nextDouble (streamArr, 1.0/meanDelay));
}

};

Event e10h = new Event() {
public void actions() {

double u = streamTeller.nextDouble();
if (u >= 0.2) nbTellers = 3;
else if (u < 0.05) nbTellers = 1;
else nbTellers = 2;
while (nbWait > 0 && nbBusy < nbTellers) {

nbBusy++; nbWait--;
new Departure().schedule (genServ.nextDouble());

}
wait.update (nbWait);

}
};

Event e11h = new Event() {
public void actions() {

nextArriv.reschedule ((nextArriv.time() - Sim.time())/2.0);
meanDelay = minute;

}
};

Event e14h = new Event() {
public void actions() {

nextArriv.reschedule ((nextArriv.time() - Sim.time())*2.0);
meanDelay = 2.0*minute;
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}
};

Event e15h = new Event() {
public void actions() { nextArriv.cancel(); }

};

private boolean balk() {
return (nbWait > 9) ||

(nbWait > 5 && (5.0*streamBalk.nextDouble() < nbWait-5));
}

class Arrival extends Event {
public void actions() {

nextArriv.schedule
(ExponentialGen.nextDouble (streamArr, 1.0/meanDelay));

if (nbBusy < nbTellers) {
nbBusy++;
new Departure().schedule (genServ.nextDouble());

} else if (!balk())
{ nbWait++; wait.update (nbWait); }

}
}

class Departure extends Event {
public void actions() {

nbServed++;
if (nbWait > 0) {

new Departure().schedule (genServ.nextDouble());
nbWait--; wait.update (nbWait);

}
else nbBusy--;

}
};

public void simulOneDay() {
Sim.init(); wait.init();
nbTellers = 0; nbBusy = 0;
nbWait = 0; nbServed = 0;
e9h45.schedule (9.75);
e10h.schedule (10.0);
e11h.schedule (11.0);
e14h.schedule (14.0);
e15h.schedule (15.0);
Sim.start();
statServed.add (nbServed);
wait.update();
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avWait.add (wait.sum());
}

public void simulateDays (int numDays) {
for (int i=1; i<=numDays; i++) simulOneDay();
System.out.println (statServed.report());
System.out.println (avWait.report());

}

public static void main (String[] args) {
new BankEv().simulateDays (100);

}
}

The bank opens at 10:00 and closes at 15:00 (i.e., 3 p.m.). The customers arrive randomly
according to a Poisson process with piecewise constant rate λ(t), t ≥ 0. The arrival rate λ(t)
(see Fig. 1) is 0.5 customer per minute from 9:45 until 11:00 and from 14:00 until 15:00, and
one customer per minute from 11:00 until 14:00. The customers who arrive between 9:45
and 10:00 join a FIFO queue and wait for the bank to open. At 15:00, the door is closed,
but all the customers already in will be served. Service starts at 10:00.

Customers form a FIFO queue for the tellers, with balking. An arriving customer will
balk (walk out) with probability pk if there are k customers ahead of him in the queue (not
counting the people receiving service), where

pk = { 0 if

k≤ 5;
(n-5)/5 if 5 < k < 10;
1 if k ≥ 10.

ThecustomerservicetimesareindependentErlangrandomvariables : Eachservicetimeisthesumoftwoindependentexponentialrandomvariableswithmeanone.

We want to estimate the expected number of customers served in a day, and the expected
average wait for the customers served on a day.

Listing 17 gives and event-oriented simulation program for this bank model. There are
events at the fixed times 9:45, 10:00, etc. At 9:45, the counters are initialized and the arrival
process is started. The time until the first arrival, or the time between one arrival and the
next one, is (tentatively) an exponential with a mean of 2 minutes. However, as soon as
an arrival turns out to be past 11:00, its time must be readjusted to take into account the
increase of the arrival rate at 11:00. The event 11:00 takes care of this readjustment, and the
event at 14:00 makes a similar readjustment when the arrival rate decreases. We give the
specific name nextArriv to the next planned arrival event in order to be able to reschedule
that particular event to a different time. Note that a single arrival event is created at the
beginning and this same event is scheduled over and over again. This can be done because
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there is never more than one arrival event in the event list. (We could have done that as
well for the M/M/1 queue in Listing 14.)

At the bank opening at 10:00, an event generates the number of tellers and starts the
service for the corresponding customers. The event at 15:00 cancels the next arrival.

Upon arrival, a customer checks if a teller is free. If so, one teller becomes busy and
the customer generates its service time and schedules his departure, otherwise the customer
either balks or joins the queue. The balking decision is computed by the method balk, using
the random number stream streamBalk. The arrival event also generates the next scheduled
arrival. Upon departure, the customer frees the teller, and the first customer in the queue, if
any, can start its service. The generator genServ is an ErlangConvolutionGen generator, so
that the Erlang variates are generated by adding two exponentials instead of using inversion.

The method simulateDays simulates the bank for numDays days and prints a statistical
report. If Xi is the number of customers served on day i and Qi the total waiting time on
day i, the program estimates E[Xi] and E[Qi] by their sample averages X̄n and Q̄n with
n =numDays. For each simulation run (each day), simulOneDay initializes the clock, event
list, and statistical probe for the waiting times, schedules the deterministic events, and runs
the simulation. After 15:00, no more arrival occurs and the event list becomes empty when
the last customer departs. At that point, the program returns to right after the Sim.start()
statement and updates the statistical counters for the number of customers served during
the day and their total waiting time.

The results are given in Listing 18.

Listing 18: Results of the BankEv program

REPORT on Tally stat. collector ==> Nb. served per day
num. obs. min max average standard dev.

100 152.000 285.000 240.590 19.210

REPORT on Tally stat. collector ==> Average wait per day (hours)
num. obs. min max average standard dev.

100 0.816 35.613 4.793 5.186

4.4 A call center

We consider here a simplified model of a telephone contact center (or call center) where
agents answer incoming calls. Each day, the center operates for m hours. The number of
agents answering calls and the arrival rate of calls vary during the day; we shall assume
that they are constant within each hour of operation but depend on the hour. Let nj be
the number of agents in the center during hour j, for j = 0, . . . ,m− 1. For example, if the
center operates from 8 am to 9 pm, then m = 13 and hour j starts at (j + 8) o’clock. All
agents are assumed to be identical. When the number of occupied agents at the end of hour
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j is larger than nj+1, ongoing calls are all completed but new calls are answered only when
there are less than nj+1 agents busy. After the center closes, ongoing calls are completed
and calls already in the queue are answered, but no additional incoming call is taken.

The calls arrive according to a Poisson process with piecewise constant rate, equal to
Rj = Bλj during hour j, where the λj are constants and B is a random variable having the
gamma distribution with parameters (α0, α0). Thus, B has mean 1 and variance 1/α0, and
it represents the busyness of the day; it is more busy than usual when B > 1 and less busy
when B < 1. The Poisson process assumption means that conditional on B, the number
of incoming calls during any subinterval (t1, t2] of hour j is a Poisson random variable with
mean (t2− t1)Bλj and that the arrival counts in any disjoint time intervals are independent
random variables. This arrival process model is motivated and studied in [15] and [1].

Incoming calls form a FIFO queue for the agents. A call is lost (abandons the queue)
when its waiting time exceed its patience time. The patience times of calls are assumed to
be i.i.d. random variables with the following distribution: with probability p the patience
time is 0 (so the person hangs up unless there is an agent available immediately), and with
probability 1−p it is exponential with mean 1/ν. The service times are i.i.d. gamma random
variables with parameters (α, β).

We want to estimate the following quantities in the long run (i.e., over an infinite number
of days): (a) w, the average waiting time per call, (b) g(s), the fraction of calls whose waiting
time is less than s seconds for a given threshold s, and (c) `, the fraction of calls lost due to
abandonment.

Suppose we simulate the model for n days. For each day i, let Ai be the number of
arrivals, Wi the total waiting time of all calls, Gi(s) the number of calls who waited less
than s seconds, and Li the number of abandonments. For this model, the expected number
of incoming calls in a day is a = E[Ai] =

∑m−1
j=0 λj. Then, Wi/a, Gi(s)/a, and Li/a,

i = 1, . . . , n, are i.i.d. unbiased estimators of w, g(s), and `, respectively, and can be used
to compute confidence intervals for these quantities in a standard way if n is large.

Listing 19: Simulation of a simplified call center

import umontreal.iro.lecuyer.simevents.*;
import umontreal.iro.lecuyer.rng.*;
import umontreal.iro.lecuyer.randvar.*;
import umontreal.iro.lecuyer.probdist.*;
import umontreal.iro.lecuyer.stat.*;
import java.io.*;
import java.util.*;

public class CallCenter {
static final double HOUR = 3600.0; // Time is in seconds.

// Data
// Arrival rates are per hour, service and patience times are in seconds.
double openingTime; // Opening time of the center (in hours).
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int numPeriods; // Number of working periods (hours) in the day.
int[] numAgents; // Number of agents for each period.
double[] lambda; // Base arrival rate lambda_j for each j.
double alpha0; // Parameter of gamma distribution for B.
double p; // Probability that patience time is 0.
double nu; // Parameter of exponential for patience time.
double alpha, beta; // Parameters of gamma service time distribution.
double s; // Want stats on waiting times smaller than s.

// Variables
double busyness; // Current value of B.
double arrRate = 0.0; // Current arrival rate.
int nAgents; // Number of agents in current period.
int nBusy; // Number of agents occupied;
int nArrivals; // Number of arrivals today;
int nAbandon; // Number of abandonments during the day.
int nGoodQoS; // Number of waiting times less than s today.
double nCallsExpected; // Expected number of calls per day.

Event nextArrival = new Arrival(); // The next Arrival event.
LinkedList<Call> waitList = new LinkedList<Call>();

RandomStream streamB = new MRG32k3a(); // For B.
RandomStream streamArr = new MRG32k3a(); // For arrivals.
RandomStream streamPatience = new MRG32k3a(); // For patience times.
GammaGen genServ; // For service times; created in readData().

Tally[] allTal = new Tally [4];
Tally statArrivals = allTal[0] = new Tally ("Number of arrivals per day");
Tally statWaits = allTal[1] = new Tally ("Average waiting time per customer");
Tally statGoodQoS = allTal[2] = new Tally ("Proportion of waiting times < s");
Tally statAbandon = allTal[3] = new Tally ("Proportion of calls lost");
Tally statWaitsDay = new Tally ("Waiting times within a day");

public CallCenter (String fileName) throws IOException {
readData (fileName);
// genServ can be created only after its parameters are read.
// The acceptance/rejection method is much faster than inversion.
genServ = new GammaAcceptanceRejectionGen (new MRG32k3a(), alpha, beta);

}

// Reads data and construct arrays.
public void readData (String fileName) throws IOException {

Locale loc = Locale.getDefault();
Locale.setDefault(Locale.US); // to read reals as 8.3 instead of 8,3
BufferedReader input = new BufferedReader (new FileReader (fileName));
Scanner scan = new Scanner(input);
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openingTime = scan.nextDouble(); scan.nextLine();
numPeriods = scan.nextInt(); scan.nextLine();
numAgents = new int[numPeriods];
lambda = new double[numPeriods];
nCallsExpected = 0.0;
for (int j = 0; j < numPeriods; j++) {

numAgents[j] = scan.nextInt();
lambda[j] = scan.nextDouble();
nCallsExpected += lambda[j]; scan.nextLine();

}
alpha0 = scan.nextDouble(); scan.nextLine();
p = scan.nextDouble(); scan.nextLine();
nu = scan.nextDouble(); scan.nextLine();
alpha = scan.nextDouble(); scan.nextLine();
beta = scan.nextDouble(); scan.nextLine();
s = scan.nextDouble();
scan.close();
Locale.setDefault(loc);

}

// A phone call.
class Call {

double arrivalTime, serviceTime, patienceTime;

public Call() {
serviceTime = genServ.nextDouble(); // Generate service time.
if (nBusy < nAgents) { // Start service immediately.

nBusy++;
nGoodQoS++;
statWaitsDay.add (0.0);
new CallCompletion().schedule (serviceTime);

} else { // Join the queue.
patienceTime = generPatience();
arrivalTime = Sim.time();
waitList.addLast (this);

}
}

public void endWait() {
double wait = Sim.time() - arrivalTime;
if (patienceTime < wait) { // Caller has abandoned.

nAbandon++;
wait = patienceTime; // Effective waiting time.

} else {
nBusy++;
new CallCompletion().schedule (serviceTime);

}
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if (wait < s) nGoodQoS++;
statWaitsDay.add (wait);

}
}

// Event: A new period begins.
class NextPeriod extends Event {

int j; // Number of the new period.
public NextPeriod (int period) { j = period; }
public void actions() {

if (j < numPeriods) {
nAgents = numAgents[j];
arrRate = busyness * lambda[j] / HOUR;
if (j == 0) {

nextArrival.schedule
(ExponentialDist.inverseF (arrRate, streamArr.nextDouble()));

} else {
checkQueue();
nextArrival.reschedule ((nextArrival.time() - Sim.time())

* lambda[j-1] / lambda[j]);
}
new NextPeriod(j+1).schedule (1.0 * HOUR);

} else
nextArrival.cancel(); // End of the day.

}
}

// Event: A call arrives.
class Arrival extends Event {

public void actions() {
nextArrival.schedule

(ExponentialDist.inverseF (arrRate, streamArr.nextDouble()));
nArrivals++;
new Call(); // Call just arrived.

}
}

// Event: A call is completed.
class CallCompletion extends Event {

public void actions() { nBusy--; checkQueue(); }
}

// Start answering new calls if agents are free and queue not empty.
public void checkQueue() {

while ((waitList.size() > 0) && (nBusy < nAgents))
(waitList.removeFirst()).endWait();

}
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// Generates the patience time for a call.
public double generPatience() {

double u = streamPatience.nextDouble();
if (u <= p)

return 0.0;
else

return ExponentialDist.inverseF (nu, (1.0-u) / (1.0-p));
}

public void simulateOneDay (double busyness) {
Sim.init(); statWaitsDay.init();
nArrivals = 0; nAbandon = 0;
nGoodQoS = 0; nBusy = 0;
this.busyness = busyness;

new NextPeriod(0).schedule (openingTime * HOUR);
Sim.start();
// Here the simulation is running...

statArrivals.add ((double)nArrivals);
statAbandon.add ((double)nAbandon / nCallsExpected);
statGoodQoS.add ((double)nGoodQoS / nCallsExpected);
statWaits.add (statWaitsDay.sum() / nCallsExpected);

}

public void simulateOneDay () {
simulateOneDay (GammaDist.inverseF (alpha0, alpha0, 8,

streamB.nextDouble()));
}

static public void main (String[] args) throws IOException {
CallCenter cc = new CallCenter ("CallCenter.dat");
for (int i = 0; i < 1000; i++) cc.simulateOneDay();
System.out.println ("\nNum. calls expected = " + cc.nCallsExpected +"\n");
for (int i = 0; i < cc.allTal.length; i++) {

cc.allTal[i].setConfidenceIntervalStudent();
cc.allTal[i].setConfidenceLevel (0.90);

}
System.out.println (Tally.report ("CallCenter:", cc.allTal));

}
}

Listing 19 gives an event-oriented simulation program for this call center model. When
the CallCenter class is instantiated by the main method, the random streams, list, and
statistical probes are created, and the model parameters are read from a file by the method



4.4 A call center 41

readData. The line Locale.setDefault(Locale.US) is added because real numbers in the
data file are read in the anglo-saxon form 8.3 instead of the form 8,3 used by most countries
in the world. The main program then simulates n = 1000 operating days and prints the value
of a, as well as 90% confidence intervals on a, w, g(s), and `, based on their estimators Ān,
W̄n/a, Ḡn(s)/a, and L̄n/a, assuming that these estimators have approximately the Student
distribution. This is justified by the fact thatWi, andGi(s), and Li are themselves “averages”
over several observations, so we may expect their distribution to be not far from a normal.

To generate the service times, we use a gamma random variate generator called genServ,
created in the constructor after the parameters (α, β) of the service time distribution have
been read from the data file. For the other random variables in the model, we simply create
random streams of i.i.d. uniforms (in the preamble) and apply inversion explicitly to generate
the random variates. The latter approach is more convenient, e.g., for patience times because
their distribution is not standard and for the inter-arrival times because their mean changes
every period. For the gamma service time distribution, on the other hand, the parameters
always remain the same and inversion is rather slow, so we decided to create a generator
that uses a faster special method.

The method simulateOneDay simulates one day of operation. It initializes the simulation
clock, event list, and counters, schedules the center’s opening and the first arrival, and starts
the simulation. When the day is over, it updates the statistical collectors. Note that there
are two versions of this method; one that generates the random variate B and the other that
takes its value as an input parameter. This is convenient in case one wishes to simulate the
center with a fixed value of B.

An event NextPeriod(j) marks the beginning of each period j. The first of these events
(for j = 0) is scheduled by simulateOneDay; then the following ones schedule each other
successively, until the end of the day. This type of event updates the number of agents in the
center and the arrival rate for the next period. If the number of agents has just increased
and the queue is not empty, some calls in the queue can now be answered. The method
checkQueue verifies this and starts service for the appropriate number of calls. The time
until the next planned arrival is readjusted to take into account the change of arrival rate,
as follows. The inter-arrival times are i.i.d. exponential with mean 1/Rj−1 when the arrival
rate is fixed at Rj−1. But when the arrival rate changes from Rj−1 to Rj, the residual time
until the next arrival should be modified from an exponential with mean 1/Rj−1 (already
generated) to an exponential with mean 1/Rj. Multiplying the residual time by λj−1/λj is
an easy way to achieve this. We give the specific name nextArrival to the next arrival
event in order to be able to reschedule it to a different time. Note that there is a single
arrival event which is scheduled over and over again during the entire simulation. This is
more efficient than creating a new arrival event for each call, and can be done here because
there is never more than one arrival event at a time in the event list. At the end of the day,
simply canceling the next arrival makes sure that no more calls will arrive.

Each arrival event first schedules the next one. Then it increments the arrivals counter
and creates the new call that just arrived. The call’s constructor generates its service time
and decides where the incoming call should go. If an agent is available, the call is answered
immediately (its waiting time is zero), and an event is scheduled for the completion of the call.
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Listing 20: Simulation of a simplified call center

Num. calls expected = 1660.0

Report for CallCenter:
num obs. min max average std. dev. conf. int. 90.0%

Num. arrivals per day:
1000 460.000 4206.000 1639.507 513.189 ( 1612.8, 1666.2)

Average wait time per customer:
1000 0.000 570.757 11.834 34.078 ( 10.060, 13.608)

Proportion of waiting times < s:
1000 0.277 1.155 0.853 0.169 ( 0.844, 0.862)

Proportion of calls lost:
1000 0.000 0.844 0.034 0.061 ( 0.031, 0.037)

Otherwise, the call must join the queue; its patience time is generated by generPatience

and memorized, together with its arrival time, for future reference.

Upon completion of a call, the number of busy agents is decremented and one must
verify if a waiting call can now be answered. The method checkQueue verifies that and if
the answer is yes, it removes the first call from the queue and activates its endWait method.
This method first compares the call’s waiting time with its patience time, to see if this call is
still waiting or has been lost (by abandonment). If the call was lost, we consider its waiting
time as being equal to its patience time (i.e., the time that the caller has really waited), for
the statistics. If the call is still there, the number of busy agents is incremented and an event
is scheduled for the call completion.

The results of this program, with the data in file CallCenter.dat, are shown in List-
ing 20.

This model is certainly an oversimplification of actual call centers. It can be embellished
and made more realistic by considering different types of agents, different types of calls,
agents taking breaks for lunch, coffee, or going to the restroom, agents making outbound
calls to reach customers when the inbound traffic is low (e.g., for marketing purpose or for
returning calls), and so on. One could also model the revenue generated by calls and the
operating costs for running the center, and use the simulation model to compare alternative
operating strategies in terms of the expected net revenue, for example.
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5 Process-Oriented Programs

The process-oriented programs discussed in this section are based on the simprocs package
and were initially designed to run using Java green threads, which are actually simulated
threads and have been available only in JDK versions 1.3.1 or earlier, unfortunately. The
green threads in these early versions of JDK were obtained by running the program with the
“java -classic” option.

With native threads, these programs run more slowly and may crash if too many threads
are initiated. This is a serious limitation of the package simprocs, due to the fact that Java
threads are not designed for simulation.

A second implementation of simprocs, available in DSOL (see the class DSOLProcess-

Simulator) and provided to us by Peter Jacobs, does not use the Java threads. It is based on
a Java reflection mechanism that interprets the code of processes at runtime and transforms
everything into events. A program using the process view and implemented with the DSOL
interpreter can be 500 to 1000 times slower than the corresponding event-based program.
On the other hand, it is a good and safe teaching tool for process-oriented programming,
and the number of processes is limited only by the available memory. To use the DSOL
system with a program that imports simprocs, it suffices to run the program with the
“java -Dssj.withDSOL ...” option.

5.1 The single queue

Typical simulation languages offer higher-level constructs than those used in the program
of Listing 14, and so does SSJ. This is illustrated by our second implementation of the
single-server queue model, in Listing 21, based on a paradigm called the process-oriented
approach.

In the event-oriented implementation, each customer was a passive object, storing two real
numbers, and performing no action by itself. In the process-oriented implementation given
in Listing 21, each customer (instance of the class Customer) is a process whose activities
are described by its actions method. This is implemented by associating a Java Thread to
each SimProcess. The server is an object of the class Resource, created when QueueProc

is instantiated by main. It is a passive object, in the sense that it executes no code. Active
resources, when needed, can be implemented as processes.

When it starts executing its actions, a customer first schedules the arrival of the next
customer, as in the event-oriented case. (Behind the scenes, this effectively schedules an
event, in the event list, that will start a new customer instance. The class SimProcess

contains all scheduling facilities of Event, which permits one to schedule processes just like
events.) The customer then requests the server by invoking server.request. If the server
is free, the customer gets it and can continue its execution immediately. Otherwise, the
customer is automatically (behind the scenes) placed in the server’s queue, is suspended,
and resumes its execution only when it obtains the server. When its service can start, the
customer invokes delay to freeze itself for a duration equal to its service time, which is
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Listing 21: Process-oriented simulation of an M/M/1 queue

import umontreal.iro.lecuyer.simevents.*;
import umontreal.iro.lecuyer.simprocs.*;
import umontreal.iro.lecuyer.rng.*;
import umontreal.iro.lecuyer.randvar.*;
import umontreal.iro.lecuyer.stat.*;

public class QueueProc {
Resource server = new Resource (1, "Server");
RandomVariateGen genArr;
RandomVariateGen genServ;

public QueueProc (double lambda, double mu) {
genArr = new ExponentialGen (new MRG32k3a(), lambda);
genServ = new ExponentialGen (new MRG32k3a(), mu);

}

public void simulateOneRun (double timeHorizon) {
SimProcess.init();
server.setStatCollecting (true);
new EndOfSim().schedule (timeHorizon);
new Customer().schedule (genArr.nextDouble());
Sim.start();

}

class Customer extends SimProcess {
public void actions() {

new Customer().schedule (genArr.nextDouble());
server.request (1);
delay (genServ.nextDouble());
server.release (1);

}
}

class EndOfSim extends Event {
public void actions() { Sim.stop(); }

}

public static void main (String[] args) {
QueueProc queue = new QueueProc (1.0, 2.0);
queue.simulateOneRun (1000.0);
System.out.println (queue.server.report());

}
}



5.1 The single queue 45

again generated from the exponential distribution with mean 1/µ using the random variate
generator genServ. After this delay has elapsed, the customer releases the server and ends
its life. Invoking delay(d) can be interpreted as scheduling an event that will resume the
execution of the process in d units of time. Note that several distinct customers can co-exist
in the simulation at any given point in time, and be at different phases of their actions

method. However, only one process is executing at a time.

The constructor QueueProc initializes the simulation, invokes setStatCollecting (true)

to specify that detailed statistical collection must be performed automatically for the resource
server, schedules an event EndOfSim at the time horizon, schedules the first customer’s ar-
rival, and starts the simulation. The EndOfSim event stops the simulation. The main program
then regains control and prints a detailed statistical report on the resource server.

It should be pointed out that in the QueueProc program, the service time of a customer
is generated only when the customer starts its service, whereas for QueueEv, it was generated
at customer’s arrival. For this particular model, it turns out that this makes no difference
in the results, because the customers are served in a FIFO order and because one random
number stream is dedicated to the generation of service times. However, this may have an
impact in other situations.

The process-oriented program here is more compact and more elegant than its event-
oriented counterpart. This tends to be often true: Process-oriented programming frequently
gives less cumbersome and better looking programs. On the other hand, the process-oriented
implementations also tend to execute more slowly, because they involve more overhead. For
example, the process-driven single-server queue simulation is two to three times slower than
its event-driven counterpart. In fact, process management is done via the event list: processes
are started, suspended, reactivated, and so on, by hidden events. If the execution speed of
a simulation program is really important, it may be better to stick to an event-oriented
implementation.

Listing 22: Results of the program QueueProc

REPORT ON RESOURCE : Server
From time : 0.00 to time : 1000.00

min max average standard dev. nb. obs.
Capacity 1 1 1.000
Utilization 0 1 0.530
Queue Size 0 10 0.513
Wait 0.000 6.262 0.495 0.835 1037
Service 6.5E-4 3.437 0.511 0.512 1037
Sojourn 8.2E-4 6.466 1.005 0.979 1037

Listing 22 shows the output of the program QueueProc. It contains more information
than the output of QueueEv. It gives statistics on the server utilization, queue size, waiting
times, service times, and sojourn times in the system. (The sojourn time of a customer is
its waiting time plus its service time.)
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We see that by time T = 1000, 1037 customers have completed their waiting and all of
them have completed their service. The maximal queue size has been 10 and its average
length between time 0 and time 1000 was 0.513. The waiting times were in the range from 0
to 6.262, with an average of 0.495, while the service times were from 0.00065 to 3.437, with
an average of 0.511 (recall that the theoretical mean service time is 1/µ = 0.5). Clearly, the
largest waiting time and largest service time belong to different customers.

The report also gives the empirical standard deviations of the waiting, service, and so-
journ times. It is important to note that these standard deviations should not be used to
compute confidence intervals for the expected average waiting times or sojourn times in the
standard way, because the observations here (e.g., the successive waiting times) are strongly
dependent, and also not identically distributed. Appropriate techniques for computing con-
fidence intervals in this type of situation are described, e.g., in [3, 8].

5.2 A job shop model

This example is adapted from [8, Section 2.6], and from [9]. A job shop contains M groups
of machines, the mth group having sm identical machines, for m = 1, . . . ,M . It is modeled
as a network of queues: each group has a single FIFO queue, with sm identical servers for
the mth group. There are N types of tasks arriving to the shop at random. Tasks of type
n arrive according to a Poisson process with rate λn per hour, for n = 1, . . . , N . Each type
of task requires a fixed sequence of operations, where each operation must be performed
on a specific type of machine and has a deterministic duration. A task of type n requires
pn operations, to be performed on machines mn,1,mn,2, . . . ,mn,pn , in that order, and whose
respective durations are dn,1, dn,2, . . . , dn,pn , in hours. A task can pass more than once on the
same machine type, so pn may exceed M .

We want to simulate the job shop for T hours, assuming that it is initially empty, and
start collecting statistics only after a warm-up period of T0 hours. We want to compute: (a)
the average sojourn time in the shop for each type of task and (b) the average utilization
rate, average length of the waiting queue, and average waiting time, for each type of machine,
over the time interval [T0, T ]. For the average sojourn times and waiting times, the counted
observations are the sojourn times and waits that end during the time interval [T0, T ]. Note
that the only randomness in this model is in the task arrival process.

The class Jobshop in Listing 23 performs this simulation. Each group of machine is
viewed as a resource, with capacity sm for the group m. The different types of task are
objects of the class TaskType. This class is used to store the parameters of the different
types: their arrival rate, the number of operations, the machine type and duration for each
operation, and a statistical collector for their sojourn times in the shop. (In the program,
the machine types and task types are numbered from 0 to M − 1 and from 0 to N − 1,
respectively, because array indices in Java start at 0.)

The tasks that circulate in the shop are objects of the class Task. The actions method
in class Task describes the behavior of a task from its arrival until it exits the shop. Each
task, upon arrival, schedules the arrival of the next task of the same type. The task then
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runs through the list of its operations. For each operation, it requests the appropriate type
of machine, keeps it for the duration of the operation, and releases it. When the task
terminates, it sends its sojourn time as a new observation to the collector statSojourn.

Before starting the simulation, the method simulateOneRun schedules an event for the
end of the simulation and another one for the end of the warm-up period. The latter simply
starts the statistical collection. It also schedules the arrival of a task of each type. Each task
will in turn schedules the arrival of the next task of its own type.

With this implementation, the event list always contain N “task arrival” events, one
for each type of task. An alternative implementation would be that each task schedules
another task arrival in a number of hours that is an exponential r.v. with rate λ, where
λ = λ0 + · · · + λN−1 is the global arrival rate, and then the type of each arriving task is
n with probability λn/λ, independently of the others. Initially, a single arrival would be
scheduled by the class Jobshop. This approach is stochastically equivalent to the current
implementation (see, e.g., [2, 16]), but the event list contains only one “task arrival” event
at a time. On the other hand, there is the additional work of generating the task type on
each arrival.

At the end of the simulation, the main program prints the statistical reports. Note that if
one wanted to perform several independent simulation runs with this program, the statistical
collectors would have to be reinitialized before each run, and additional collectors would be
required to collect the run averages and compute confidence intervals.

Listing 23: A job shop simulation

import umontreal.iro.lecuyer.simevents.*;
import umontreal.iro.lecuyer.simprocs.*;
import umontreal.iro.lecuyer.rng.*;
import umontreal.iro.lecuyer.randvar.ExponentialGen;
import umontreal.iro.lecuyer.stat.Tally;
import java.io.*;
import java.util.*;

public class Jobshop {
int nbMachTypes; // Number of machine types M.
int nbTaskTypes; // Number of task types N.
double warmupTime; // Warmup time T_0.
double horizonTime; // Horizon length T.
boolean warmupDone; // Becomes true when warmup time is over.
Resource[] machType; // The machines groups as resources.
TaskType[] taskType; // The task types.
RandomStream streamArr = new MRG32k3a(); // Stream for arrivals.
BufferedReader input;

public Jobshop() throws IOException { readData(); }

// Reads data file, and creates machine types and task types.
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void readData() throws IOException {
input = new BufferedReader (new FileReader ("Jobshop.dat"));
StringTokenizer line = new StringTokenizer (input.readLine());
warmupTime = Double.parseDouble (line.nextToken());
line = new StringTokenizer (input.readLine());
horizonTime = Double.parseDouble (line.nextToken());
line = new StringTokenizer (input.readLine());
nbMachTypes = Integer.parseInt (line.nextToken());
nbTaskTypes = Integer.parseInt (line.nextToken());
machType = new Resource[nbMachTypes];
for (int m=0; m < nbMachTypes; m++) {

line = new StringTokenizer (input.readLine());
String name = line.nextToken();
int nb = Integer.parseInt (line.nextToken());
machType[m] = new Resource (nb, name);

}
taskType = new TaskType[nbTaskTypes];
for (int n=0; n < nbTaskTypes; n++)

taskType[n] = new TaskType();
input.close();

}

class TaskType {
public String name; // Task name.
public double arrivalRate; // Arrival rate.
public int nbOper; // Number of operations.
public Resource[] machOper; // Machines where operations occur.
public double[] lengthOper; // Durations of operations.
public Tally statSojourn; // Stats on sojourn times.

// Reads data for new task type and creates data structures.
TaskType() throws IOException {

StringTokenizer line = new StringTokenizer (input.readLine());
statSojourn = new Tally (name = line.nextToken());
arrivalRate = Double.parseDouble (line.nextToken());
nbOper = Integer.parseInt (line.nextToken());
machOper = new Resource[nbOper];
lengthOper = new double[nbOper];
for (int i = 0; i < nbOper; i++) {

int p = Integer.parseInt (line.nextToken());
machOper[i] = machType[p-1];
lengthOper[i] = Double.parseDouble (line.nextToken());

}
}

// Performs the operations of this task (to be called by a process).
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public void performTask (SimProcess p) {
double arrivalTime = Sim.time();
for (int i=0; i < nbOper; i++) {

machOper[i].request (1); p.delay (lengthOper[i]);
machOper[i].release (1);

}
if (warmupDone) statSojourn.add (Sim.time() - arrivalTime);

}
}

public class Task extends SimProcess {
TaskType type;

Task (TaskType type) { this.type = type; }

public void actions() {
// First schedules next task of this type, then executes task.
new Task (type).schedule (ExponentialGen.nextDouble

(streamArr, type.arrivalRate));
type.performTask (this);

}
}

Event endWarmup = new Event() {
public void actions() {

for (int m=0; m < nbMachTypes; m++)
machType[m].setStatCollecting (true);

warmupDone = true;
}

};

Event endOfSim = new Event() {
public void actions() { Sim.stop(); }

};

public void simulateOneRun() {
SimProcess.init();
endOfSim.schedule (horizonTime);
endWarmup.schedule (warmupTime);
warmupDone = false;
for (int n = 0; n < nbTaskTypes; n++) {

new Task (taskType[n]).schedule (ExponentialGen.nextDouble
(streamArr, taskType[n].arrivalRate));

}
Sim.start();

}
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public void printReportOneRun() {
for (int m=0; m < nbMachTypes; m++)

System.out.println (machType[m].report());
for (int n=0; n < nbTaskTypes; n++)

System.out.println (taskType[n].statSojourn.report());
}

static public void main (String[] args) throws IOException {
Jobshop shop = new Jobshop();
shop.simulateOneRun();
shop.printReportOneRun();

}
}

5.3 A time-shared computer system

This example is adapted from [8], Section 2.4. Consider a simplified time-shared computer
system comprised of T identical and independent terminals, all busy, using a common server
(e.g., for database requests, or central processing unit (CPU) consumption, etc.). Each
terminal user sends a task to the server at some random time and waits for the response.
After receiving the response, he thinks for some random time before submitting a new task,
and so on.

We assume that the thinking time is an exponential random variable with mean µ,
whereas the server’s time needed for a request is a Weibull random variable with parameters
α, λ and δ. The tasks waiting for the server form a single queue with a round robin service
policy with quantum size q, which operates as follows. When a task obtains the server, if it
can be completed in less than q seconds, then it keeps the server until completion. Otherwise,
it gets the server for q seconds and returns to the back of the queue to be continued later.
In both cases, there is also h additional seconds of overhead for changing the task that has
the server’s attention.

The response time of a task is defined as the difference between the time when the task
ends (including the overhead h at the end) and the arrival time of the task to the server.
We are interested in the mean response time, in steady-state. We will simulate the system
until N tasks have ended, with all terminals initially in the “thinking” state. To reduce the
initial bias, we will start collecting statistics only after N0 tasks have ended (so the first N0

response times are not counted by our estimator, and we take the average response time
for the N − N0 response times that remain). This entire simulation is repeated R times,
independently, so we can estimate the variance of our estimator.
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Suppose we want to compare the mean response times for two different configura-
tions of this system, where a configuration is characterized by the vector of parameters
(T, q, h, µ, α, λ, δ). We will make R independent simulation runs (replications) for each con-
figuration. To compare the two configurations, we want to use common random numbers,
i.e., the same streams of random numbers across the two configurations. We couple the
simulation runs by pairs: for run number i, let R1i and R2i be the mean response times for
configurations 1 and 2, and let

Di = R1i −R2i.

We use the same random numbers to obtain R1i and R2i, for each i. The Di are nevertheless
independent random variables (under the blunt assumption that the random streams really
produce independent uniform random variables) and we can use them to compute a confi-
dence interval for the difference d between the theoretical mean response times of the two
systems. Using common random numbers across R1i and R2i should reduce the variance of
the Di and the size of the confidence interval.

Listing 24: Simulation of a time shared system

import umontreal.iro.lecuyer.simevents.*;
import umontreal.iro.lecuyer.simprocs.*;
import umontreal.iro.lecuyer.rng.*;
import umontreal.iro.lecuyer.randvar.*;
import umontreal.iro.lecuyer.stat.Tally;
import java.io.*;

public class TimeShared {
int nbTerminal = 20; // Number of terminals.
double quantum; // Quantum size.
double overhead = 0.001; // Amount of overhead (h).
double meanThink = 5.0; // Mean thinking time.
double alpha = 0.5; // Parameters of the Weibull service times.
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double lambda = 1.0; // ’’
double delta = 0.0; // ’’
int N = 1100; // Total number of tasks to simulate.
int N0 = 100; // Number of tasks for warmup.
int nbTasks; // Number of tasks ended so far.

RandomStream streamThink = new MRG32k3a();
RandomVariateGen genThink = new ExponentialGen (streamThink, 1.0/meanThink);
RandomStream streamServ = new MRG32k3a ("Gen. for service requirements");
RandomVariateGen genServ = new WeibullGen (streamServ, alpha, lambda, delta);
Resource server = new Resource (1, "The server");
Tally meanInRep = new Tally ("Average for current run");
Tally statDiff = new Tally ("Diff. on mean response times");

class Terminal extends SimProcess {
public void actions() {

double arrivTime; // Arrival time of current request.
double timeNeeded; // Server’s time still needed for it.
while (nbTasks < N) {

delay (genThink.nextDouble());
arrivTime = Sim.time();
timeNeeded = genServ.nextDouble();
while (timeNeeded > quantum) {

server.request (1);
delay (quantum + overhead);
timeNeeded -= quantum;
server.release (1);

}
server.request (1); // Here, timeNeeded <= quantum.
delay (timeNeeded + overhead);
server.release (1);
nbTasks++;
if (nbTasks > N0)

meanInRep.add (Sim.time() - arrivTime);
// Take the observation if warmup is over.

}
Sim.stop(); // N tasks have now completed.

}
}

private void simulOneRun() {
SimProcess.init();
server.init();
meanInRep.init();
nbTasks = 0;
for (int i=1; i <= nbTerminal; i++)

new Terminal().schedule (0.0);
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Sim.start();
}

// Simulate numRuns pairs of runs and prints a confidence interval
// on the difference of perf. for quantum sizes q1 and q2.
public void simulateConfigs (double numRuns, double q1, double q2) {

double mean1; // To memorize average for first configuration.
for (int rep = 0; rep < numRuns; rep++) {

quantum = q1;
simulOneRun();
mean1 = meanInRep.average();
streamThink.resetStartSubstream();
streamServ.resetStartSubstream();
quantum = q2;
simulOneRun();
statDiff.add (mean1 - meanInRep.average());
streamThink.resetNextSubstream();
streamServ.resetNextSubstream();

}
statDiff.setConfidenceIntervalStudent();
System.out.println (statDiff.report (0.9, 3));

}

public static void main (String[] args) {
new TimeShared().simulateConfigs (10, 0.1, 0.2);

}
}

The program of Listing 24 performs this simulation. In the simulateConfigs method, we
perform numRuns pairs of simulation runs, one with quantum size q1 and one with quantum
size q2. Each random stream is reset to the beginning of its current substream after the first
run, and to the beginning of its next substream after the second run, to make sure that for
each pair of runs, the generators start from exactly the same seeds and generate exactly the
same random numbers in the same order. The variable mean1 memorizes the values of R1i

after the first run, and the statistical probe statDiff collects the differences Di, in order to
compute a confidence interval for d.

For each simulation run, the statistical probe meanInRep is used to compute the average
response time for the N − N0 tasks that terminate after the warm-up. It is initialized
before each run and updated with a new observation at the ith task termination, for i =
N0 + 1, . . . , N . At the beginning of a run, a Terminal process is activated for each terminal.
When the Nth task terminates, the corresponding process invokes Sim.stop to stop the
simulation and to return the control to the instruction that follows the call to simulOneRun.

For a concrete example, let T = 20, h = .001, µ = 5 sec., α = 1/2, λ = 1 and δ = 0
for the two configurations. With these parameters, the mean of the Weibull distribution
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is 2. Take q = 0.1 for configuration 1 and q = 0.2 for configuration 2. We also choose
N0 = 100, N = 1100, and R = 10 runs. With these numbers, the program gives the results
of Listing 25. The confidence interval on the difference between the response time with
q = 0.1 and that with q = 0.2 contains only positive numbers. We can therefore conclude
that the mean response time is significantly shorter (statistically) with q = 0.2 than with
q = 0.1 (assuming that we can neglect the bias due to the choice of the initial state). To
gain better confidence in this conclusion, we could repeat the simulation with larger values
of N0 and N .

Listing 25: Difference in mean response times for q = 0.1 and q = 0.2, for time shared system

REPORT on Tally stat. collector ==> Diff. on mean response times
num. obs. min max average standard dev.

10 -0.134 0.369 0.168 0.174
90.0% confidence interval for mean (student): ( 0.067, 0.269 )

Of course, the model could be made more realistic by considering, for example, different
types of terminals, with different parameters, a number of terminals that changes with
time, different classes of tasks with priorities, etc. SSJ offers the tools to implement these
generalizations easily.

5.4 Guided visits

This example is translated from [9]. A touristic attraction offers guided visits, using three
guides. The site opens at 10:00 and closes at 16:00. Visitors arrive in small groups (e.g.,
families) and the arrival process of those groups is assumed to be a Poisson process with rate
of 20 groups per hour, from 9:45 until 16:00. The visitors arriving before 10:00 must wait for
the opening. After 16:00, the visits already under way can be completed, but no new visit
is undertaken, so that all the visitors still waiting cannot visit the site and are lost.

The size of each arriving group of visitors is a discrete random variable taking the value
i with probability pi given in the following table:

i 1 2 3 4
pi .2 .6 .1 .1

Visits are normally made by groups of 8 to 15 visitors. Each visit requires one guide and
lasts 45 minutes. People waiting for guides form a single queue. When a guide becomes free,
if there is less than 8 people in the queue, the guide waits until the queue grows to at least
8 people, otherwise she starts a new visit right away. If the queue contains more than 15
people, the first 15 will go on this visit. At 16:00, if there is less than 8 people in the queue
and a guide is free, she starts a visit with the remaining people. At noon, each free guide
takes 30 minutes for lunch. The guides that are busy at that time will take 30 minutes for
lunch as soon as they complete their on-going visit.
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Sometimes, an arriving group of visitors may decide to just go away (balk) because the
queue is too long. We assume that the probability of balking when the queue size is n is
given by

R(n) = { 0 for

n≤ 10;
(n-10)/30 for 10 < n < 40;
1 for n ≥ 40.

The aim is to estimate the average number of visitors lost per day, in the long run. The
visitors lost are those that balk or are still in the queue after 16:00.

A simulation program for this model is given in Listing 26. Here, time is measured in
hours, starting at midnight. At time 9:45, for example, the simulation clock is at 9.75. The
(process) class Guide describes the daily behavior of a guide (each guide is an instance of
this class), whereas Arrival generates the arrivals according to a Poisson process, the group
sizes, and the balking decisions. The event closing closes the site at 16:00.

The Bin mechanism visitReady is used to synchronize the Guide processes. The number
of tokens in this bin is 1 if there are enough visitors in the queue to start a visit (8 or more)
and is 0 otherwise. When the queue size reaches 8 due to a new arrival, the Arrival process
puts a token into the bin. This wakes up a guide if one is free. A guide must take a token
from the bin to start a new visit. If there are still 8 people or more in the queue when she
starts the visit, she puts the token back to the bin immediately, to indicate that another
visit is ready to be undertaken by the next available guide.

Listing 26: Simulation of guided visits

import umontreal.iro.lecuyer.simevents.*;
import umontreal.iro.lecuyer.simprocs.*;
import umontreal.iro.lecuyer.rng.*;
import umontreal.iro.lecuyer.randvar.*;
import umontreal.iro.lecuyer.stat.*;
// import umontreal.iro.lecuyer.simprocs.dsol.SimProcess;

public class Visits {
int queueSize; // Size of waiting queue.
int nbLost; // Number of visitors lost so far today.
Bin visitReady = new Bin ("Visit ready");

// A token becomes available when there
// are enough visitors to start a new visit.

Tally avLost = new Tally ("Nb. of visitors lost per day");
RandomVariateGen genArriv = new ExponentialGen (new MRG32k3a(), 20.0);

// Interarriv.
RandomStream streamSize = new MRG32k3a(); // Group sizes.
RandomStream streamBalk = new MRG32k3a(); // Balking decisions.

private void oneDay() {
queueSize = 0; nbLost = 0;



56 5 PROCESS-ORIENTED PROGRAMS

SimProcess.init();
visitReady.init();
closing.schedule (16.0);
new Arrival().schedule (9.75);
for (int i=1; i<=3; i++) new Guide().schedule (10.0);
Sim.start();
avLost.add (nbLost);

}

Event closing = new Event() {
public void actions() {

if (visitReady.waitList().size() == 0)
nbLost += queueSize;

Sim.stop();
}

};

class Guide extends SimProcess {
public void actions() {

boolean lunchDone = false;
while (true) {

if (Sim.time() > 12.0 && !lunchDone) {
delay (0.5); lunchDone = true;

}
visitReady.take (1); // Starts the next visit.
if (queueSize > 15) queueSize -= 15;
else queueSize = 0;
if (queueSize >= 8) visitReady.put (1);

// Enough people for another visit.
delay (0.75);

}
}

}

class Arrival extends SimProcess {
public void actions() {

while (true) {
delay (genArriv.nextDouble());
// A new group of visitors arrives.
int groupSize; // number of visitors in group.
double u = streamSize.nextDouble();
if (u <= 0.2) groupSize = 1;
else if (u <= 0.8) groupSize = 2;
else if (u <= 0.9) groupSize = 3;
else groupSize = 4;
if (!balk()) {

queueSize += groupSize;
if (queueSize >= 8 &&

visitReady.getAvailable() == 0)
// A token is now available.
visitReady.put (1);
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}
else nbLost += groupSize;

}
}

private boolean balk() {
if (queueSize <= 10) return false;
if (queueSize >= 40) return true;
return (streamBalk.nextDouble() <
((queueSize - 10.0) / 30.0));

}
}

public void simulateRuns (int numRuns) {
for (int i = 1; i <= numRuns; i++) oneDay();
avLost.setConfidenceIntervalStudent();
System.out.println (avLost.report (0.9, 3));

}

static public void main (String[] args) {
new Visits().simulateRuns (100);

}
}

The simulation results are in Listing 27.

Listing 27: Simulation results for the guided visits model

REPORT on Tally stat. collector ==> Nb. of visitors lost per day
num. obs. min max average standard dev.

100 3.000 48.000 21.780 10.639
90.0% confidence interval for mean (student): ( 20.014, 23.546 )

Could we have used a Condition instead of a Bin for synchronizing the Guide processes?
The problem would be that if several guides are waiting for a condition indicating that
the queue size has reached 8, all these guides (not only the first one) would resume their
execution simultaneously when the condition becomes true.

5.5 Return to the simplified bank

Listing 28 gives a process-oriented simulation program for the bank model of Section 4.3.
Here, the customers are viewed as processes. There are still events at the fixed times 9:45,
10:00, etc., and these events do the same thing, but they are implicit in the process-oriented
implementation. The next planned arrival event nextArriv is replaced by the next planned
arriving customer nextCust.
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Instead of using the default process simulator as in the previous examples, here one creates
a ThreadProcessSimulator object that will manage the processes of this simulation.

The process-oriented version of the program is shorter, because certain aspects (such
as the details of an arrival or departure event) are taken care of automatically by the pro-
cess/resource construct, and the events 9:45, 10:00, etc., are replaced by a single process.
At 10 o’clock, the setCapacity statement that fixes the number of tellers also takes care
of starting service for the appropriate number of customers. The two programs produce
exactly the same results, given in Listing 17. However, the process-oriented program take
approximately 4 to 5 times longer to run than its event-oriented counterpart.

Listing 28: Process-oriented simulation of the bank model

import umontreal.iro.lecuyer.simprocs.*;
import umontreal.iro.lecuyer.rng.*;
import umontreal.iro.lecuyer.randvar.*;
import umontreal.iro.lecuyer.stat.*;

public class BankProc {

ProcessSimulator sim = new ThreadProcessSimulator();
double minute = 1.0 / 60.0;
int nbServed; // Number of customers served so far
double meanDelay; // Mean time between arrivals
SimProcess nextCust; // Next customer to arrive
Resource tellers = new Resource (sim, 0, "The tellers");
RandomStream streamArr = new MRG32k3a(); // Customer’s arrivals
ErlangGen genServ = new ErlangConvolutionGen

(new MRG32k3a(), 2, 1.0/minute);
RandomStream streamTeller = new MRG32k3a(); // Number of tellers
RandomStream streamBalk = new MRG32k3a(); // Balking decisions
Tally statServed = new Tally ("Nb. served per day");
Tally avWait = new Tally ("Average wait per day (hours)");

class OneDay extends SimProcess {
public OneDay(ProcessSimulator sim) { super(sim); }
public void actions() {

int nbTellers; // Number of tellers today.
nbServed = 0;
tellers.setCapacity (0);
tellers.waitList().initStat();
meanDelay = 2.0 * minute;
// It is 9:45, start arrival process.
(nextCust = new Customer(sim)).schedule
(ExponentialGen.nextDouble (streamArr, 1.0/meanDelay));

delay (15.0 * minute);
// Bank opens at 10:00, generate number of tellers.
double u = streamTeller.nextDouble();
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if (u >= 0.2) nbTellers = 3;
else if (u < 0.05) nbTellers = 1;
else nbTellers = 2;
tellers.setCapacity (nbTellers);
delay (1.0); // It is 11:00, double arrival rate.
nextCust.reschedule (nextCust.getDelay() / 2.0);
meanDelay = minute;
delay (3.0); // It is 14:00, halve arrival rate.
nextCust.reschedule (nextCust.getDelay() * 2.0);
meanDelay = 2.0 * minute;
delay (1.0); // It is 15:00, bank closes.
nextCust.cancel();

}
}

class Customer extends SimProcess {
public Customer(ProcessSimulator sim) { super(sim); }
public void actions() {

(nextCust = new Customer(sim)).schedule
(ExponentialGen.nextDouble (streamArr, 1.0/meanDelay));

if (!balk()) {
tellers.request (1);
delay (genServ.nextDouble());
tellers.release (1);
nbServed++;

}
}

private boolean balk() {
int n = tellers.waitList().size();
return n > 9 || (n > 5 && 5.0*streamBalk.nextDouble() < n - 5);

}
}

public void simulOneDay() {
sim.init();
new OneDay(sim).schedule (9.75);
sim.start();
statServed.add (nbServed);
avWait.add (tellers.waitList().statSize().sum());

}

public void simulateDays (int numDays) {
tellers.waitList().setStatCollecting (true);
for (int i=1; i<=numDays; i++) simulOneDay();
System.out.println (statServed.report());
System.out.println (avWait.report());
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}

public static void main (String[] args) {
new BankProc().simulateDays (100);

}
}
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