
Lund Software House AB, Sweden

LUND

SIMULA

Lund Simula Documentation

Using the simioprocess
library

on
Unix Systems

For Lund Simula version 4.15 or later

Printed at: 5 December 1995 1:49 pm
© Copyright 1995
Lund Software House AB
P.O.Box 7056
S-220 07 Lund, Sweden

Lund Simula Documentation

Using Lund Simula on Unix Systems
Version 4.15

by Boris Magnusson and Per Holm

LSH – Lund SIMULA user’s manuals

i

Table of Contents
1 Introduction 1

2 Organisation and use 1

3 Overview of functionallity 1

4 System Structure 2
4.1 ProcessManager 2
4.2 IOProcess 2
4.3 Events 3
4.4 Synchronization 4

5 Examples 4

6 Abstract class descriptions 7
6.1 class ProcessManager 7
6.2 class IOProcess. 8
6.3 class Semaphore 9
6.4 class Monitor 9

7 Class hierarchy. 10

8 Detailed Interfaces 11
8.1 Process Manager 11
8.2 Events 12
8.3 IOProcess 12
8.4 Semaphore 15
8.5 Monitor 16

9 Index to classes and procedures 17

LSH – Lund SIMULA user’s manuals

ii

Lund SIMULA user’s manuals

1LSH

1 Introduction

This library describes a set of classes designed to create a process concept useful
when dealing with “soft” real-time problems. This is typically the situations in
programs simultaneously handling several input sources like user key-board
input, mouse input, a window manager, communication with other programs.
These examples are all characterized by the fact that input to the program from
the sources may or may not be available at any one time. These situations can
sometimes be solved by splitting the program into several communicating UNIX
processes. Even so the problem often arises that one such program need to be
able to handle more than one input channel. Such a “heavy weight” process
solution can also be impractical for other reasons, like the large performance
overhead and un-natural communication patterns between heavily dependent
processes. There is thus a need for “light weight” processes with fast context
switch and possibilities for the processes to share data structures in the same
address space. This library is built on the available primitives in Simula and
provides an efficient and easy to use process concept understandable in terms of
the language.

2 Organisation and use

The routines are distributed as separately compiled Simula classes. The files
are normally installed in ‘/usr/local/simulabin/libsim’ (the -.atr files) and the object
are reached trhrough the link: ‘/usr/local/simulabin/lib/ liblibsim.a’.

Declarations in Simula programs:
external class ProcessManager, IOProcess, BasicProcessEvent; !
Always needed ;
external class Monitor, Semaphore; ! Optional;

Compilation:
% simcomp <program> -L=/usr/local/simulabin -I=simioprocess
(or % simcomp <program> -l)

Linking:
% simld <programs and other options> -lsimioprocess
(or %simld <programs and other options> -l)

3 Overview of functionallity

The process concept presented here is built out of Simula co-routines and each
process can wait for input becoming available on one input channel. Input chan-
nels are Unix files in general, such as ‘pipes’ and ‘sockets’, used for communica-
tion between programs, locally or remote. When input is available it will be
started in order to do its I/O and further processing. Processes can also specify a
maximum time to wait and will receive a special event if no I/O has become
available during that period. Processes are communicated with by sending them
events. Not all processes have to be tied to an external file, but can as well per-
form internal tasks. Besides message passing there are also Semaphores and
Monitors for implementation of other communication strategies between the
processes. Finally there are facilities for generating periodic events, for synchro-
nization with real-time and for orderly shutdown of a system of processes.

The implementation being based on co-routines means that control is explic-
itly transferred between processes by means of the Simula primitive “Call” and
“Detach” statements. These scheduling points are, however, hidden inside a

Lund SIMULA user’s manuals

2 LSH

“process manager” and are not directly visible in the programming interface.
This way of implementation results in a very fast process context switch,
approximately the same time as a procedure call overhead. The comment above,
on “soft” real-time problems, relate to the fact that there is currently no inter-
rupt mechanism in the system. A process given the control will stay in control
until it gives it up freely (usually by asking for a new event). This solution is,
however, sufficient for a large class of problems. In the future there might be an
interrupt mechanism added to the system. This will, however, need changes in
the low level implementation of the language, which has so far not been needed.
The current system is implemented in pure Simula and thus portable, although
the operating system call (to ‘select’) has to be changed to fit other systems than
Unix. The combination of co-routines and the ‘select’ function enables us to
implement a process mechanism without busy-wait. A similar system has been
developed for the Macintosh and its window system.

4 System Structure

The library provides two major classes to the user, the IOProcess which is used to
create user defined processes by subclassing it and the ProcessManager which
performs the scheduling created IOProcess objects. There is also a set of events,
in the form of subclasses to the abstract class BasicEvent. Events are sent from
the ProcessManager to IOProcesses and between these. Finally there are two
classes, Semaphore and Monitor, for communication and synchronization between
IOProcess objects.

4.1 ProcessManager

In a single program there will be one and only one object of this class. The task
of this object (the PMG) is to schedule IOProcess objects and to hand over control
to them when they are ready to execute. It also creates instances of the pre-
defined event classes when appropriate and sends such events to the appropri-
ate IOProcess objects. The PMG maintains a data structure of registered
processes and uses a round-robin policy for scheduling if there are more than
one IOProcess object ready to execute. If there is no IOProcess to execute, the Pro-
cessManager, and thus the Simula program, will be idle.

4.2 IOProcess

The user will define subclasses of IOProcess where the body will be used to spec-
ify the activity of the process. Each such class will thus look like a main pro-
gram. If it does not communicate with other processes in the same program it
can be written with no knowledge of the rest of the processes.

There will typically be a one-to-one correspondence between an interesting
file and a process to receive I/O events. This process knows how to initialize the
file and how to read from the file. The PMG just notes when something can be
read. Other processes might ask for periodic events to work as a clock. It is good
practice to keep the processes small handling one external file or one kind of
periodic events each.

Note that communication with a window system (like NeWS and X11) is
done over a file (pipe, socket,...). In such a situation there will typically be one
process (often called the WindowManager) to receive I/O events regarding this file

Lund SIMULA user’s manuals

3LSH

which will then figure out what to do with it. Typically it will generate some
internal event and send it on to a process controlling the corresponding window.
This means the WindowManager is just a regular process from the PMG point of
view, and the PMG has to take no special action regarding it.

Other interesting processes are the ones that perform reads on pipes from
other processes like Servers (and Clients in the other end). In some cases these
processes might simply only hand over the control or the read bytes to some
other process. This is typically the case when many communication sessions are
multiplexed over a pipe between a server and a client.

4.3 Events

Pre defined events are:

• InputEvent – generated when a ‘Read’ can be performed on a file.
• IOTimeoutEvent – generated if no InputEvent arrived in the specified time

interval.
• OutputEvent – generated when a ‘Write’ can be performed on a file.
• UpdateEvent – generated when the program is about to go idle.
• PeriodicEvent – generated with a requested time interval.
• CancelEvent – generated when the program is to terminate.
• BasicProcessEvent – user defined subclasses being sent from one process to

another.

The InputEvent and IOTimeoutEvent events goes together with files used for
input from the Simula programs point of view. With these it is possible to write
programs that can service an input file with no risk that the program blocks
because there is no input available (the input buffer is empty). IOTimeoutEvent
events makes it possible to take action if input has not been received for some
maximal amount of time (due to communication failure, user in-active etc.).

The OutputEvent and UpdateEvent events goes together with files used for out-
put from the Simula programs point of view. Such programs face the problem
that they can be blocked if they generate output to quickly (the bounded output
buffer becomes full). The OutputEvent event makes it possible to write event-
driven programs also for this situation, keeping the output buffer filled, but not
overflowing. In some situations it is attractive for efficiency reasons to use an
internal buffer and to write its content to the output file in bigger chunks. The
communication with the X11 window system as implemented in Xlib is using
this approach. The risk here is naturally that there is a possibility that writing
the internal buffer to the file is not done often enough. UpdateEvent events are
generated when the PMG is about to become idle and makes it simple to per-
form such book-keeping activities at the end of a period of processing.

The PeriodicEvent events are generated with a specified interval and can be
used to trigger periodic actions, like driving a clock, or in a control situation,
reading input values or calculating new control signals. If for some reason the
processing is delayed, and a periodic event can not be delivered in time there
will be enough events generated to make up for the delay, although they will
arrive late no event will be lost.

The pre-defined events described above are all sub-classes of ProcessEvent
which in its turn is a subclass of BasicProcessEvents. User-defined events should
be defined as sub-classes of BasicProcessEvents. None of the pre-defined events
contain any attributes or operations.

Lund SIMULA user’s manuals

4 LSH

4.4 Synchronization

Message-passing with the pre-defined events is used for synchronization
between the ProcessManager (and thus the external world) and the IOProcesses.
For synchronization among IOProcesses there is the possibility to use user
defined events as well as to use the classes Semaphore or Monitor. Semaphore is an
implementation of a generalized semaphore based on an integer. Monitor is a
slightly more general mechanism than the usual construct. The condition vari-
ables in the monitor are implemented by a locally defined class (rather than
Boolean variables) with operations ‘CauseOne’ and ‘CauseAll’ matching two dif-
ferent semantics of monitor useful in different situations.

5 Examples

Example 1: A clock that generates output every second.
This example shows how a process which does some periodic processing can be
implemented.

IOProcess class ClockTick;
begin

EnablePeriodicEvent(1.0); ! seconds;
while true do
begin

inspect WaitEvent
when PeriodicEvent do
begin

Outtext(“One scond passed”); Outimage;
end;

end;
end --- ClockTick ---;

Example 2: Echo of user input with time-out after 60 seconds of inac-
tive user.
This example shows how an input channel (like the one from the user) can be
controlled.

IOProcess class Echo;
begin

EnableInputEvents(Sysin);
while not Sysin.Endfile do
begin

StartIOTimeout(Sysin,60); ! Wait max one minute;
Ev :- WaitEvent;
inspect Ev
when InputEvent do
begin

Sysin.Inimage;
Sysout.Outtext(“Echo: “); Sysout.Outtext(Sysin.image.strip);
Sysout.Outimage;

end
when IOTimeoutEvent do
begin

Sysout.Outtext(“Hello, why are you not typing ?”); Sysout.Outimage;
end - inspect -;

end - while -;

Lund SIMULA user’s manuals

5LSH

end --- Echo --;

Example 3: Sending an audio file to the audio device.
This example shows how an output channel can be filled without causing any
blocking. It also uses a user defined event.

BasicProcessEvent class SoundEvent(SoundName);
value SoundName; text SoundName;

! -- ;
IOProcess class SendSound;
begin

ref(inbytefile) Sound;
ref(outbyteFile) Speaker;
text Bytes;
Boolean Cancel;

Speaker:-new outbytefile(“/dev/audio”);
Bytes:-blanks(1024);
if not Speaker.open then
begin

outtext(“SendSound: can’t open ‘/dev/audio’”); outimage;
Terminate;

end;
EnableCancelEvents;
while not Ev in CancelEvent do
begin

Ev :- WaitEvent;
inspect WaitEvent
when SoundEvent do
begin

Sound :- new inbytefile(SoundName);
if Sound.open then
begin

EnableOutputEvents(Speaker);
while not Sound.endfile and not Ev in CancelEvent do
begin

Ev :- WaitEvent;
inspect Ev
when OutputEvent do

Speaker.Outtext(Sound.Intext(Bytes));
end - while -;
DisableOutputEvents(Speaker);
Sound.Close;

end;
end;

end -- while --;
Speaker.Close;

end -- SendSound --;

Example 4: Producer, consumer example communicating over a buffer.
This example shows how processes can synchronize using a subclass of Monitor.
It is also an complete program, showing how initial processes are created and
scheduling is started.

begin
external class ProcessManager, IOProcess, Monitor;

! -- ;

Lund SIMULA user’s manuals

6 LSH

Monitor class Buffer(Size); integer Size
begin

ref(Condition) NonFull, NonEmpty;
integer array Buffer(0:Size-1);
integer inP, outP;
procedure Put(x); integer x; ! ---------------------;
begin

EnterMonitor;
while not mod(InP+1,Size)=OutP do

NonFull.Await;
Buffer(InP):=X;
InP:=mod(InP+1,Size);
NonEmpty.CauseOne;
ExitMonitor;

end -- Put --;
integer procedure Get; ! ---------------------;
begin

EnterMonitor;
while not InP=OutP do

NonFull.Await;
Get:=Buffer(OutP);
OutP:=mod(OutP+1,Size);
NonFull.CauseOne;
ExitMonitor;

end -- Put --;
NonFull:- new Condition;
NonEmpty:-new Condition;
InP := OutP := 0;

end --- Buffer ---;
! -- ;

IOProcess class Producer(Buff); ref(Buffer) Buff;
begin

integer U,X;
U:=1147;
while true do
begin

X:= Randint(U,1,100);
B.Put(X);

end;
end --- Producer ---;

! -- ;
IOProcess class Consumer(Buff); ref(Buffer) Buff;
begin

integer x;
while true do
begin

X:=Buff.Get;
outint(X,0); Outimage;

end;
end --- Consumer ---;

! -- ;
! Startup:;

ref(ProcessManager) PMG;
ref(IOProcess) P,C;

Lund SIMULA user’s manuals

7LSH

ref(Buffer) B;
! This part is executed sequentially: ;
PMG :- new ProcessManager;
B:- new Buffer(PMG);
P:- new Producer(B);
C:- new Consumer(B);
PMG.RegisterProcess(P);
PMG.RegisterProcess(C);
P.Start;
C.Start;
! At the ‘Run’ the control is handed to the PMG and process scheduling

starts;
PMG.Run; ! The ‘main program’ waits at this point;
! When the scheduling is terminated the sequential processing is
! returned to this point;
Outtext(“Good bye”);
Outimage;

end

6 Abstract class descriptions

6.1 class ProcessManager

Terminology
Registered processes – These are the IOProcesses objects that has been

registered with the manager. These are the processes that will take part in the
scheduling. Typically IOProcesses are registered at creation and de-registered at
their termination.

ReadyQ – This queue is keeping track of all processes that currently are
ready to execute.

Current Process – The one IOProcess object in the ReadyQ that is currently
executing,e.i. in the ‘Running’ state. This object will continue to execute until it
executes one of the operations and leaves the Ready/Running state as shown in
the figure below. It might also enter the Running state by executing a Pause
operation and leaving control to some other process in the ReadyQ.

Known Files – When the ReadyQ is empty the manager is waiting for input
arriving to any of these files. When so happens the corresponding IOProcess is
notified with an InputEvent. The manager maintains the association between the
file and the IOProcess object. KnownFiles can be either Simula files or plain Unix
files.

IOTimers – For each KnownFile there might also be specified a certain time
before which input should occur. If not, the manager notifies the corresponding
IOProcess with an IOTimeoutEvent. A IOProcess that has asked for IOTimeOutEvent
will receive either an InputEvent during the interval or an IOTimeoutEvent at the
end of the interval (but never both). A started timer is cancelled by either of
these events and has to be restarted to be effective again. The IOTimer is not
effected should other events arrive.

Update events – when the manager is about to become idle (any other
events has been generated and no process is ready to be executed) the manager
will generate UpdateEvents to all the processes which have enabled such events.

Periodic events – An IOProcess can also ask for events with a certain time
interval. The manager will generate PeriodicEvents and send them to the process

Lund SIMULA user’s manuals

8 LSH

accordingly. The manager is maintaining a set of all timers and periodic events.
The closest in time of these specifies the longest time the manager can stay idle
when the ReadyQ is empty.

Cancel Events – CancelEvents are be broadcasted to all IOProcesses that
have registered for such events. The broadcasting is triggered by a call to the
manager. IOProcesses should respond to such events by orderly shut down any
activities and Terminate or Stop. All IOProcesses that have registered files of
periodic timers should also register for CancelEvents in order to perform an
orderly shutdown of the system.

6.2 class IOProcess .

Terminology
Execution state – The IOProcesses can be in any of five states. The transi-

tion between these states are shown in the figure below. The meaning of the
states are as follows:

• Running - The one and only process that is actually executing at a given
time.

• Ready - All the processes that are “ready” to execute. Currently there is
no pre-emption so the CurrentProcess is allowed to execute until it freely
gives up the initiative. In the future the system might include an inter-
rupt mechanism to automatically distribute the execution time over all
the ready processes and thus move processes between the Running and
Ready state.

• Suspended - This is an idle state where the process is waiting to be
started by another process. This mechanism is used in the implementa-
tion of Semaphores and Monitors.

• Waiting - This is an idle state where the process is waiting for an Event to
arrive. An Event can be sent either by another process or by the manager.

• Terminated - A process in this state can not be moved to any other state
again. It can enter this state from any of the other states. When being ter-
minated the process is automatically de-registered from the manager and
all timers etc. are cancelled.

Ready/Running Waiting

WaitEvent

P.PutEvent

Suspended

new

P.Start Stop

Pause

Terminated

Terminate

P.Kill

P.KillP.Kill

Figure 1 Process States and transitions.

Note the notational difference:P.Kill indicates that the operation is performed by
another process than the effected one, whileTerminate means that a process is ini-
tiating this operation when it is itself is in the runnng state.

Lund SIMULA user’s manuals

9LSH

Event Queue – Each process maintains a queue of events to process. When
this queue is empty a call to WaitEvent transfers the process from Ready to the
Waiting state.

Priority – Each IOProcess object has an associated priority. This priority can
be used to give execution time more frequently or in longer periods to some pro-
cesses. Priority can be used to have execution time demanding processes to co-
exist with processes requiring fast response. Better priority is not a guarantee
to get execution first and should not be used as a substitute for proper synchro-
nization. Processes are created with priority 0 which is “best”. The priority
should be set to a higher value for execution demanding processes

6.3 class Semaphore

Terminology
Resources – Each Semaphore uses an integer to represents a finite resource.

Semaphores with single resources can be used to ensure mutual exclusion
between processes.

ProcessQueue – Processes asking for unavailable resources are delayed
until the resources are returned to the Semaphore. These processes are sus-
pended and kept in a queue until they can be given the resource and started
again.

6.4 class Monitor

Terminology
Mutual Exclusion – Only one process may have access to the operations of

the Monitor at any given time. Processes trying to call a Monitor operation when it
is already occupied are delayed until the Monitor is free again. Delayed processes
are then let into the Monitor one at the time.

EnterQueue – This is a queue of processes waiting to enter the monitor.
Condition – A Condition is representing a certain state of the data contained

in the Monitor. A process inside a Monitor can choose to wait for such a state to
occur. As they do so they are leaving the Monitor but kept track of by the Condi-
tion. When the desired state is reached this is signalled to the Condition and the
waiting processes are transferred to the EnterQueue to enter the Monitor when it
becomes free.

Lund SIMULA user’s manuals

10 LSH

7 Class hierarchy.

In fig. 2 the hierarchy of classes used in this library are shown. Names in thin
font indicates abstract classes, invented for technical purposses only. They are
not descibed in detail.

SimSet

EventQ

IOProcess

PriorityQ

ProcessManager Semaphore MonitorBasicProcess

InputEvent IOTimeoutEvent OutputEvent

UpdateEvent PeriodicEvent CancelEvent

BasicProcessEvent

ProcessEvent <User defined events>

Figure 2 simlib ioprocesses class hierarchy

Lund SIMULA user’s manuals

11LSH

8 Detailed Interfaces

8.1 Process Manager

PriorityQ class ProcessManager;
IOProcess objects must be 'registered' in order to be managed by this scheduler.
When processes ready to run are avilable they are activated. When there are no
such processes this schedluer makes the Simula program sleep until someting
happens (input avilable or timer goes off). When there are no open files watched
by a IOProcess and there are no timers set, the scheduling finishes. CancelAll
all is a 'soft' terminater allowing those who need to cleanup to do so. Terminate-
All is a killing all IOPorcesses directly.
Supers: PriorityQ
Kind: SingelObject
Init: At least one IOProcess must be started before 'Run' is called.
 'Run' works as a scheduler and 'Call's other IOProcess based on
 their state.
Sequencing: (RegisterProcess
 : (Run / RunningProcess / CancelAll / TerminateAll)*
 : DeRegisterProcess)*

User accessable operations
RegisterProcess
procedure RegisterProcess(P);
ref(BasicProcess) P;

Register P as a process that can be scheduled. P is an object of a subclass of
IOProcess (see below).

DeRegisterProcess
procedure DeRegisterProcess(P);
ref(BasicProcess) p;

Forget about P - It can not be scheduled again unless re-registered. Terminated
IOProcess objects are automatically de-registered.

Run
procedure Run;

Give control to this ProcessManager -- it will schedule processes and call them
as appropriate. Run will finish when 'nothing can ever happen again' or after a
call to TerminateAll. When a call to Run is finished the execution will continue
after the call to Run.

RunningProcess
ref(basicProcess) procedure RunningProcess;

return a reference to the currently executing process. (Mainly intended for use
in implementation of scheduling primitives such as Semaphore and Monitor.
Should not be neccessary to use in the applications).

CancelAll
procedure CancelAll;

Broadcast CancelEvent:s to all IOProcesses that have called EnableCancelE-
vent. Besides this the PMG does not do anything exceptional. Processes with
EnableIO- Events should as a result call DisableIOEvents when terminating
actions are done. As a result of broadcasted CancelEvent:s there should after a
while be no processes left in the Ready state, with IO-Events enabled or with
timers set, so the terminating condition of the Run-procedure should be fullfiled.
Execution is then resumed after the call to Run in 'the main program'. Cancel-
All can be called many times if the processes refuses to die... If the processes are
left in a consistent state a new call to Run should be possible.

LSH – Lund SIMULA user’s manuals

12 LSH

TerminateAll
procedure TerminateAll;

Emergency termination of the Run-call. Control is immediately transferred to
the point after the call to Run in 'the main program'. There are also a number of
operations in the ProcessManager that are called from class Process and should
not be called by the user code directly.

8.2 Events

The Events are defined without attributes. It should always be clear from the
situation what the event indicates. This design choice is consistent with the idea
that IOProcess should be rather small and do one well-defined task. It is thus
not possible to have a IOPorcess that waits for events from two different exter-
nal files, but one can have two IOProcesses waiting for an external file each!.

BasicProcessEvent
class BasicProcessEvent;

Abstract superclass of all Events, used as superclass for user defined events.

ProcessEvent
BasicProcessEvent class ProcessEvent;

Abstract superclass of all Event classes generated by the Process Manager.

InputEvent
ProcessEvent class InputEvent;

Generated when an inimage (or read) can safely be issued on the file for which
EnableIOEvents has been called.

OutputEvent
ProcessEvent class OutputEvent;

Generated when the output buffer is non-full and a write can be issued on the
file for which EnableIOEvents has been called.

IOTimeoutEvent
ProcessEvent class IOTimeoutEvent;

Generated when the timeout period has passed with no InputEvent generated.
StartIOTimeout must have been called. A process will receive a IOTimeoutE-
vent or a InputEvent, but never both

UpdateEvent
ProcessEvent class UpdateEvent;

Generated when some other IOProcess have recieved some Event and this pro-
cess did not become active during its processing

PeriodicEvent
ProcessEvent class PeriodicEvent;

Generated when the propper time interval has passed.

CancelEvent
ProcessEvent class CancelEvent;

Broadcasted to all IOProcess object that have requested them with a call to
EnableCancelEvents. Events are triggered by a process calling the ProcessMa-
nager operation CancelAll.

8.3 IOProcess

BasicProcess class IOProcess;
There will typically be a one-to-one correspondence between an interesting file
and a process to receive I/O events. This process knows how to initialize the file
and how to read from the file. Other processes might ask for periodic events to

Lund SIMULA user’s manuals

13LSH

work as a clock. It is good practice to keep the processes small handling one
external file or one kind of periodic events each.
An IOProcess object is created by another IOProcess (or the main program), ini-
tialized and registered by the ProcessManager, and the Started.
It can be Stop either by itself (calling Terminate or pass out through its final
end), or it can be stopped by another process (calling its 'Stop').
Of the many events, there are typically just a few relevenat for a single class of
IOProcesses.
Supers: BasicProcess, EventQ, Simset
Kind: Abstract
Init: The body of the subclass will be executed as a co-routine/process
Sequencing: new <sync init> PMG.RegisterProcess(this IOProcess) Start
 : (A* Stop Start)* Kill/Terminate/end-of-class
 : A= Pause / Nice / WaitEvent / AskEvent / PutEvent /
 : EnablePeriodicEvents / DisablePeriodicEvents /
 : EnableCancelEvents / DisableCancelEvents /
 : EnableUpdateEvents / DisableUpdateEvents /
 : EnableInputEvents / StartIOTimeout / DisableInputEvents /
 : EnableOutputEvents / DisableOutputEvents /
 : EnableInputEventsUNIX / StartIOTimeoutUNIX / DisableInputEventsU-
NIX /
 : EnableOutputEventsUNIX/ DisableOutputEventsUNIX /

External operations only
Start
procedure Start;

Put the process into the Read/Running state. The process will be given chance to
execute in due time according to priorities and scheduling policies. This opera-
tions is intend to be invoced from outside the IOProcess object only, typically by
the creator, after some initializations (a process can not start itself).

Kill
procedure Kill;

This operation causes the process to become terminated. It is thus analogous to
the operation Terminate but Kill can be called from another process and the kil-
led process can be in any state of execution.

Internal (protected) operations
Stop
procedure Stop;

Move the process into the Suspended state. This means that the process will
nou execute until it has been Start:ed again. Stop can be called (direct or indi-
rect) only when the process itself is executing.

Nice
procedure Nice(N); integer N;

Lower the priority of this IOProcess. Initially processes have the same, high,
priority. Nice is called by background processes not to disrupt response-critical
processes to much. They should have Pause-calles sprinkled over time consu-
ming parts. Notice that Nice can NOT be used for solving synchronization pro-
blems. There is no guarantee that a nicer process is not executed when other
processes are ready, it is just a bit less likely.

Terminate
procedure Terminate;

Stop execution of this IOProcess and deregister it.

WaitEvent
ref(BasicProcessEvent) procedure WaitEvent;

LSH – Lund SIMULA user’s manuals

14 LSH

Wait for next event to arrive, then return with the Event. If no event is queued
the IOProcess is blocked until an Event has been sent to this process with a call
to PutEvent.

AskEvent
Boolean procedure AskEvent;

This function returns True if any event pending, False otherwise.

PutEvent
procedure PutEvent(E);
ref(BasicProcessEvent) E;

Queue the ProcessEvent, E, for this process. This will trigger the IOProcess to
be moved to the Ready/Running state if it has called the operation WaitEvent
and no event was pending.

Pause
procedure Pause;

Simulation of interrupt used to trigger rescheduling. Insert this into code where
the execution tends to take a lot of time. Note: Beware of concurrency problems
and ensure mutual exclusion!

Event control
EnableCancelEvents
procedure EnableCancelEvents;

Enable CancelEvent to be received as broadcasted by a call to CancelAll of the
PMG.

DisableCancelEvents
procedure DisableCancelEvents;

Called to not get any future CancelEvents.

EnablePeriodicEvents
procedure EnablePeriodicEvents(Seconds); long real Seconds;

Order PeriodicEvents to appear with a distance of Sec seconds on the average
starting Sec seconds from now. Earlier enables are replaced by a new request.
Note periods longer than 24 hours are not allowed. If for some reason the event
can not be generated at the propper time one (or several) will be generated as
soon as possible to make up for the passing time.

DisablePeriodicEvents
procedure DisablePeriodicEvents;

Cancels any ordered PeriodicEvent.

EnableUpdateEvents
procedure EnableUpdateEvents;

Order UpdateEvent. They are generated when the Scheduler has nothing more
to do and is about to go idle. Can be used to trigged clean up activities such as
emptying output buffers etc before the system goes to sleep, wating for some
external (Periodic, Input, IOTimeout or Output -) Event.

DisableUpdateEvents
procedure DisableUpdateEvents;

Cancels generating UpdateEvents to this IOProcess.

EnableInputEvents
procedure EnableInputEvents(F);
ref(File) F; ! Simula In(byte)file or Direct(byte)file;

Enable events related to the Simula (input or directaccess) File F. F must have
been opened before the call. The IOProcess will receive an InputEvent when an
'Inimage' (or Intext) can be performed.

StartIOTimeout
procedure StartIOTimeout(F,Sec);
ref(File) F; ! Simula In(byte)file or Direct(byte)file;
Real Sec; ! Maximum time to wait for next input.;

Lund SIMULA user’s manuals

15LSH

Start a timer on the file F with duration Sec Seconds. (F must previously been
enabled with a call to EnableInputEvents). The effect of the timer is that an
IOTimeoutEvent will appear after the time Sec if not an InputEvent has been
generated before. One and only one of these two possible events will appear. The
timer is started at the time of the call of this operation and it have only effect
once.

DisableInputEvents
procedure DisableInputEvents(F);
ref(file) F; ! Simula In(byte)file or Direct(byte)file;

Forget about the Simula file F. This operation is typically called before the file is
closed.

EnableOutputEvents
procedure EnableOutputEvents(F);
ref(File) F; ! Simula Out(byte)file or Direct(byte)file;

Enable events related to the Simula (output or directaccess) File F. F must have
been opened before the call. The IOProcess will receive an OutputEvent when
an 'Outimage' (or 'Outtext') can be performed.

DisableOutputEvents
procedure DisableOutputEvents(F);
ref(file) F; ! Simula Out(byte)file or Direct(byte)file;

Forget about the Simula file F. This operation is typically called before the file is
closed.

UNIX related operations
These Five operations have the same effect as the corresponding operations
above but relate to standard UNIX files. N is a Unix file system number as
returned by open.

EnableInputEventsUNIX
procedure EnableInputEventsUNIX(N);
integer N; ! Unix file number (0,1,2..) as returned by open.;

StartIOTimeoutUNIX
procedure StartIOTimeoutUNIX(N,Sec);
integer N; ! Unix file number (0,1,2..) as returned by open.;
Real Sec; ! Maximum time to wit for next input operation. ;

DisableInputEventsUNIX
procedure DisableInputEventsUNIX(N);
integer N; ! Unix file number (0,1,2..) as returned by open.;

EnableOutputEventsUNIX
procedure EnableOutputEventsUNIX(N);
integer N; ! Unix file number (0,1,2..) as returned by open.;

DisableOutputEventsUNIX
procedure DisableOutputEventsUNIX(N);
integer N; ! Unix file number (0,1,2..) as returned by open.;

8.4 Semaphore

PriorityQ class Semaphore(PMG);
ref(ProcessManager) PMG;

This class is used for traditional Dijkstra Semaphore synchronization. Supply
reference to the ProcessManager as parameter.
 Supers: PriorityQ, SortedPool, Simset
 Kind: Instantable
 Init: PMG must reference the SingleObject ProcessManager.
 Sequencing: (Signal / Wait)*

LSH – Lund SIMULA user’s manuals

16 LSH

Operations
Signal
procedure Signal;

Normal meaning for Semaphores - Start one waiting process (if any), increase
resources.

Wait
procedure Wait;

Normal meaning for Semaphores - Suspend caller if resources=0, decrease
resources.

8.5 Monitor

PriorityQ class Monitor(PMG);
ref(ProcessManager) PMG;

This class is an implementation of (almost) traditional monitors. Monitors are
used to synchronize processes operating on shared data by means of the Monitor
operations. Only one IOProcess is allowed to execute a Mointor operation at the
time. Supply a reference to the ProcessManager as parameter.
 Supers: PriorityQ, SortedPool, Simset
 Kind: Instantable
 Init: PMG must reference the SingleObject ProcessManager.
 Sequencing in Mointor operations (where c is a Condition object):
 : EnterMonitor
 : (c.Await/c.CauseOne/c.CauseAll)*
 : ExitMonitor

Requiered operations to call from accessable procedures
EnterMonitor
procedure EnterMonitor;

Must be called at the entry of each monitor operation.

ExitMonitor
procedure ExitMonitor;

Must be called at the exit of each monitor operation.

Local nested class
Condition
class Condition;

This class is local to the Monitor. Create object of this class to represent condi-
tions (to wait for) in the monitor.
 Sequencing: (Await / CauseOne / CauseAll)*;

Operations on Conditions
Await
procedure Await;

Await the conditon to be fullfiled.

CauseOne
procedure CauseOne;

The condition is true, start (at most) one waiting process.

CauseAll
procedure CauseAll;

The condition is true for all waiting processes - Start them all.

Lund SIMULA user’s manuals

17

9 Index to classes and procedu-
res

8.1 Process Manager, 11
RegisterProcess, 11
DeRegisterProcess, 11
Run, 11
RunningProcess, 11
CancelAll, 11
TerminateAll, 12

8.2 Events, 12
BasicProcessEvent, 12
ProcessEvent, 12
InputEvent, 12
OutputEvent, 12
IOTimeoutEvent, 12
UpdateEvent, 12
PeriodicEvent, 12
CancelEvent, 12

8.3 IOProcess, 12
Start, 13
Kill, 13
Stop, 13
Nice, 13
Terminate, 13
WaitEvent, 13
AskEvent, 14
PutEvent, 14
Pause, 14
EnableCancelEvents, 14
DisableCancelEvents, 14
EnablePeriodicEvents, 14
DisablePeriodicEvents, 14
EnableUpdateEvents, 14
DisableUpdateEvents, 14
EnableInputEvents, 14
StartIOTimeout, 14
DisableInputEvents, 15
EnableOutputEvents, 15
DisableOutputEvents, 15
EnableInputEventsUNIX, 15
StartIOTimeoutUNIX, 15
DisableInputEventsUNIX, 15
EnableOutputEventsUNIX, 15
DisableOutputEventsUNIX, 15

8.4 Semaphore, 15
Signal, 16
Wait, 16

8.5 Monitor, 16
EnterMonitor, 16
ExitMonitor, 16
Condition, 16

Await, 16
CauseOne, 16
CauseAll, 16

Lund SIMULA user’s manuals

18

