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THIS TALK — OUTLINE

1. The goal of Convex Optimization

2. Interior Point Methods and Path following
3. Hit-and-Run and Simulated Annealing

4. The Annealing-IPM Connection

5. Faster Optimization
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GENERAL CONVEX OPTIMIZATION PROBLEM

» Let K be a bounded convex set, we want to solve

min 8 '
re K

» Can always convert non-linear objective into a linear one

min f(x) — min ¢
reK (z,c)e KXR
f(x)<c
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THE GRADIENT DESCENT ALGORITHM

» The gradient descent algorithm:

Fort=1,2,...:

Tp = -1 — NV [ (@-1)
Lt — PI’OJK(i’t)

» Challenge: the Projection step can often be just as hard as
the original optimization
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GD DOES POORLY WITH LOTS OF CURVATURE

» The gradient descent algorithm doesn’t use any
knowledge of the curvature of objective function
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BETTER: USE THE CURVATURE — NEWTON'S METHOD

» Newton’s Method is a “smarter” version of gradient
descent, moves along the gradient after a transformation

BAD: Need to invert NxN mtx
requires possible O(n*2.373...)
Fort=1,2,...:
= —2
Ty = T—1 — V f(fﬁt—l)vf(ft—l)

r; = Proj ()
\ GOOD: Typically this step

is not required
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WAIT! OUR ORIGINAL OBJECTIVE ISN'T CURVED...

» How does this help us with linear optimization?

. AT
221}1{1«9 T+ ()

» Add a curved function ¢() to the objective!
» () should be “super-smooth” (more on this later)

» ¢() should be a “barrier”, i.e. goes to « on the boundary,
but not too quickly! In a sense, ¢() encodes constraints K.
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OPTIMIZATION WITHOUT ABARRIER. ~ min 6 ' x

rec K




OPTIMIZATION WITH A BARRIER min @' z + ¢(x)

rec K
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WHAT IS A GOOD BARRIER?

» What is needed for this “barrier func.” ¢()?

» Canonical example: if set is a polytope K={x:Ax =< b}then
the logarithmic barrier suffices: ¢(x) = -); log(b; - Aix)

» In general, Nesterov and Nemirovski proved that the
following two conditions are sufficient. Any function
satisfying these conditions is a self-concordant barrier:

Veolh, h, h
Volh

2(V2¢[h, h])3/?, and
VvV2¢[h, b,

VASVA'

» visthe barrier parameter which will be important later
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ALGORITHM: INTERIOR POINT PATH FOLLOWING METHOD

» Nesterov and Nemirovski developed the sequential “path
following” method, described as follows:

o let a=(1+1/y/v) the “inflation” rate

e Fork=1,2,...
1. Update temperature: f,.(z) := (0" z) + ¢(x)

2. Newtonupdate: 2+ 7 1;(% V21 (2)V fr(2)
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WHAT DOES THE SEQUENCE OF OBJECTIVES LOOK LIKE?

fu(z) == a"(0'z) + o(z)

» Let's show these objective function as we increase k!!
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P(ar) := ara%er[r(lin o' z) + o(z)
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CONVERGENCE RATE OF PATH FOLLOWING

» Nesterov and Nemirovski showed:

1. Best inflation rate is oy, = (1 + 1/4/v)"

2. Approx error after K iter is € = G577

3. Hence, to achieve € error, need k = O(y/v - log(v/e))

» The barrier parameter v is pretty important. Nesterov and
Nemirovski showed that every set has a self-concordant
barrier with barrier parameter v = O(n)



F— \/ v V2p(x)v, “local norm” of v w.r.t x;

®p(x) =apf 'z + o(z)

ANz, ar) = |[|[VO(z)], the Newton decrement of x.

c
vV )

Then for any x € int(K), we have A(z,d/) < (1+ o)Az, a) + c.

Lemma 1. Let o > 0 be arbitrary ond let o = « (l

Lemma 2. Let x be arbitrary. Then x', the newton update from
x, salisfies N(z', ) < 2X*(z, ).




With previous two lemmas, we can prove a very simple invariant.

Lemma 3. Let ¢ = 1/20. Then for all k we have Ny, ) < %

Proof. (By induction) The base case is satisfied since we assume that
A Zo, ag) = 0, as g = 1. Inductive step: assume A\(Zp_q1, ap_1) <

1/3. Then
Mg, ap) < 23 (851, o)
< 2(1+)A@p1. ap_1) +¢)* < 2(0.4)* < 1/3.

The [irst inequality [ollows by Lemma 2 and the second by Lemma 1,
hence we are done.
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THE PROBLEM: EFFICIENT SELF-CONCORDANT BARRIER IN GENERAL?

» Given any convex set K, how can we construct a self-
concordant barrier for K?

» Polytopes are easy. So are L2-balls. We have barriers for
some other sets also, e.g. the PSD cone.

» PROBLEM: Find an efficient universal barrier construction?

» Open problem for some time.
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THIS TALK — OUTLINE

1. The goal of Convex Optimization

2. Interior Point Methods and Path following
3. Hit-and-Run and Simulated Annealing
4. The Annealing-IPM Connection

5. Faster Optimization
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INTRODUCTION TO SIMULATED ANNEALING

» Your goal is to solve the optimization

min f(x)

rcK

» Maybe it is easier to sample from the distribution

__exp(=f(z)/t)
Jic exp(—f (') /t)dz’

for a temperature parametert

P (x)
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INTUITION BEHIND SIMULATED ANNEALING HEURISTIC

_exp(=f(x)/1)
Jic exp(—f (') /t)dz’

P (x)

» Why is sampling easier? And why would it help anyway?

» First, when tis very large, sampling from Py) is equivalent
to sampling from the uniform distribution on K. Easy(ish)!

» Second, when tis very small, all mass of Py() is concentrated
around minimizer of f(x). That's what we want!

» Third, the successive distributions Py() and Pi.+() are all very
close, so we can “warm start” from previous samples
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HIT-AND-RUN FOR LOG-CONCAVE DISTRIBUTIONS

_exp(=f(x)/1)
Jic exp(—f (') /t)dz’

» Notice that f() convex in x ==> log P; is concave in x

P (x)

» Lovasz/Vempala showed that problem of sampling log-
concave dists is poly-time using Hit-And-Run random walk

.......... IF you have a warm start (more on this later)

» Hit-And-Run is an interesting randomization procedure to
sample from a convex body, with an interesting history
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HIT-AND-RUN

Inputs: distribution P, #iter NV, initial X, € K.
For:=1,2... N

1. Sample random direction u ~ N (0, I)
2. Compute line segment R ={X;, 1 +pu : pe R}NK
3. Sample X, from P restricted to R

Return Xy

» Claim: Hit-And-Run walk has stationary distribution P

» Question: In what way does K enter into this random walk?
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POLYTIME SIMULATED ANNEALING CONVERGENCE RESULT

» Kalai and Vempala (2006) gave a poly-time guarantee for
annealing using Hit-and-Run (membership oracle only!)

1. Sample from P, (z) oc exp(—0"x/t})
2. Successive dists are “close enough” if KL(Py1(x)||Pi(z)) < 1/2
3. The closeness is guaranteed as long as t, ~ (1 — 1/y/n)*

4. Roughly O(y/nlog 1/¢) phases needed, O(n?) Hit-and-Run steps needed
for mixing, and O(n) samples needed per phase

» Needed: nA3 steps to mix, n samples per phase, n™0.5 phases.
Hence, total running time is O(n”{4.5})
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TWO DIFFERENT CONVEX OPTIMIZATION TECHNIQUES
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WHAT IS THE SPECIAL BARRIER?

» The barrier ¢() corresponds to the “differential entropy” of the

exponential family distribution. Equivalently, it's the Fenchel conjugate
of the log-partition function.

o Let A(0) = log [, exp('x)dx
o Let A*(x) = sup, 'z — A(0)
e A fact about exponential families: VA(0) = Exp, | X]

e A fact about Fenchel duality: VA(f) = arg max,ex 0' v — A*(x)

» Guler 1996 showed this function is a barrier for cones. Bubeck and

Eldan 2015 showed this in general, and gave an optimal parameter
bound of n(1 + o(1)).
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SIMULATED ANNEALING <=> |PM PATH FOLLOWING

Define: ||£|| =E,., (%) = [ (%) du(x).

Let v > 0 be a parameter

Lovasz/Vempala: Properties of log-concave distributions imply that, given
a warm start from P, Hit-and-Run mixes quickly (in O(n?) steps) to P

Pat+ye || _ O(1)

as long as B,

Nesterov/Nemirovski: Properties of self-concordant barrier functions im-
ply that, for the iterative path following scheme, a single newton step suffices
to maintain the invariant A(xy, (1 +v)*) < 1/3.
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SIMULATED ANNEALING <=> |PM PATH FOLLOWING

. P . .
Question: How to bound H (1;9”)9 using IPM analysis?

Consider the log of the L2-distance between distributions:

P+ ) )
log | == = KL(P1syl| P) + KL(Py—0l| Po)

Py
= D4s((1+7)0,0)+ D4((1 —~)0,0)

22%(z((1 +7)0),1)

exact quantity of interest in IPM

2
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CONCLUSIONS

» Observation: Interior Point Path Following follows the
same analytical framework as Simulated Annealing

» Benefit 1: This unifies two rich research areas, and lets one
borrow tricks from barrier methods to understand
annealing, and vice versa

» Benefit 2: The connection allows us to get a speedup on
annealing using barrier methods, improving Kalai/
Vempala's rate of O(n4-3) to O(v1/2n4)
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FUTURE DIRECTIONS

» Annealing + RandomWalk methods suffer due to the cost
of the Markov chain procedure (although very generic!)

» Interior Point Methods suffer because it's hard to construct
an efficient barrier (although great if you have one!)

» Question: can we rely on a weaker oracle than a SCBF
gradient/hessian oracle? What is the weakest object that
could be used to get a better rate?



FIN



