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THIS TALK — OUTLINE

1. The goal of Convex Optimization 

2. Interior Point Methods and Path following 

3. Hit-and-Run and Simulated Annealing 

4. The Annealing-IPM Connection 

5. Faster Optimization
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GENERAL CONVEX OPTIMIZATION PROBLEM

▸ Let K be a bounded convex set, we want to solve 

▸ Can always convert non-linear objective into a linear one

min
x2K

✓>x

min
x2K

f(x) ! min
(x,c)2K⇥R

f(x)c

c
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THE GRADIENT DESCENT ALGORITHM

▸ The gradient descent algorithm: 

▸ Challenge: the Projection step can often be just as hard as 
the original optimization

For t = 1, 2, . . . :

x̃t = xt�1 � ⌘rf(xt�1)

xt = ProjK(x̃t)
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GD DOES POORLY WITH LOTS OF CURVATURE

▸ The gradient descent algorithm doesn’t use any 
knowledge of the curvature of objective function
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BETTER: USE THE CURVATURE — NEWTON’S METHOD

▸ Newton’s Method is a “smarter” version of gradient 
descent, moves along the gradient after a transformation

For t = 1, 2, . . . :

x̃t = xt�1 �r�2f(xt�1)rf(xt�1)

xt = ProjK(x̃t)
GOOD: Typically this step  
is not required

BAD: Need to invert NxN mtx  
requires possible O(n^2.373…)
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WAIT! OUR ORIGINAL OBJECTIVE ISN’T CURVED…

▸ How does this help us with linear optimization?  
 
 

▸ Add a curved function 𝜙() to the objective! 

▸ 𝜙() should be “super-smooth” (more on this later) 

▸ 𝜙() should be a “barrier”, i.e. goes to ∞ on the boundary, 
but not too quickly! In a sense, 𝜙() encodes constraints K.

min
x2K

✓>xmin
x2K

✓>x+ �(x)
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OPTIMIZATION WITHOUT A BARRIER min
x2K

✓>x+ �(x)
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OPTIMIZATION WITH A BARRIER min
x2K

✓>x+ �(x)
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WHAT IS A GOOD BARRIER?
▸ What is needed for this “barrier func.” 𝜙()? 

▸ Canonical example: if set is a polytope K = {x : Ax ≤ b} then 
the logarithmic barrier suffices: 𝜙(x) = -∑i log(bi - Aix) 

▸ In general, Nesterov and Nemirovski proved that the 
following two conditions are sufficient. Any function 
satisfying these conditions is a self-concordant barrier: 

▸ 𝜈 is the barrier parameter which will be important later

r3�[h, h, h]  2(r2�[h, h])3/2, and

r�[h] 
p
⌫r2�[h, h],
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ALGORITHM: INTERIOR POINT PATH FOLLOWING METHOD

▸ Nesterov and Nemirovski developed the sequential “path 
following” method, described as follows: 

Let 

For k=1,2,… 

1. Update temperature: 
   

2. Newton update:  

↵ = (1 + 1/
p
⌫) the “inflation” rate

fk(x) := ↵k(✓>x) + �(x)

x̂ x̂� 1
1+ck
r�2fk(x̂)rfk(x̂)
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WHAT DOES THE SEQUENCE OF OBJECTIVES LOOK LIKE?

▸ Let’s show these objective function as we increase k!!

fk(x) := ↵k(✓>x) + �(x)
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WHY IS THIS CALLED “PATH FOLLOWING”?

▸ As we increase inflation, 
the minimizer moves 
closer to the true desired 
minimum. We can plot 
this minimizer as 𝛂 
increases. This is known 
as the Central Path.

�(↵) := argmin
x2K

↵(✓>x) + �(x)
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CONVERGENCE RATE OF PATH FOLLOWING

▸ Nesterov and Nemirovski showed: 

▸ The barrier parameter 𝜈 is pretty important. Nesterov and 
Nemirovski showed that every set has a self-concordant 
barrier with barrier parameter 𝜈 = O(n)

1. Best inflation rate is ↵k = (1 + 1/
p
⌫)

k

2. Approx error after k iter is ✏ =
⌫

(1+1/
p
⌫)k

3. Hence, to achieve ✏ error, need k = O(
p
⌫ · log(⌫/✏))
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KEY ANALYSIS ELEMENTS OF IPM PATH FOLLOWING
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KEY ANALYSIS ELEMENTS OF IPM PATH FOLLOWING
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THE PROBLEM: EFFICIENT SELF-CONCORDANT BARRIER IN GENERAL?

▸ Given any convex set K, how can we construct a self-
concordant barrier for K? 

▸ Polytopes are easy. So are L2-balls. We have barriers for 
some other sets also, e.g. the PSD cone. 

▸ PROBLEM: Find an efficient universal barrier construction? 

▸ Open problem for some time.
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THIS TALK — OUTLINE

1. The goal of Convex Optimization 

2. Interior Point Methods and Path following 

3. Hit-and-Run and Simulated Annealing 

4. The Annealing-IPM Connection 

5. Faster Optimization
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SIMULATED ANNEALING FOR OPTIMIZATION

▸ From Wikipedia: Optimization of a 1-dimensional function
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INTRODUCTION TO SIMULATED ANNEALING

▸ Your goal is to solve the optimization  
 
 

▸ Maybe it is easier to sample from the distribution 
 
 
 
for a temperature parameter t

min
x2K

f(x)

Pt(x) =
exp(�f(x)/t)R

K exp(�f(x0)/t)dx0
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INTUITION BEHIND SIMULATED ANNEALING HEURISTIC

▸ Why is sampling easier? And why would it help anyway? 

▸ First, when t is very large, sampling from Pt() is equivalent 
to sampling from the uniform distribution on K. Easy(ish)! 

▸ Second, when t is very small, all mass of Pt() is concentrated 
around minimizer of f(x). That’s what we want! 

▸ Third, the successive distributions  Pt() and Pt+1() are all very 
close, so we can “warm start” from previous samples

Pt(x) =
exp(�f(x)/t)R

K exp(�f(x0)/t)dx0
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HIT-AND-RUN FOR LOG-CONCAVE DISTRIBUTIONS

▸ Notice that f() convex in x ==> log Pt is concave in x 

▸ Lovasz/Vempala showed that problem of sampling log-
concave dists is poly-time using Hit-And-Run random walk 
………. IF you have a warm start (more on this later) 

▸ Hit-And-Run is an interesting randomization procedure to 
sample from a convex body, with an interesting history

Pt(x) =
exp(�f(x)/t)R

K exp(�f(x0)/t)dx0
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HIT-AND-RUN

▸ Claim: Hit-And-Run walk has stationary distribution P 

▸ Question: In what way does K enter into this random walk? 

Inputs: distribution P , #iter N , initial X0 2 K.
For i = 1, 2, . . . , N

1. Sample random direction u ⇠ N(0, I)

2. Compute line segment R = {Xi�1 + ⇢u : ⇢ 2 R} \K

3. Sample Xi from P restricted to R

Return XN
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HIT-AND-RUN
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BLAH

HIT-AND-RUN REQUIRES ONLY A MEMBERSHIP ORACLE

▸ Notice: a single update 
of Hit-And-Run required 
only computing the 
endpoints of a line 
segment. 

▸ Can be accomplished 
using binary search with 
a membership oracle
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ASIDE: VOLUME COMPUTATION THROUGH RANDOM WALKS

▸ If you can uniformly 
sample from a convex 
body with a membership 
oracle, you can 
approximately compute 
it’s volume! 

▸ Requires computing a 
sequence of volume ratios 
between smaller and 
smaller regions of the 
body.
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POLYTIME SIMULATED ANNEALING CONVERGENCE RESULT

▸ Kalai and Vempala (2006) gave a poly-time guarantee for 
annealing using Hit-and-Run (membership oracle only!) 

▸ Needed: n^3 steps to mix, n samples per phase, n^0.5 phases. 
Hence, total running time is O(n^{4.5})

1. Sample from Pk(x) / exp(�✓
>
x/tk)

2. Successive dists are “close enough” if KL(Pk+1(x)||Pk(x))  1/2

3. The closeness is guaranteed as long as tk ⇡ (1� 1/
p
n)

k

4. RoughlyO(
p
n log 1/✏) phases needed, O(n

3
) Hit-and-Run steps needed

for mixing, and O(n) samples needed per phase
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TWO DIFFERENT CONVEX OPTIMIZATION TECHNIQUES

Simulated 
Annealing  

via  
Hit-and-Run

Interior Point 
Methods via 

Path 
Following
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THE HEATPATH

▸ We can define a path 
according to the 
sequence of means one 
obtains as we turn down 
the temperature. Let 
 
 
 
be the HeatPath.

�(t) := E
X⇠exp(�✓>x/t)/Z

[X]
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THE EQUIVALENCE OF THE CENTRAL PATH AND THE HEAT PATH

▸ Key result of A./Hazan 2016: there exists a barrier function 
𝜙() such that the CentralPath (for 𝜙()) is identically the 
HeatPath for the sequence of annealing distributions 

HeatPath CentralPath

These are the same object
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WHAT IS THE SPECIAL BARRIER?

▸ The barrier 𝜙() corresponds to the “differential entropy” of the 
exponential family distribution. Equivalently, it’s the Fenchel conjugate 
of the log-partition function. 

▸ Guler 1996 showed this function is a barrier for cones. Bubeck and 
Eldan 2015 showed this in general, and gave an optimal parameter 
bound of n(1 + o(1)).

• Let A(✓) = log
R
K exp(✓>x)dx

• Let A⇤(x) = sup✓ ✓
>x� A(✓)

• A fact about exponential families: rA(✓) = EX⇠P✓
[X]

• A fact about Fenchel duality: rA(✓) = argmaxx2K ✓>x� A⇤(x)
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SIMULATED ANNEALING <=> IPM PATH FOLLOWING

Define:
��µ
⇡

�� ⌘ Ex⇠µ

⇣
µ(x)
⇡(x)

⌘
=

R
x⇠µ

⇣
µ(x)
⇡(x)

⌘
dµ(x).

Let � > 0 be a parameter

Lovasz/Vempala: Properties of log-concave distributions imply that, given

a warm start from P✓, Hit-and-Run mixes quickly (in Õ(n
3
) steps) to P(1+�)✓

as long as

���P(1+�)✓

P✓

��� = O(1)

Nesterov/Nemirovski: Properties of self-concordant barrier functions im-

ply that, for the iterative path following scheme, a single newton step su�ces

to maintain the invariant �(xk, (1 + �)
k
) < 1/3.
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SIMULATED ANNEALING <=> IPM PATH FOLLOWING

Question: How to bound

���
P(1+�)✓

P✓

��� using IPM analysis?

Consider the log of the L2-distance between distributions:

log

����
P(1+�)✓

P✓

���� = KL(P(1+�)✓||P✓) + KL(P(1��)✓||P✓)

= DA((1 + �)✓, ✓) +DA((1� �)✓, ✓)

⇡ 2�2
(x((1 + �)✓), 1)| {z }

exact quantity of interest in IPM
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CONCLUSIONS

▸ Observation: Interior Point Path Following follows the 
same analytical framework as Simulated Annealing 

▸ Benefit 1: This unifies two rich research areas, and lets one 
borrow tricks from barrier methods to understand 
annealing, and vice versa 

▸ Benefit 2: The connection allows us to get a speedup on 
annealing using barrier methods, improving Kalai/
Vempala’s rate of O(n4.5) to O(𝜈1/2n4)
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FUTURE DIRECTIONS

▸ Annealing + RandomWalk methods suffer due to the cost 
of the Markov chain procedure (although very generic!) 

▸ Interior Point Methods suffer because it’s hard to construct 
an efficient barrier (although great if you have one!) 

▸ Question: can we rely on a weaker oracle than a SCBF 
gradient/hessian oracle? What is the weakest object that 
could be used to get a better rate?
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