Some Success Stories In

Bridging Theory and Practice

In Optimization

Anima Anandkumar

Bren Professor at Caltech
Director of ML Research at NVIDIA






DISTRIBUTED TRAINING INVOLVES COMPUTATION & COMMUNICATION
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DISTRIBUTED TRAINING INVOLVES COMPUTATION & COMMUNICATION
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DISTRIBUTED TRAINING BY MAJORITY VOTE
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VARIANTS OF SGD DISTORT THE GRADIENT IN DIFFERENT WAYS
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LARGE-BATCH ANALYSIS

SINGLE WORKER RESULTS

Assumptions Define

» Objective function lower bound f:k > Number of iterations K

» Coordinate-wise variance bound ¢ > Number of backpropagations [\

—>
> Coordinate-wise gradient Lipschitz [

SGD gets rate

signSGD gets rate




VECTOR DENSITY & ITS RELEVANCE IN DEEP LEARNING

A sparse vector

A dense vector
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DISTRIBUTED SIGNSGD: MAJORITY VOTE THEORY

If gradients are unimodal and symmetric...

...reasonable by central limit theorem...

-0.25 0.00 0.25 -0.5
Imagenet gradient

...majority vote with M
workers converges at rate:

Same variance
reduction as SGD



MINI-BATCH ANALYSIS

Under symmetric noise assumption:

Theorem 1 (Non-convex convergence rate of small-batch SIGNSGD). Run the following al-
gorithm for K iterations under Assumptions I to 4: T 1 = T — 1nsign(gx). Set the learning
rate, 1, and mini-batch size, n, as

fO_f*

N = = , n=1.
| L]l K

Let Hy be the set of gradient components at step k with large signal-to-noise ratio S; := E — §

l.e. Hy = {z S, > %} We refer to % as the ‘critical SNR’. Then we have

1K—1
% 2 E

k=0

where N = K is the total number of stochastic gradient calls up to step K.




CIFAR-10 SNR
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SIGNSGD PROVIDES “FREE LUNCH"

P3.2x machines on AWS, Resnet50 on imagenet
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Throughput gain with only tiny accuracy loss



SIGNSGD: TIME PER EPOCH

compression on workers
gather on server

majority vote on server
broadcast to workers
decompression on workers

Majority
vote

NCCL
all-reduce

100 150 200 250 300 350
Time per epoch (seconds)




SIGNSGD ACROSS DOMAINS AND ARCHITECTURES
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Huge throughput gain!



BYZANTINE FAULT TOLERANCE

Under symmetric noise assumption:

Theorem 2 (Non-convex convergence rate of majority vote with adversarial workers). Run
algorithm 1 for K iterations under Assumptions 1 to 4. Switch off momentum and weight
decay (B = X = 0). Set the learning rate, 1, and mini-batch size, n, for each worker as

0 — f*
n = , n = K.
\/ILHlK

Assume that a fraction a < % of the M workers behave adversarially by sending to the server
the negation of their sign gradient estimate. Then majority vote converges at rate:

2

K—1 1 2 i
1 4
_ 4: <
|:K E gk'Hl —~ \/N - )_

k=0 J

where N = K? is the total number of stochastic gradient calls per worker up to step K.




SIGNSGD IS ALSO BYZANTINE FAULT TOLERANT
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TAKE-AWAYS FOR SIGN-SGD

Convergence even under biased gradients and noise.
Faster than SGD in theory and in practice.
For distributed training, similar variance reduction as SGD.

In practice, similar accuracy but with far less communication.






CROWDSOURCING: AGGREGATION OF CROWD ANNOTATIONS

v J )

Majority rule
* Simple and common. _

* Woasteful: ignores annotator
quality of different workers.

training data for supervised learning



CROWDSOURCING: AGGREGATION OF CROWD ANNOTATIONS

v J )

quality of different workers. P v X

Majority rule
* Simple and common.

* Woasteful: ignores annotator

Annotator-quality models

e Can improve accuracy.

* Hard: needs to be estimated
without ground-truth.

training data for supervised learning



PROPOSED CROWDSOURCING ALGORITHM

Noisy crowdsourced annotations JEIE VR

‘ Repeat
[

Posterior of ground-truth labels cat 13 13 13 23 23 %3
not cat 2/3 2/3 2/3 1/3 1/3 1/3

given annotator quality model

Training with weighted loss.

Use posterior as weights

MLE : update Annotator
quality using inferred

Use trained model to infer

labels from model

ground-truth labels

0.7 0.3 0.5
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LABELING ONCE IS OPTIMAL: THEORY

Theorem:

Under fixed budget, generalization error minimized with single annotation
per sample.

Assumptions:

* Best predictor is accurate enough (under no label noise).
 Simplified case: All workers have same quality.
* Prob. of being correct > 83%



F1 score

LABELING ONCE IS OPTIMAL: PRACTICE

MS-COCO dataset.
Fixed budget: 35k annotations

majority vote
EM
MBEM

ground truth labels

wrt Majority rule

>

No. of workers

(Generalization error

Imagenet dataset.
Simulated workers and fixed budget

@@ majority vote
o—e weighted-MV
e—® bootstrapped weighted-EM

redundancy






TENSORS FOR MULTI-DIMENSIONAL DATA AND HIGHER ORDER MOMENTS
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UNSUPERVISED LEARNING OF TOPIC MODELS THROUGH TENSOR METHODS
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LEARNING LDA MODEL

%% @ Topic-word matrix P[word = i|topic = |]

police

@ Topic proportions  P[topic = j|document]

withess

Moment Tensor: Co-occurrence of Word Triplets
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WHY TENSORS?

® Statistical reasons:

Incorporate higher order relationships in data

Discover hidden topics (not possible with matrix methods)

Computational reasons:
Tensor algebra is parallelizable like linear algebra.
Faster than other algorithms for LDA
Flexible: Training and inference decoupled

Guaranteed in theory to converge to global optimum

etal,Tensor Decompositions for Learning Latent Variable Models, JMLR 2014.



TENSOR-BASED LDA TRAINING IS FASTER

Training time for NYTimes

Spectral Time(minutes) ~Mallet Time (minutes)
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22x faster on average

5 10 15 20 25 K10) 50 75 100

Number of Topics
300000 documents

Time in minutes

250.00

200.00

150.00

100.00

O
=
o
o

0.00

Training time for PubMed

Spectral Time (minutes) ~Mallet Time (minutes)

12x faster on average

5 10

15 20 25 50 100

Number of Topics

8 million documents

* Mallet is an open-source framework for topic modeling

* Benchmarks on AWS SageMaker Platform

e Bulit into AWS Comprehend NLP service.




TENSORS FOR LONG-TERM FORECASTING

Tensor Train RNN and LSTMs

Enjemjon oy

Encoder Decoder

Challenges:

* Long-term
dependencies

* High-order
correlations

* Error propagation




TENSOR LSTM FOR LONG-TERM FORECASTING

Traffic dataset Climate dataset

120 180
Day




APPROXIMATION GUARANTEES FOR TT-RNN

* Approximation error : bias of best model in function class.
* No such guarantees exist for RNNs.

m

e Dimension d , tensor-train rank r. Window p.
e Bounded derivatives order k , smoothness C

* Easier to approximate if function is smooth and analytic.
* Higher rank and bigger window more efficient.



TENSORLY: HIGH-LEVEL APl FOR TENSOR ALGEBRA

e Python programming

e User-friendly API

flexible + scalable

Example notebooks in
repository




NEURAL LANDER

® Key Components

® Dynamics Model Assumption

St+1 = f(St, ap) + f;z(St; ag) + €

® Using deep learning for f;l

® Simple Contraction Mapping Controller, cancelling out f,






NEURAL LANDER

® Key Theoretical Results:

® Stability

Generalization Error upper bound

A— Lgp

Is(0)l| < [Is(to)]] exp (—

' E‘ﬂl
t —1 ——
( 0)) T Loo

Minimum eigenvalue of Gain matrix

- Lipschitz Constant of f_a * time delay
* Requirement:

* JSpectral Normalized RelU for f;
e Generalization error of f, is bounded



FIRST SET OF RESULTS: LEARNING TO LAND




TRINITY FUELING ARTIFICIAL INTELLIGENCE

ALGORITHMS
* OPTIMIZATION
e SCALABILITY
* MULTI-DIMENSIONALITY

INFRASTRUCTURE
FULL STACK FOR ML e COLLECTION
e APPLICATION SERVICES e AGGREGATION

* ML PLATFORM JQL '  AUGMENTATION

DATA

e GPUS
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