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DISTRIBUTED TRAINING INVOLVES COMPUTATION & COMMUNICATION
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DISTRIBUTED TRAINING BY MAJORITY VOTE
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VARIANTS OF SGD DISTORT THE GRADIENT IN DIFFERENT WAYS

SGD

Adam
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LARGE-BATCH ANALYSIS



A sparse vector

A dense vector

Fully dense vector……………….a sign vector

Natural measure of density

=1 for fully dense v
≈0 for fully sparse v
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VECTOR DENSITY & ITS RELEVANCE IN DEEP LEARNING



DISTRIBUTED SIGNSGD: MAJORITY VOTE THEORY
If gradients are unimodal and symmetric…

…reasonable by central limit theorem…

…majority vote with M 
workers converges at rate:

Same variance 
reduction as SGD 



MINI-BATCH ANALYSIS

Under symmetric noise assumption:



CIFAR-10 SNR



SIGNSGD PROVIDES “FREE LUNCH"

Throughput gain with only tiny accuracy loss 

P3.2x machines on AWS, Resnet50 on imagenet



SIGNSGD: TIME PER EPOCH



SIGNSGD ACROSS DOMAINS AND ARCHITECTURES

Huge throughput gain!



BYZANTINE FAULT TOLERANCE

Under symmetric noise assumption:



SIGNSGD IS ALSO BYZANTINE FAULT TOLERANT



TAKE-AWAYS FOR SIGN-SGD

• Convergence even under biased gradients and noise.

• Faster than SGD in theory and in practice.

• For distributed training, similar variance reduction as SGD.

• In practice, similar accuracy but with far less communication.



LEARNING FROM NOISY SINGLY-LABELED DATA
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CROWDSOURCING: AGGREGATION OF CROWD ANNOTATIONS

Majority rule
• Simple and common.
• Wasteful: ignores annotator 

quality of different workers.



CROWDSOURCING: AGGREGATION OF CROWD ANNOTATIONS

Majority rule
• Simple and common.
• Wasteful: ignores annotator 

quality of different workers.

Annotator-quality models
• Can improve accuracy.
• Hard: needs to be estimated 

without ground-truth.



PROPOSED CROWDSOURCING ALGORITHM

Repeat

Posterior of ground-truth labels 
given annotator quality model

Use trained model to infer 
ground-truth labels

Noisy crowdsourced annotations

MLE : update Annotator 
quality using inferred 
labels from model

Training with weighted loss. 
Use posterior as weights



LABELING ONCE IS OPTIMAL: THEORY

Theorem: 
Under fixed budget, generalization error minimized with single annotation 
per sample.    

Assumptions: 
• Best predictor is accurate enough (under no label noise).
• Simplified case:  All workers have same quality. 
• Prob. of being correct > 83%



LABELING ONCE IS OPTIMAL: PRACTICE

MS-COCO dataset. 
Fixed budget: 35k annotations

No. of workers

5%    wrt Majority rule

Imagenet dataset. 
Simulated workers and fixed budget



TENSOR METHODS



Images: 3 dimensions Videos: 4 dimensions

TENSORS FOR MULTI-DIMENSIONAL DATA AND HIGHER ORDER MOMENTS

Pairwise correlations Triplet correlations



UNSUPERVISED LEARNING OF TOPIC MODELS THROUGH TENSOR METHODS

Justice

Education

Sports

Topics



LEARNING LDA MODEL



WHY TENSORS?

• Statistical reasons:

• Incorporate higher order relationships in data

• Discover hidden topics (not possible with matrix methods)

• Computational reasons:

• Tensor algebra is parallelizable like linear algebra.

• Faster than other algorithms for LDA 

• Flexible: Training and inference decoupled

• Guaranteed in theory to converge to global optimum

A. Anandkumar etal,Tensor Decompositions for Learning Latent Variable Models, JMLR 2014.



TENSOR-BASED LDA TRAINING IS  FASTER
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8 million documents

22x faster on average 12x faster on average

• Mallet is an open-source framework for topic modeling
• Benchmarks on AWS SageMaker Platform
• Bulit into AWS Comprehend NLP service.

300000 documents



Tensor Train RNN and LSTMs 

TENSORS FOR LONG-TERM FORECAST ING

Challenges:
• Long-term 

dependencies
• High-order 

correlations
• Error propagation



Climate datasetTraffic dataset

TENSOR LSTM FOR LONG-TERM FORECASTING



APPROXIMATION GUARANTEES FOR TT-RNN

Theorem: TT-RNN with m units approx. with error 𝜀𝜀

• Dimension d , tensor-train rank r. Window p.
• Bounded derivatives order k , smoothness C

• Approximation error : bias of best model in function class.
• No such guarantees exist for RNNs.

• Easier to approximate if function is smooth and analytic. 
• Higher rank and bigger window more efficient. 



TENSORLY:  H IGH-LEVEL  AP I  FOR TENSOR ALGEBRA

• Python programming

• User-friendly API

• Multiple backends: 
flexible + scalable

• Example notebooks in 
repository



NEURAL LANDER

• Key Components
• Dynamics Model Assumption

𝑠𝑠𝑡𝑡+1 = 𝑓𝑓 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 + �𝑓𝑓𝑎𝑎 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 + 𝜖𝜖

• Using deep learning for �𝑓𝑓𝑎𝑎
• Simple Contraction Mapping Controller, cancelling out �𝑓𝑓𝑎𝑎






NEURAL LANDER

• Key Theoretical Results:

• Stability

Minimum eigenvalue of Gain matrix
- Lipschitz Constant of f_a * time delay

Generalization Error upper bound

• Requirement:
• Spectral Normalized ReLU for �𝑓𝑓𝑎𝑎
• Generalization error of �𝑓𝑓𝑎𝑎 is bounded



FIRST SET OF RESULTS: LEARNING TO LAND



ALGORITHMS 
• OPTIMIZATION
• SCALABILITY
• MULTI-DIMENSIONALITY

DATA
• COLLECTION
• AGGREGATION 
• AUGMENTATION

INFRASTRUCTURE
FULL STACK FOR ML
• APPLICATION SERVICES
• ML PLATFORM
• GPUS

TRINITY FUELING ARTIFICIAL INTELLIGENCE



COLLABORATORS (L IMITED L IST )
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