A SGD safari

Lorenzo Rosasco University of Genova Massachusetts Institute of Technology - Istituto Italiano di Tecnologia lcsl.mit.edu

Jan. 3rd, 2019 - DALI 2019: Optimization Workshop

joint work with R. Camoriano (LCSL), J. Lin (EPFL), S. Villa (UniGE)

Outline

Classic results

Statistical learning & least squares

Multi-pass SGD

SGD

Problem Solve $\min_w F(w), \qquad \quad F(w) = \mathbb{E}_Z \ell(Z,w)$

SGD

$$w_{t+1} = w_t - \gamma_t \nabla \ell(Z_t, w_t), \qquad t = 0, \dots, T$$

▶ It holds
$$\mathbb{E}\nabla L(Z_t, w) = \nabla F(w)$$
, hence the name.

Every step requires a new gradient estimates.

SGD typical result

Assume F convex, smooth, with bounded gradients and take $\gamma \lesssim \frac{1}{\sqrt{t}}$, then

$$\mathbb{E}\left[F(w_T) - \min_w F(w)\right] \lesssim \frac{1}{\sqrt{T}}.$$

Rates are optimal improved.

Better rates under stronger conditions: strong convexity, KL/conditioning

SGD for training error

Special case

$$F(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(z_i, w),$$

Z rand. var. uniformly distributed on z_1, \ldots, z_n .

Better rates achievable in this case.

- ► Again improvable under stronger conditions: strong convexity, KL/conditioning.
- SGD called also incremental gradient in this case.

Understanding SGD: from practice to theory

- multiple-passes (gradients are re-used)
- various step-size choices
- mini-batch
- averaging
- sketching
- acceleration
- preconditioning
- ▶ ...

What is the impact for learning (test error)?

Outline

Classic results

Statistical learning & least squares

Multi-pass SGD

Least squares learning

- \blacktriangleright \mathcal{X} Hilbert space
- $\blacktriangleright \ Z = (X,Y) \text{ with values in } \mathcal{X} \times \mathbb{R}$

Problem:

Solve

$$\min_{w\in\mathcal{X}}\mathcal{E}(w)\qquad \quad \mathcal{E}(w)=\mathbb{E}[(Y-\langle w,X\rangle)^2]$$
 given only $(x_i,y_i)_{i=1}^n$ i.i.d.

Minimal norm solution:

$$w^{\dagger} = \operatorname*{argmin}_{w \in \mathcal{O}} \|w\|, \qquad \mathcal{O} = \operatorname*{argmin}_{w \in \mathcal{X}} \mathcal{E}(w)$$

III-posedeness

Least squares optimality conditions:

$$\Sigma w^{\dagger} = g, \qquad \Sigma = \mathbb{E}[X \otimes X], \quad g = \mathbb{E}[XY]$$

and $w^{\dagger} \in \operatorname{Null}(\Sigma)^{\perp}$

III-posedeness

Least squares optimality conditions:

$$\Sigma w^{\dagger} = g, \qquad \Sigma = \mathbb{E}[X \otimes X], \quad g = \mathbb{E}[XY]$$

and $w^{\dagger} \in \mathsf{Null}(\Sigma)^{\perp}$

III-posedness

- \mathcal{X} infinite dimensional, Σ compact \Rightarrow problem is ill-posed.
- if \mathcal{X} is finite dimensional it is well posed, but possibly badly conditioned.

Least squares SGD

$$\widehat{w}_{t+1} = \widehat{w}_t - \eta_t (x_{i_t} (\langle \widehat{w}_t, x_{i_t} \rangle - y_{i_t}) + \lambda \widehat{w}_t), \quad t = 0, \dots T$$

Free parameters:

- \blacktriangleright regularization parameter λ
- ▶ step-size $(\eta_t)_t$
- ▶ stopping time T, $(T > n \text{ multiple } _passes")$

Note: $(i_t)_t$ deterministic or stochastic (with/without replacement)

LS-SGD: Previous results

Non asymptotic:

- [Smale-Yao '05] Fixed λ (some classic results hold for this case).
- ▶ [Tarres-Yao '07] Decreasing λ .
- ▶ [Ying-Pontil '07] $\lambda = 0$.

All one pass, i.e. $i_t = t$, and with decreasing step-size.

[Villa-Rosasco '15] $\lambda = 0$, **multiple passes** (for the first time?), cyclic selection.

Outline

Classic results

Statistical learning & least squares

Multi-pass SGD

Multi-pass LS-SGD

$$\widehat{w}_{t+1} = \widehat{w}_t - \eta(x_{i_t}(\langle \widehat{w}_t, x_{i_t} \rangle - y_{i_t})), \quad t = 0, \dots T$$

Note: $(i_t)_t$ chosen uniformly at random with replacement

Multi-pass LS-SGD

$$\widehat{w}_{t+1} = \widehat{w}_t - \eta(x_{i_t}(\langle \widehat{w}_t, x_{i_t} \rangle - y_{i_t})), \quad t = 0, \dots T$$

Note: $(i_t)_t$ chosen uniformly at random with replacement

Theorem (Lin, R. '16)

Assume $||X|| \leq 1$ and $|Y| \leq 1$ for all η and T,

$$\mathbb{E}\mathcal{E}(\widehat{w}_T) - \mathcal{E}(w^{\dagger}) \lesssim \frac{1}{\eta T} + \frac{1}{\sqrt{n}} \left(\frac{\eta T}{\sqrt{n}}\right)^2 + \eta \left(1 \vee \frac{\eta T}{\sqrt{n}}\right)$$

Multi-pass LS-SGD

$$\widehat{w}_{t+1} = \widehat{w}_t - \eta(x_{i_t}(\langle \widehat{w}_t, x_{i_t} \rangle - y_{i_t})), \quad t = 0, \dots T$$

Note: $(i_t)_t$ chosen uniformly at random with replacement

Theorem (Lin, R. '16)

Assume $||X|| \leq 1$ and $|Y| \leq 1$ for all η and T,

$$\mathbb{E}\mathcal{E}(\widehat{w}_T) - \mathcal{E}(w^{\dagger}) \lesssim \frac{1}{\eta T} + \frac{1}{\sqrt{n}} \left(\frac{\eta T}{\sqrt{n}}\right)^2 + \eta \left(1 \vee \frac{\eta T}{\sqrt{n}}\right)$$

Note

- **Statistics and optimization:** integrated in the bound.
- **Bias-variance**: parameter choices derived optimizing the bound.

Multi-pass vs one pass SGD

Corollary (Lin, R. '16)

Assume $||X|| \le 1$ and $|Y| \le 1$ a.s. and let $T = n \ (1 \text{ pass}), \ \eta = \frac{1}{\sqrt{n}}.$ $T = n^{3/2} \ (\sqrt{n} \text{ passes}), \ \eta = \frac{1}{n}.$ Then,

$$\mathbb{E}\mathcal{E}(\widehat{w}_T) - \mathcal{E}(w^{\dagger}) \lesssim \frac{1}{\sqrt{n}}$$

Note

Optimal (nonparametric) rate in a minmax sense.

▶ With a larger step-size, one pass suffices (recovering [Dieulevet, Bach '14- Ying, Pontil, '06]).

Beyond the worst case: source condition

Recall

$$\Sigma w^{\dagger} = g, \qquad \Sigma = \mathbb{E}[X \otimes X], \quad g = \mathbb{E}[XY]$$

and $w^{\dagger} \in \operatorname{Null}(\Sigma)^{\perp}$

▶ S) Source condition $w^{\dagger} \in \operatorname{Range}(\Sigma^{\alpha}), \alpha > 0$

C) Capacity condition $\sigma_i(\Sigma) \sim i^{-\gamma}, \quad \gamma \in (0, 1]$

Fast rates

Theorem (Lin, R. '16)

Assume $||X|| \leq 1$, $|Y| \leq 1$ and S, C) hold. Then, for all η and T,

$$\mathbb{E}\mathcal{E}(\widehat{w}_T) - \mathcal{E}(w^{\dagger}) \lesssim \left(\frac{1}{\eta T}\right)^{2\alpha+1} + \frac{1}{n^{\frac{2\alpha+1}{2\alpha+1+\gamma}}} \left(\frac{\eta T}{n^{\frac{1}{2\alpha+1+\gamma}}}\right)^2 + \eta \left(1 \lor \frac{\eta T}{n^{\frac{1}{2\alpha+1+\gamma}}}\right)$$

Note

• Reduces to worst case for $\alpha = 0$, $\gamma = 1$.

Different parameter choices derived optimizing the bound.

Multiple passes SGD

Corollary (Lin, R. '16) Assume $||X|| \le 1$, $|Y| \le 1$ and S), C) hold. Let $\blacktriangleright T = n^{\frac{1}{2\alpha+1+\gamma}+1} (n^{\frac{1}{2\alpha+1+\gamma}} \text{ passes})$ $\blacktriangleright \eta = \frac{1}{n}$. Then, $\mathbb{E}\mathcal{E}(\widehat{w}_T) - \mathcal{E}(w^{\dagger}) \le n^{-\frac{2\alpha+1}{2\alpha+1+\gamma}}$

Note

- Optimal (nonparametric) rate in a minmax sense.
- Same as Tikhonov regularization but include optimization!
- Choosing T_n by cross validation (CV) achieves the same rate.

One pass SGD

Corollary (Dieulevet, Bach '16)

Assume $||x|| \le 1$, $|y| \le 1$ and S), C) hold with $\alpha < 1/2$. Let $T = n \ (1 \text{ pass})$ $\eta = n^{-\frac{2\alpha+1}{2\alpha+1+\gamma}}$. $\bar{w}_n = \frac{1}{n} \sum_{t=1}^n w_t$. Then,

$$\mathbb{E}\mathcal{E}(\bar{w}_T) - \mathcal{E}(w^{\dagger}) \lesssim n^{-\frac{2\alpha+1}{2\alpha+1+\gamma}}$$

Note

Optimal (nonparametric) rate in a minmax sense.

Same rates using cross validation (CV) for choosing step-size η .

Remarks

Stepsize and iterations control convergence and stability of SGD: one of the two (or both) needs be tuned.

Proof extends to harder or easier learning problems with slightly different take home messages [Pillaud et al. 1'8].

Proof strategy extends to averaging [Pillaud et al. '18], decaying stepsize, mini-batches [Lin, R.'16].

Mini-batch, multi-pass LS-SGD

$$\widehat{w}_{t+1} = \widehat{w}_t - \eta_t \frac{1}{b} \sum_{i=b(t-1)+1}^{bt} \left(\langle \widehat{w}_t, (x_{j_i}) \rangle - y_{j_i} \right) (x_{j_i})$$

Theorem (Lin, R. '16)

Assume $||X|| \leq 1$ and $|Y| \leq 1$ for all η and T,

$$\mathbb{E}\mathcal{E}(\widehat{w}_T) - \mathcal{E}(w^{\dagger}) \lesssim \frac{1}{\eta T} + \frac{1}{\sqrt{n}} \left(\frac{\eta T}{\sqrt{n}}\right)^2 + \frac{\eta}{b} \left(1 + \frac{\eta T}{\sqrt{n}}\right)$$

Note

mini-batch size: b.

Multi-pass vs one pass SGD

Corollary (Lin, R. '16)

Assume $||X|| \le 1$ and $|Y| \le 1$ a.s. and consider one of the following choices 1. b = 1, $\eta_t \simeq \frac{1}{\sqrt{n}}$, and T = n iterations (1 pass over the data); 2. $b = \sqrt{n}$, $\eta_t \simeq 1$, and $T = \sqrt{n}$ iterations (1 pass over the data); 3. b = n, $\eta_t \simeq 1$, and $T = \sqrt{n}$ iterations (\sqrt{n} passes over the data); Then, Then,

$$\mathbb{E}\mathcal{E}(\widehat{w}_T) - \mathcal{E}(w^{\dagger}) \lesssim rac{1}{\sqrt{n}}$$

Note

- Mini-batching allows larger step-sizes.
- No gain after $b = \sqrt{n}$.
- Refined results beyond this worst case.

Concluding

▶ Tools from statistical learning to understand practically used SGD.

First optimal results for multiple passes (and minibatching).

• Sketching/random features \rightarrow I brought a poster...

Some open problems

- Combine averaging and minibatching [Mücke, R. '19] on the way
- Beyond least squares [Hardt et al. 16, Lin, Camoriano R. '16] partial results
- Eeyond minimal ℓ_2 norm [Matet, R., Villa, Vu '16, Garrigos, R., Villa '16] batch case
- Acceleration results in [Jain et al '16-]
- Non-convexity

References

- Learning with incremental iterative regularization
 L Rosasco, S Villa
 Advances in Neural Information Processing Systems, 1630-1638
- Optimal rates for multi-pass stochastic gradient methods J Lin, L Rosasco The Journal of Machine Learning Research 18 (1), 3375-3421
- Generalization properties and implicit regularization for multiple passes SGM J Lin, R Camoriano, L Rosasco International Conference on Machine Learning, 2340-2348
- Learning with sgd and random features
 L Carratino, A Rudi, L Rosasco
 Advances in Neural Information Processing Systems, 10213-10224