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Classic results



SGD

Problem Solve
min F(w), F(w) =Ez(Z,w)

SGD
Wiy1 = wy — Ve VU Zy, wy), t=0,...,T

» It holds EVL(Z;,w) = VF(w), hence the name.

» Every step requires a new gradient estimates.



SGD typical result

Assume F' convex, smooth, with bounded gradients and take v < % then

E |F(wr) — min F(w)| <

5=

» Rates are optimal improved.

> Better rates under stronger conditions: strong convexity, KL/conditioning



SGD for training error

Special case

Z rand. var. uniformly distributed on z1, ..., z,.

> Better rates achievable in this case.
» Again improvable under stronger conditions: strong convexity, KL/conditioning.

» SGD called also incremental gradient in this case.



Understanding SGD: from practice to theory

multiple-passes (gradients are re-used)
various step-size choices

mini-batch

averaging

sketching

acceleration

preconditioning

vyVvyvyvyVvyYVvyYyvyy

What is the impact for learning (test error)?
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Statistical learning & least squares



Least squares learning

> X Hilbert space
> 7 =(X,Y) with values in X x R

Problem:

Solve
min €(w) E(w) =E[(Y — (w, X))?]

given only (x;,y;); i.i.d.

Minimal norm solution:

w' = argmin ||w|, O = argmin &(w)
X



lll-posedeness

Least squares optimality conditions:
Ywh =g, Y=EX®X], g=E[XY]

and w' € Null()+



lll-posedeness

Least squares optimality conditions:
Ywh =g, Y=EX®X], g=E[XY]

and w' € Null()+

[ll-posedness
» X infinite dimensional, ¥ compact = problem is ill-posed.

» if X is finite dimensional it is well posed, but possibly badly conditioned.



Least squares SGD

Wyr1 = Wy — e (T, (W, T4,) — yi,) + A0y), t=0,...7T

Free parameters:
» regularization parameter A
> step-size ()¢
» stopping time T, (T > n multiple “passes”)

Note: (i;): deterministic or stochastic (with/without replacement)



LS-SGD: Previous results

Non asymptotic:
> [Smale-Yao '05] Fixed A (some classic results hold for this case).
P [Tarres-Yao '07] Decreasing A.
> [Ying-Pontil '07] A = 0.

All one pass, i.e. i; = t, and with decreasing step-size.

[Villa-Rosasco '15] A = 0, multiple passes (for the first time?), cyclic selection.
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Multi-pass SGD



Multi-pass LS-SGD

Wiy = Wy — 1w, (W, 23,) —yi,)), t=0,...7T

Note: (i;): chosen uniformly at random with replacement



Multi-pass LS-SGD

D1 = Wy — n(x:, (g, ) —y3,)), t=0,...

Note: (i;): chosen uniformly at random with replacement
Theorem (Lin, R. '16)
Assume || X|| <1 and |Y| <1 forallnand T,

1 1

EE(@r) — E(u') S — + = (77T> e

7)

T vn \Vn

T

n



Multi-pass LS-SGD

Wy = Wy — (s, (W, 23,) —yi,)), t=0,...7

Note: (i;): chosen uniformly at random with replacement

Theorem (Lin, R. '16)
Assume || X|| <1 and |Y| <1 forall n and T,

Note
> Statistics and optimization: integrated in the bound.
» Bias-variance: parameter choices derived optimizing the bound.



Multi-pass vs one pass SGD

Corollary (Lin, R. '16)

Assume || X|| <1 and |Y| <1 as. and let
> T=n(l pass),n:ﬁ.
> T =n%? (y/n passes), n= 1.

Then,

EE(ir) — E(wh) <

-

Note
» Optimal (nonparametric) rate in a minmax sense.
> With a larger step-size, one pass suffices (recovering [Dieulevet, Bach "14- Ying, Pontil, '06]).



Beyond the worst case: source condition

Recall
Ywh =g, Y=EX®X], g¢g=E[XY]

and wf € Null(£)+

» S) Source condition w' € Range (%%), a > 0

» C) Capacity condition o;(X) ~i™7, ~€(0,1]



Fast rates

Theorem (Lin, R. '16)
Y| <1andS),C) hold. Then, for alln and T,

20+1 2
~ 1 1 T T
ES(wﬂ—e(w*)s(T) + — ( 5 >+n(1v = )
n nZatity \n2etity nzatity

Assume || X|| <1,

Note
» Reduces to worst case for a =0, ~v=1.

» Different parameter choices derived optimizing the bound.



Multiple passes SGD

Corollary (Lin, R. '16)
Y| <1 andS),C) hold. Let

1 1
> T =pariry 1 (n?>+1+7 passes)
1

Assume || X|| < 1,

Then, ~ e
EE (7)) — E(w') < n~ 2t
Note

> Optimal (nonparametric) rate in a minmax sense.
» Same as Tikhonov regularization but include optimization!

» Choosing T,, by cross validation (CV) achieves the same rate.



One pass SGD

Corollary (Dieulevet, Bach '16)

Assume ||z|| <1, |y| <1 and S),C) hold with o < 1/2. Let
» T =n (1 pass)

__2a+1
> n=mn 2ZFity,

- 1 n
> wy, = Zt:1 W.

Then,

2a+1

EE (wr) — E(wh) S n™ 2t

Note
» Optimal (nonparametric) rate in a minmax sense.

» Same rates using cross validation (CV) for choosing step-size 7).



Remarks

> Stepsize and iterations control convergence and stability of SGD: one of the two (or both)
needs be tuned.

» Proof extends to harder or easier learning problems with slightly different take home
messages [Pillaud et al. 1'8].

» Proof strategy extends to averaging [Pillaud et al. '18], decaying stepsize, mini-batches [Lin,
R.'16].



Mini-batch, multi-pass LS-SGD

bt

N _ 1 .
W41 = Wt — ntg Z (<wt7 (x]1)> - yJ@)(xJz)
i=b(t—1)+1

Theorem (Lin, R. '16)
Assume || X|| <1 and |Y| <1 forallnand T,

Note
» mini-batch size: b.



Multi-pass vs one pass SGD

Corollary (Lin, R. '16)

Assume || X|| <1 and |Y| <1 a.s. and consider one of the following choices
1L.b=1,n~ ﬁ and T = n iterations (1 pass over the data);
2. b=+/n,m ~1, and T = \/n iterations (1 pass over the data);
3. b=n, n; =1, and T = +/n iterations (\/n passes over the data);
Then,
EE(r) — E(w') S

4

Note
» Mini-batching allows larger step-sizes.
> No gain after b = /n.
» Refined results beyond this worst case.



Concluding

» Tools from statistical learning to understand practically used SGD.

» First optimal results for multiple passes ( and minibatching).

» Sketching/random features — | brought a poster...



Some open problems

Combine averaging and minibatching - [Miicke, R. '19] on the way

Beyond least squares — [Hardt et al. 16, Lin, Camoriano R. '16] partial results

Beyond minimal ¢5 norm — [Matet, R., Villa, Vu '16, Garrigos, R., Villa '16] batch case
Acceleration - results in [Jain et al '16-]

Non-convexity
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