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SGD

Problem Solve
min
w
F (w), F (w) = EZ`(Z,w)

SGD
wt+1 = wt − γt∇`(Zt, wt), t = 0, . . . , T

I It holds E∇L(Zt, w) = ∇F (w), hence the name.

I Every step requires a new gradient estimates.



SGD typical result

Assume F convex, smooth, with bounded gradients and take γ . 1√
t
, then

E
[
F (wT )−min

w
F (w)

]
.

1√
T
.

I Rates are optimal improved.

I Better rates under stronger conditions: strong convexity, KL/conditioning



SGD for training error

Special case

F (w) =
1

n

n∑
i=1

`(zi, w),

Z rand. var. uniformly distributed on z1, . . . , zn.

I Better rates achievable in this case.

I Again improvable under stronger conditions: strong convexity, KL/conditioning.

I SGD called also incremental gradient in this case.



Understanding SGD: from practice to theory

I multiple-passes (gradients are re-used)

I various step-size choices

I mini-batch

I averaging

I sketching

I acceleration

I preconditioning

I . . .

What is the impact for learning (test error)?
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Least squares learning

I X Hilbert space

I Z = (X,Y ) with values in X × R

Problem:
Solve

min
w∈X
E(w) E(w) = E[(Y − 〈w,X〉)2]

given only (xi, yi)
n
i=1 i.i.d.

Minimal norm solution:

w† = argmin
w∈O

‖w‖, O = argmin
w∈X

E(w)



Ill-posedeness

Least squares optimality conditions:

Σw† = g, Σ = E[X ⊗X], g = E[XY ]

and w† ∈ Null(Σ)⊥

Ill-posedness

I X infinite dimensional, Σ compact ⇒ problem is ill-posed.

I if X is finite dimensional it is well posed, but possibly badly conditioned.
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Least squares SGD

ŵt+1 = ŵt − ηt(xit(〈ŵt, xit〉 − yit) + λŵt), t = 0, . . . T

Free parameters:

I regularization parameter λ

I step-size (ηt)t
I stopping time T , (T > n multiple “passes”)

Note: (it)t deterministic or stochastic (with/without replacement)



LS-SGD: Previous results

Non asymptotic:

I [Smale-Yao ’05] Fixed λ (some classic results hold for this case).

I [Tarres-Yao ’07] Decreasing λ.

I [Ying-Pontil ’07] λ = 0.

All one pass, i.e. it = t, and with decreasing step-size.

[Villa-Rosasco ’15] λ = 0, multiple passes (for the first time?), cyclic selection.
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Multi-pass LS-SGD

ŵt+1 = ŵt − η(xit(〈ŵt, xit〉 − yit)), t = 0, . . . T

Note: (it)t chosen uniformly at random with replacement

Theorem (Lin, R. ’16)

Assume ‖X‖ ≤ 1 and |Y | ≤ 1 for all η and T ,

EE(ŵT )− E(w†) .
1

ηT
+

1√
n

(
ηT√
n

)2

+ η

(
1 ∨ ηT√

n

)

Note

I Statistics and optimization: integrated in the bound.

I Bias-variance: parameter choices derived optimizing the bound.
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Multi-pass vs one pass SGD

Corollary (Lin, R. ’16)

Assume ‖X‖ ≤ 1 and |Y | ≤ 1 a.s. and let

I T = n (1 pass), η = 1√
n
.

I T = n3/2 (
√
n passes), η = 1

n .

Then,

EE(ŵT )− E(w†) .
1√
n

Note

I Optimal (nonparametric) rate in a minmax sense.

I With a larger step-size, one pass suffices (recovering [Dieulevet, Bach ’14– Ying, Pontil, ’06]).



Beyond the worst case: source condition

Recall
Σw† = g, Σ = E[X ⊗X], g = E[XY ]

and w† ∈ Null(Σ)⊥

I S) Source condition w† ∈ Range (Σα), α > 0

I C) Capacity condition σi(Σ) ∼ i−γ , γ ∈ (0, 1]



Fast rates

Theorem (Lin, R. ’16)

Assume ‖X‖ ≤ 1, |Y | ≤ 1 and S), C) hold. Then, for all η and T ,

EE(ŵT )− E(w†) .

(
1

ηT

)2α+1

+
1

n
2α+1

2α+1+γ

(
ηT

n
1

2α+1+γ

)2

+ η

(
1 ∨ ηT

n
1

2α+1+γ

)

Note

I Reduces to worst case for α = 0, γ = 1.

I Different parameter choices derived optimizing the bound.



Multiple passes SGD

Corollary (Lin, R. ’16)

Assume ‖X‖ ≤ 1, |Y | ≤ 1 and S), C) hold. Let

I T = n
1

2α+1+γ+1 (n
1

2α+1+γ passes)

I η = 1
n .

Then,

EE(ŵT )− E(w†) . n−
2α+1

2α+1+γ

Note

I Optimal (nonparametric) rate in a minmax sense.

I Same as Tikhonov regularization but include optimization!

I Choosing Tn by cross validation (CV) achieves the same rate.



One pass SGD

Corollary (Dieulevet, Bach ’16)

Assume ‖x‖ ≤ 1, |y| ≤ 1 and S), C) hold with α < 1/2. Let

I T = n (1 pass)

I η = n−
2α+1

2α+1+γ .

I w̄n = 1
n

∑n
t=1 wt.

Then,

EE(w̄T )− E(w†) . n−
2α+1

2α+1+γ

Note

I Optimal (nonparametric) rate in a minmax sense.

I Same rates using cross validation (CV) for choosing step-size η.



Remarks

I Stepsize and iterations control convergence and stability of SGD: one of the two (or both)
needs be tuned.

I Proof extends to harder or easier learning problems with slightly different take home
messages [Pillaud et al. 1’8].

I Proof strategy extends to averaging [Pillaud et al. ’18], decaying stepsize, mini-batches [Lin,

R.’16].



Mini-batch, multi-pass LS-SGD

ŵt+1 = ŵt − ηt
1

b

bt∑
i=b(t−1)+1

(
〈ŵt, (xji)〉 − yji

)
(xji)

Theorem (Lin, R. ’16)

Assume ‖X‖ ≤ 1 and |Y | ≤ 1 for all η and T ,

EE(ŵT )− E(w†) .
1

ηT
+

1√
n

(
ηT√
n

)2

+
η

b

(
1 +

ηT√
n

)

Note

I mini-batch size: b.



Multi-pass vs one pass SGD

Corollary (Lin, R. ’16)

Assume ‖X‖ ≤ 1 and |Y | ≤ 1 a.s. and consider one of the following choices

1. b = 1, ηt ' 1√
n
, and T = n iterations (1 pass over the data);

2. b =
√
n, ηt ' 1, and T =

√
n iterations (1 pass over the data);

3. b = n, ηt ' 1, and T =
√
n iterations (

√
n passes over the data);

Then,

EE(ŵT )− E(w†) .
1√
n

Note

I Mini-batching allows larger step-sizes.

I No gain after b =
√
n.

I Refined results beyond this worst case.



Concluding

I Tools from statistical learning to understand practically used SGD.

I First optimal results for multiple passes ( and minibatching).

I Sketching/random features → I brought a poster...



Some open problems

I Combine averaging and minibatching - [Mücke, R. ’19] on the way

I Beyond least squares – [Hardt et al. 16, Lin, Camoriano R. ’16] partial results

I Beyond minimal `2 norm – [Matet, R., Villa, Vu ’16, Garrigos, R., Villa ’16] batch case

I Acceleration - results in [Jain et al ’16-]

I Non-convexity
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