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Approximation in ML

• Statistical approximations (random data), e.g.

• Cannot make approximation arbitrarily precise, sampling cost

• Computational approximations (random non-data)
• Can make approximation arbitrarily precise, cost is computational





The Pattern

• “Consistent” approximation:
consistent estimator of some quantity of interest (𝑘 → ∞)

• Computationally constraints put limits on 𝑘



Example 1: Self-Normalized Importance Sampling

• Quantity of interest
𝔼𝑥~𝑝 𝑓(𝑥)

• Consistent estimator, unnormalized ෤𝑝



Example 2: AIS Evidence Estimates

• Annealed Importance Sampling: unbiased estimates of

Ƹ𝑝𝑘(𝑥) → 𝑝 𝑥 = න𝑝 𝑥 𝑧 𝑝 𝑧 d𝑧

• However, in many applications we need to estimate
(See [Salakhutdinov and Murray, 2008])

log 𝑝(𝑥)

• Naïve plug-in estimate, consistent,
෠𝐿𝑘 = log Ƹ𝑝𝑘(𝑥)

• Biased (“stochastic lower bound”, sounds better) Jensen’s 
inequality



Example 3: Importance Weighted 
Autoencoder (IWAE)
• Family of tighter ELBO bounds [Burda et al., 2015]

• Intractable expectation

• Approximate “naively” using empirical expectation

𝑧𝑖~𝑞𝜔(𝑧|𝑥)



IWAE: known results [Burda et al., 2015]

• ELBO recovery
ELBO = መℒ1

• Consistency

• Stochastic monotonicity (== bias)
𝔼 መℒ1 ≤ 𝔼 መℒ2 ≤ ⋯ ≤ 𝔼 መℒ∞ = log 𝑝(𝑥)



Example 4: Markov Chain Monte Carlo

• Quantity of interest
𝔼𝑥~𝑝 𝑓(𝑥)

• Consistent estimator from truncated Markov chain samples
𝑥𝑡+1~𝑇 𝑥𝑡+1 𝑥𝑡 , 𝑥0~𝑇0(𝑥0)

• Bias due to truncation

• See [Strathmann et al., ICML 2015]



Example 5: Stochastic Metropolis-Hastings 
Acceptance Rates
• Stochastic Gradient MCMC method omit accept-reject step in a 

Metropolis-Hastings chain (e.g. SGLD [Welling and Teh, ICML 2011]

• Problem: exact (MALA) acceptance rate is intractable

• Consistent estimator by truncation
𝛼𝑘(𝑥 → 𝑥′)

• Biased due to exponentiation and min operation

• See [Lyne et al., Statistical Science, 2015] for pseudo-marginal MCMC





Debiasing Methods



Analytic Methods Resampling Methods
Stochastic 
Methods

Jackknife Debiasing Bootstrap DebiasingDelta Method
Russian Roulette,
Debiasing Lemma

Case-by-Case

Christopher G. Small,
CRC Press, 2010

[Lyne et al., 
Statistical Science, 
2015]

[Schucany et al., JASA 1971] 
and [Sharot, JASA 1976]

Peter Hall’s bootstrap 
lecture notes, 2016



Analytic Methods

Delta Method



Importance Weighted Autoencoder (IWAE)

• Family of tighter ELBO bounds [Burda et al., 2015]

• Intractable expectation

• Approximate “naively”

𝑧𝑖~𝑞𝜔(𝑧|𝑥)



Delta Method for Moments

• == Taylor expansion

• Here, Taylor expand log around 𝔼 𝑤 , evaluate at 𝑌𝑘 =
1

𝑘
σ𝑤𝑖

log𝑌𝑘 = log 𝔼 𝑤 + (𝑌𝑘 −𝔼 𝑤 )



Delta Method VI

Naïve 
estimator

Quantity of 
interest

(intractable)

Correction 
terms

(intractable)
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Delta Method VI

Naïve 
estimator

Quantity of 
interest

(intractable)

Remaining 
correction 

terms
(intractable)

= 0



Delta Method VI [Teh et al., 2007]

Naïve 
estimator

Quantity of 
interest

(intractable)

Remaining 
correction 

terms
(intractable)

Approximate 
using estimated 

moments



Delta Method VI [Teh et al., 2007]

• Indeed reduces bias to 𝑜(𝑘−2), [Nowozin, 2018]



Analytic Methods Resampling Methods

Jackknife DebiasingDelta Method

[Nowozin, “Debiasing Evidence Approximations”, ICLR 2018]



Inverse 
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Assume we have an asymptotic expansion

Then

= 𝑇 + 𝑂(𝑘−2)



Generalized Jackknife

• Original jackknife: [Quennouille, 1949]
• Removes first order 𝑂(𝑛−1) bias

• Generalization to higher-order bias removal: [Schucany et al., 1974]
• Eliminates bias to any order

• Variance typically increases



Sharot form of the generalized Jackknife

• [Sharot, 1976]

• 𝑛: sample size

• 𝑚: order of the jackknife, 𝑚 ≥ 0

• ෠𝑇𝑛: original consistent estimator evaluated on 𝑛 samples

෠𝑇𝐺
(1)

= 𝑛෠𝑇𝑛 − (𝑛 − 1)෠𝑇𝑛−1

෠𝑇𝐺
(0)

= ෠𝑇𝑛

෠𝑇𝐺
(2)

=
𝑛2

2
෠𝑇𝑛 − 𝑛 − 1 2 ෠𝑇𝑛−1 +

(𝑛 − 2)2

2
෠𝑇𝑛−2



Jackknife Variational Inference (JVI)



Higher-order Bias Reduction

ELBO

5 samples

80 samples



Evidence Evaluations (VAE MNIST)

Trained with ELBO Trained with IWAE

• Effective bias reduction
• Higher-order terms matter



Analytic Methods Resampling Methods

Jackknife DebiasingDelta Method

Case-by-Case



Example 5: Stochastic Metropolis-Hastings 
Acceptance Rates
• Stochastic Gradient MCMC method omit accept-reject step in a 

Metropolis-Hastings chain (e.g. SGLD [Welling and Teh, ICML 2011]

• Problem: exact (MALA) acceptance rate is intractable

• Consistent estimator by truncation
𝛼𝑘(𝑥 → 𝑥′)

• Biased due to exponentiation and min operation



Stochastic Acceptance Rate
(Ceperley and Dewing, “Penalty MCMC”, 1998)

is deterministic.   Consider a random batch of size

1 ≪ 𝑚 ≪ 𝑛, then approximately

Why? CLT:

log ෤𝑝𝐵 𝜃 = log 𝑝(𝜃) +
𝑛

𝐵
෍

𝑖𝜖𝐵
log 𝑝(𝑥𝑖|𝜃)



Ceperley-Dewing, Intuition, 1/2

• (Formal proof relies on relating Log-Normal distribution tail masses)

• Intuition:

• Then
෤𝑝𝐵(𝜃

′)

෤𝑝𝐵 𝜃
~ LogNormal 𝜇 𝜃, 𝜃′ , 𝑣 𝜃, 𝜃′

• And

𝔼
෤𝑝𝐵(𝜃

′)

෤𝑝𝐵 𝜃
= exp 𝜇 𝜃, 𝜃′ +

1

2
𝑣 𝜃, 𝜃′



Ceperley-Dewing, Intuition, 2/2

penalty factor, < 1

• Under assumptions of Normality: exact debiasing of stochastic MCMC
• The larger the variance, the worse the penalty



Langevin-Ceperley-Dewing (LCD)
Joint work with Alexander Gaunt (MSR Cambridge)

• Extension of Ceperley-Dewing to discretized Langevin dynamics

• Goal: Make SGLD valid for any stepsize via stochastic rejection

• Ceperley-Dewing assumes 𝑞 𝜃′ 𝜃 = 𝑞(𝜃|𝜃′)

• Simple extension using two batches 𝐵, 𝐵′, one for 𝑞𝐵, and one for the 
likelihood ratio



Normal Experiment (1D)

• Simple 1D Normal mean experiment

𝜇 ~𝒩 𝜇0 , 𝜎0
2

𝑥𝑖 ~𝒩 𝜇, 𝜎2 , 𝑖 = 1, … , 1000

• Infer
𝑝 𝜇 𝑥1 , … , 𝑥1000

• Compare SGLD and LCD for different stepsizes, batchsize 64

• Initialize using true posterior, no burn-in



Normal Experiment (1D)

• TODO





Analytic Methods Resampling Methods
Stochastic 
Methods

Jackknife Debiasing Bootstrap DebiasingDelta Method
Russian Roulette,
Debiasing Lemma

Case-by-Case

Conclusions

• Many ML objectives contain biased estimators
• Example: approximate Inference is an estimation problem
• Let’s use a broader toolbox of techniques to make bespoke tradeoffs in 

approximate inference



Thanks!

nowozin@gmail.com

Code for JVI:

https://github.com/Microsoft/jackknife-variational-inference

https://github.com/Microsoft/jackknife-variational-inference

